Our Quantum Universe

Raphael Flauger

KITP Chalk Talk, March 4, 2020

Image Credit: NASA

Image Credit: NASA

6 Cyg

Observation in fall

Measuring the distance

H.S. Leavitt

Measuring the distance

1777 VARIABLES IN THE MAGELLANIC CLOUDS.

BY HENRIETTA S. LEAVITT.

Harvard No.	Max.	Min.	Range.	Epoch.	Period.	Min. to Max.	Average Dev.	Earliest Observation.	No. Periods.	No. Plates.
. 010	19.0	14.7		4.0	d.	<i>d</i> .	10	1000		
818	13.0	14.7	1.1	4.0	10.350	1.7	.12	1890	500	44
821	11.2	12.1	0.9	97.	127.	49.	.06	1890	45	89
823	12.2	14.1	1.9	2.9	31.94	3.	.13	1890	184	56
824	11.4	12.8	1.4	4.	65.8	7.	.12	1889	94	83
827	13.4	14.3	0.9	11.6	13.47	6.	.11	1890	448	60
842	14.6	16.1	1.5	2.61	4.2897	0.6	.06	1896	843	26
1374	13.9	15.2	1.3	6.0	8.397	2.	.10	1893	574	42
1400	14.1	14.8	0.7	4.0	6.650	1.	.11	1893	724	42
1425	14.3	15.3	1.0	2.8	4.547	0.8	.09	1893	1042	33
1436	14.8	16.4	1.6	0.02	1.6637	0.3	.10	1893	2859	22
1446	14.8	16.4	1.6	1.38	1.7620	0.3	.09	1896	2052	21
1505	14.8	16.1	1.3	0.02	1.25336	0.2	.10	1896	2335	25
1506	15.1	16.3	1.2	1.08	1.87502	0.3	.09	1896	1560	23
1646	14.4	15.4	1.0	4.30	5.311	0.7	.06	1896	681	24
1649	14.3	15.2	0.9	5.05	5.323	0.7	.10	1893	894	32
1742	14.3	15.5	1.2	0.95	4.9866	0.7	.07	1893	954	28

PERIODS OF VARIABLES IN THE SMALL MAGELLANIC CLOUD.

It is worthy of notice that in Table VI the eriods.

brighter variables have the longer periods.

Measuring the distance

HARVARD COLLEGE OBSERVATORY. 92

CIRCULAR 173.

PERIODS OF 25 VARIABLE STARS IN THE SMALL MAGELLANIC CLOUD.

1

Spectrum

Spectra and Doppler effect

We can measure the velocity of stars and galaxies from the positions of spectral features.

 $v \approx zc$

Spectra of Nebulae

V.M. Slipher

Spectra of Nebulae

SPECTROGRAPHIC OBSERVATIONS OF NEBULAE. 93

BY V. M. SLIPHER.

During the last two years the spectrographic work at Flagstaff has been devoted largely to nebulae. While the observations were chiefly concerned with the spiral nebulae they also include planetary and extended nebulae and globular star clusters.

N.G.C.	221 224 † 598 1023 1068 7331	Velocity — 300 km — 300 — + 200 roughly + 1100 + 300 roughly	These nebulae are on the south side of the Milky Way.	
(1997)	3031 3115 3627 4565 4594 4736 4826 5194 5866	+ small + 400 roughly + 500 + 1000 + 1100 + 200 roughly + small ± small + 600	These are on the north side of the Milky Way	

As far as the data go, the average velocity is 400 km.

A RELATION BETWEEN DISTANCE AND RADIAL VELOCITY AMONG EXTRA-GALACTIC NEBULAE

By Edwin Hubble

MOUNT WILSON OBSERVATORY, CARNEGIE INSTITUTION OF WASHINGTON

Communicated January 17, 1929

Velocity-Distance Relation among Extra-Galactic Nebulae.

For distant objects we can infer distance from redshift

 \mathbf{Z}

Distance record holder: GN-z11

light travel time:I 3.4 billion yearsage of universe at emission: 400 million years

The Cosmic Microwave Background

If the universe is expanding, it must have been denser and hotter early on. Could there be radiation left over and detectable today from this hotter period?

Dicke, Peebles, Roll, and Wilkinson hoping to find out.

