

ATTO PHYSICS: Observing Matter on Its Natural Time Scale

Anthony F. Starace

Department of Physics and Astronomy, The University of Nebraska-Lincoln

General Reference:

http://www.attoworld.de/Home/attoworld/

Outline

- **Motivation, Terminology, and Time Scales**
- **Background: Lasers and Laser Light Intensity**
- Ultrafast Processes: The Realm of Attosecond Physics
- **Current Achievements and Future Prospects**

Motivation

Motivation

What is Attosecond Physics?: It is the use of ultrashort pulses of laser light to understand, control, and image ultrafast atomic and molecular processes.Why is it important?: It is a means to follow chemical reactions (as well as other atomic-scale transformations) in real time as they occur.What are the key problems?:

- Laser pulses must be ultrashort, i.e., shorter than the timescale of atomic and molecular processes
 - *Key Problem*: Typical laser pulses are much longer than most ultrafast electronic processes.
 - Solution: Employ ultrashort bursts of radiation emitted by laser-driven electrons.
- Laser electric fields must be comparable in strength to those within atoms and molecules, i.e., so that such processes can be controlled
 - *Key problem*: Intense laser fields can destroy optical components!
 - Solution: Chirped pulse amplification (CPA)

Scientific Terminology

Names for Various Powers of Ten

10 ⁿ	Prefix
10 ²⁴	yotta
10 ²¹	zetta
10 ¹⁸	exa
10 ¹⁵	peta
10 ¹²	tera
10 ⁹	giga
10 ⁶	mega
10 ³	kilo
10 ²	hecto
10 ¹	deca, dek
10 ⁰	(none)

10⁰ (none) 10⁻¹ deci 10⁻² centi 10⁻³ milli 10⁻⁶ micro 10⁻⁹ nano 10⁻¹² pico 10⁻¹⁵ femto 10⁻¹⁸ atto 10⁻²¹ zepto ^{ca} 10⁻²⁴yocto

Time Scales

ber 2014 – p.6/28

Time Scales

Time Scales

Background: The Development of Intense Laser Fields

What is a Laser?

Incoherent versus Coherent Light

Sunlight (many different colors)

LED: one color (monochromatic) and waves not in phase (non-coherent)

LASER: One color (monochromatic) and waves in phase (coherent)

What is a Laser?

Stimulated Emission

Light is comprised of "photons," each with energy $h\nu = hc/\lambda$ where $\nu\lambda = c$.

An aside: The human eye can detect single photons!

Generation of Atto Pulses

Attosecond Pulse Train vs. Single Attosecond Pulse

Solid lines: Driving Laser Field *Dotted Lines*: Ionized electron trajectories

Shaded Pulses: Attosecond pulses

Spectrum of Atto Pulses

Harmonic Spectrum Plotted vs. Wavelength $\lambda(nm)$

The energy of the *N*th harmonic is $hv_N = Nh\nu_L$.

High-order Harmonic Generation (HHG)

Kavli Institute for Theoretical Physics, 10 September 20142-3)14/28 Schafer et al. PRL 70 1599 (1993)

... and each atom of the gas as a musician, emitting attosecond pulses synchronized with the rhythm dictated by the laser

Historical Overview of Increases in Laser Intensities

Ultrafast Processes: The Realm of Attosecond Physics

Pump-Probe Control of Molecular Processes

Electronic Excitation Transport in a Nebraska Biomolecule (Tyrosine-terminated tetrapeptide) cf. F. Remacle and R.D. Levine, PNAS 103, 6793 (2006) (a) t = 0.25 f: t = 0 fs $t = 0.75 \, \text{fs}$ $t = 0.5 \, \text{fs}$ (b) ⁸⁰82⁸⁴86⁸⁸90 Photoelectron 92 energy [eV] 1 1.25 1.5 94 0.5 0.75 Time delay [fs] Kavli Institute for Theoretical Physics, 10 September 2014 – p.20/28

Electron Transport in Single Crystal W

D. M. Villeneuve, Nature 449, 997 (2007); A.L. Cavalieri et al., ibid. p. 1029.

Photoemission Delay - Ne 2s, 2p Electrons Nebraska

M. Schultze et al., Science 328, 1658 (2010)

Current Achievements and Future Prospects

Ultrafast Science

Ultrafast Science

Few-Cycle Attosecond Pulses

G. Sansone et al., Science 314, 443 (2006).

"The availability of singleisolated cycle attosecond pulses opens the way to regime in ultrafast new a physics, in which the strongfield electron dynamics in atoms and molecules is driven by the electric field of the attosecond pulses rather than by their intensity profile."

- High-order harmonic generation has allowed the production of isolated pulses of attosecond duration.
- The determination of the time scales of electronic motion in atomic, molecular, and condensed matter processes is being achieved.
- **Control of such processes** is just beginning.

- High-order harmonic generation may lead to coherent laser light in the "water window" region,
 i.e., 280 eV ≤ hν ≤ 530 eV or 4.4 nm ≥ λ ≥ 2.34 nm.
- The determination of nuclear time scales will be achieved when zepto second laser light pulses are achieved.
- Production of intense attosecond pulses will permit:
 - Attosecond pump attosecond probe experiments
 - Control of electron angular distributions by means of intense few-cycle pulses.