The Dynamics of Avalanches

Jim McElwaine

Department of Earth Sciences **Durham University**

Plan of Talk

- Types of Avalanche
- Avalanche Initiation
- Avalanche Defences
- Avalanche Flow
 - Theory
 - Observations
 - Experiments
 - Simulations
- Avalanche Deposition

Manda III, 6529m

NW Face Manda III

Powder Avalanche on K2

Pierre Beghin, film

Head of Powder Snow Avalanche

Cemagref

Slab Avalanche Fracture Line, film

Skier in Slab Avalanche Debris

Cemagref

Patreksfjörður 1983, a Slush Flow Killed 3 People

Destroyed House at Saint Colomban Les Villars, film

Destroyed Buildings at La Morte

Cemagref

Damage by a flood wave at Súgandafjörður

CO₂ Avalanche on Mars

HiRISE

Current Avalanche Research

Types

- Huge variety:
 - \bullet speeds 25–250 km/h
 - densities $5-500 \,\mathrm{kg/m^3}$
 - \bullet masses 10^2 – $10^9 \,\mathrm{kg}$
- Three dimensional terrain and structure
- Snow properties are complicated and ill-defined
- Unpredictable, destructive, unreproducible
- Current theories are phenomenological
- Genesis of powder snow avalanches not understood

ニセコの立入禁止区域で

Location of Niseko in Japan (N 42' 52" E 140' 42")

Haru no Taki

Accident Site

Snow Morphology

Meteorological Data 17th to 29th January, 1998

Snow Pit Profiles

Types

Photos: Dr. Libbrecht

Simulated Profile

What is This?

Avalanche Accidents in Iceland

Icelandic Coast

Flateyri in Summer

Flateyri Avalanche 1999

Large Scale Defence Structures

Defence Structures in the Starting Zone

Church in Davos

Flateyri Deflecting Dam, \$5.5m

©Mats Wibe Lund

Flateyri Simulations With and Without Deflecting Dam

Test Chute in Davos film

Laboratory Experiments

Side View 8 Litre Avalanches

Types

 $31.5^{\rm o}$ slope

 $91.0^{\rm o}$ slope

 $58.5^{\rm o}$ slope

 $100\,\mathrm{ml}$ side $8000\,\mathrm{ml}$ side

Types

Non-Dimensional Velocity

$$\tilde{u} = \frac{u}{V^{\frac{1}{6}g^{\frac{1}{2}}}}$$

DNS

Direct Numerical Simulations

- 2d spectral with compact finite differences
 Meiburg Code
- Simulation region 8×1
- Release area 2×0.5
- Slope angles 0–90°
- Boussinesq and non-Boussinesq

Test hypothesis:

stagnation point is lowest point as $Re \rightarrow \infty$

3d

front

Time evolution, Re=32,000, Slope= 10°

film

front

Time evolution, Re=32,000, Slope= 60°

Re Comparison at slope 20°

Types

Re Comparison at slope 40°

Types

Front Speed

Vallée de la Sionne Test Site

- Artificial and Natural Releases
- 1000-1000000 kg
- $10-100 \,\mathrm{m \, s^{-1}}$
- Instrumentation
 - Video
 - Laser Scanning
 - Impact & air pressure
 - Dopper & FMCW Radar
 - Density
 - Velocity profiles

Mast and Thermal Imaging

Ping-Pong Ball Avalanches

Front Velocities at the K-Point

Types

A One Equation Model

Constant length scale L Conservation of linear momentum

$$\frac{dv}{dt} = g\sin\theta - g\mu\cos\theta + \mu\kappa v^2 - \frac{v^2}{L}$$

where m is mass

v - speed

s - distance

 θ - slope angle

g - densimetric gravity

 $\kappa = d\theta/ds$ - curvature

 μ - friction

L - drag length

Comparison with Model

Comparison with Velocity Data From VdIS

1200

Avalanche no. 628

600

200

Deposition

Riegl LMS-Q240i laser scanner

- time of flight principle
- 10 000 points per second
- horizontal resolution 500 mm
- vertical resolution 100 mm
- high density of points
- inertial measurement
- GPS

Snow depths variations h_{δ}

Bunker Rescue

Average snow depth variation \overline{h}_{δ}

Deposit depth $\rho gd \sin \theta = c + \mu \rho gd \cos \theta$

Types

Conclusions

- Simple theories can be very effective for flow and deposition
- Avalanche initiation is very complicated
- Synergy between Simulations, experiments and field observations
- Advances in instrumentation can really test models quantitatively

Acknowledgments

Betty Sovilla
Barbara Turnbull
Kouichi Nishimura
Christophe Ancey
Dieter Issler
Takahiro Ogura
Eckart Meiburg
Shane Byrne
Nathalie Vriend

Thanks!

Chute Experiments

Types

Eyes