The Cosmic Microwave Background

Meanwhile 30 miles away:

Penzias and Wilson are troubled by noise in their experiment

The Cosmic Microwave Background

Penzias and Wilson are informed by Bernie Burke who is informed by Ken Turner of a talk given by Jim Peebles

COSMIC BLACK-BODY RADIATION*

R. H. DICKE P. J. E. PEEBLES P. G. ROLL D. T. WILKINSON

May 7, 1965 Palmer Physical Laboratory Princeton, New Jersey

> A MEASUREMENT OF EXCESS ANTENNA TEMPERATURE AT 4080 Mc/s

> > A. A. PENZIAS R. W. WILSON

May 13, 1965 Bell Telephone Laboratories, Inc Crawford Hill, Holmdel, New Jersey

Project Echo

The CMB Dipole

Motion with respect to the CMB should cause a dipolar pattern First measurement of right ascension, declination, amplitude

Teaches us about direction and speed of our motion relative to the CMB

The CMB Dipole

High significance detection

Spectrum of the CMB

Radiation left over from the hot early universe should have a characteristic frequency dependence.

Mollweide projection

A convenient projection of a sphere into the plane traditionally used to show CMB maps is the Mollweide projection.

COBE

Observations at 3 frequencies allow to remove galactic emission

Somewhat noisy, low-resolution picture of the universe at 380,000 years old.

WMAP

Higher resolution picture of the universe at 380,000 years old

Planck

Planck

Current and essentially final picture of the universe at 380,000 years old

We cannot hope to predict individual features in the map

So we measure the strength of the signal as a function of scale

We cannot hope to predict individual features in the map

So we measure the strength of the signal as a function of scale

We cannot hope to predict individual features in the map

So we measure the strength of the signal as a function of scale

Comparison between theory and data allows us to measure the composition, geometry, and age of the universe

A very simple model fits the data

- 5% of energy density today in atoms
- 30% of energy density today in matter
- flat universe
- 13.8 billion years old

Comparison between theory and data allows us to measure the composition, geometry, and age of the universe

A very simple model fits the data

- 5% of energy density today in atoms
- 30% of energy density today in matter
- flat universe
- 13.8 billion years old

Assumes results from terrestrial experiments, e.g. properties of hydrogen, 3 species of neutrinos, ...

Can be independently constrained from the data

 $N_{\rm eff}=2.99\pm0.17$

No net polarization in a homogeneous medium

Net polarization for a temperature quadrupole

Predicting large scale structure

Dark Matter

redshift : 11.29 Time since the Big Bang: 0.4 billion years

We see the same temperature everywhere, yet according to our model different parts of the sky never communicated with each other.

The angular power spectrum implies that fluctuations have the same phases across the sky

Polarization measurements provide further evidence for phase coherence.

In Einstein's General Relativity, this requires either accelerated expansion or decelerated contraction.

Inflation

According to inflation the early universe underwent a period of nearly exponential expansion when it was merely 10^{-33} seconds old.

Inflation

A clock is needed to determine the end of inflation. Quantum fluctuations in this clock are the source of the fluctuations we see in the CMB

Inflation

Inflation also predicts quantum fluctuations in spacetime, which lead to a characteristic polarization pattern — "B-modes"

Some of the simplest models have been ruled out, but the search is just getting started.

Current CMB Experiments

Stage III: now

Future CMB Experiments

Stage III.5: 2021-2028

Future CMB Experiments

CMB-S4: 2028-2035

Future CMB Experiments

LiteBIRD

Selected by JAXA in 2019 Launch in 2028

Beyond Inflation

These experiments will not only provide new insights into the earliest moments of our universe, they will also

- measure the content, age, and geometry of the universe with even higher precision
- map the matter in the universe
- map the hot gas in galaxy clusters
- constrain light particles beyond those in the standard model of particle physics

Beyond Inflation

Conclusions

- Looking out into the universe allows us to look back in time.
- The earliest "light" we can see is radiation left over from the hot early universe, the cosmic microwave background
- Observations of the CMB constrain the composition, age, and geometry of the universe to within a per cent.
- The observations reveal a very simple universe.
- The properties of the CMB imply an earlier period that generated the perturbations we see.
- This earlier period may also have generated fluctuations in spacetime itself, which would generate a characteristic polarization pattern in the CMB.
- Work is currently ongoing to look for this signal.
- With luck we may learn a great deal about the first fractions of a second of our universe.

Thank you