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ABSTRACT
We use three-dimensional (3D) numerical magnetohydrodynamic simulations to follow the evolution

of cold, turbulent, gaseous systems with parameters chosen to represent conditions in giant molecular
clouds (GMCs). We present results of three model cloud simulations in which the mean magnetic Ðeld
strength is varied kG for GMC parameters), but an identical initial turbulent velocity Ðeld(B0 \ 1.4È14
is introduced. We describe the energy evolution, showing that (1) turbulence decays rapidly, with the
turbulent energy reduced by a factor 2 after 0.4È0.8 Ñow crossing times (D2È4 Myr for GMC parame-
ters), and (2) the magnetically supercritical cloud models gravitationally collapse after time B6 Myr,
while the magnetically subcritical cloud does not collapse. We compare density, velocity, and magnetic
Ðeld structure in three sets of model ““ snapshots ÏÏ with matched values of the Mach number MB 9,7,5.
We show that the distributions of volume density and column density are both approximately log-
normal, with mean mass-weighted volume density a factor 3È6 times the unperturbed value, but mean
mass-weighted column density only a factor 1.1È1.4 times the unperturbed value. We introduce a spatial
binning algorithm to investigate the dependence of kinetic quantities on spatial scale for regions of
column density contrast (ROCs) on the plane of the sky. We show that the average velocity dispersion
for the distribution of ROCs is only weakly correlated with scale, similar to mean sizeÈline width dis-
tributions for clumps within GMCs. We Ðnd that ROCs are often superpositions of spatially uncon-
nected regions that cannot easily be separated using velocity information ; we argue that the same
difficulty may a†ect observed GMC clumps. We suggest that it may be possible to deduce the mean 3D
sizeÈline width relation using the lower envelope of the 2D sizeÈline width distribution. We analyze mag-
netic Ðeld structure and show that in the high-density regime cm~3, total magnetic ÐeldnH2

Z 103
strengths increase with density with logarithmic slope D1/3È2/3. We Ðnd that mean line-of-sight mag-
netic Ðeld strengths may vary widely across a projected cloud and are not positively correlated with
column density. We compute simulated interstellar polarization maps at varying observer orientations
and determine that the Chandrasekhar-Fermi formula multiplied by a factor D0.5 yields a good estimate
of the plane-of sky magnetic Ðeld strength, provided the dispersion in polarization angles is [25¡.
Subject headings : ISM: clouds È ISM: molecules È MHD È methods : numerical È stars : formation

1. INTRODUCTION

Since the identiÐcation of cold interstellar clouds in radio
molecular lines, observational campaigns in many wave-
lengths have provided an increasingly detailed and sophisti-
cated characterization of their structural properties. These
clouds are self-gravitating entities permeated by magnetic
Ðelds and strongly supersonic turbulence ; the observational
properties of giant molecular clouds (GMCs) are sum-
marized, for example, by Blitz (1993), Williams, Blitz, &
McKee (2000), and Evans (1999). Although it has long been
appreciated by theorists that turbulence and magnetic Ðelds
must play a decisive role in cloud dynamics (e.g., Mestel &
Spitzer 1956 ; Shu, Adams, & Lizano 1987 ; McKee et al.
1993 ; Shu et al. 1999 ; McKee 1999), much of the theoretical
emphasis has been on evolutionary models in which the
e†ects of turbulent magnetohydrodynamics (MHD) is
modeled rather than treated in an explicit fashion.

Recent advances in computer hardware and development
of robust computational MHD algorithms have now made
it possible to evolve simpliÐed representations of molecular
clouds using direct numerical simulations. Fully nonlinear,
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time-dependent, MHD integrations can test theoretical
ideas about the roles of turbulence and magnetic Ðelds in
cloud evolution, and also make it possible to investigate
how turbulence a†ects the structural properties of clouds.
Progress in the rapidly developing Ðeld of simulations of
GMC turbulence is reviewed by, e.g., etVa� zquez-Semadeni
al. (2000).

This is the fourth in a series of papers (Gammie &
Ostriker 1996 ; Stone, Ostriker, & Gammie 1998 ; Ostriker,
Gammie, & Stone 1999) [Papers IÈIII, respectively]) inves-
tigating the dynamics of turbulent, magnetized, cold clouds
using direct numerical simulations.The previous papers pre-
sented several results on energetics and overall cloud evolu-
tion. They showed that (1) MHD turbulence can delay
gravitational collapse along the mean magnetic Ðeld in one-
dimensional models since dissipation is slow (Paper I) ;
however, (2) in higher dimensional models dissipation
occurs on the Ñow crossing timescale (Paper II) ; as at

fconsequence, (3) the fate of a cloud depends on whether its
massÈtoÈmagnetic Ñux ratio is subcritical or supercritical,
independent of the initial turbulent excitation, provided
that turbulence is not steadily driven (Paper III).

Some important astrophysical implications of these
results are that (1) star formation in turbulent clouds may
be initiated rapidly, essentially on a Ñow crossing timescale ;
and (2) models that rely on slowly dissipating turbulence to
support GMCs against collapse do not appear to be viable.
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One is still faced with the problem of avoiding the excessive
Galactic star formation rate that would result from the col-
lapse and fragmentation of the whole cold component of the
ISM within its gravitational free-fall time (comparable to its
Ñow crossing time ; Zuckerman & Palmer 1974). This
requires either (1) limitation of the star formation rate in
individual clouds (if self-gravitating clouds are long-lived
after formation), or (2) limitation of the lifetimes of self-
gravitating clouds. Both of these e†ects may be important.
Processes that contribute to limiting star formation rates in
individual clouds include turbulent feedback from star for-
mation, transmission of turbulence from the larger-scale
ISM, or a large (subcritical) mean magnetization of clouds.
The Ðrst two of these processes, together with destabilizing
environmental factors such as enhanced galactic shear
outside spiral arms, contribute to limiting lifetimes of indi-
vidual clouds.

Other workers have independently used simulations to
deduce the same results about the rapidity of turbulent dis-
sipation under likely GMC conditions (Mac Low et al.
1998 ; Mac Low 1999 ; Padoan & Nordlund 1999). Similar
conclusions have also been reached concerning ongoing
turbulent driving and the potential for star formation to be
initiated on a rapid timescale (see also Ballesteros-Paredes,
Hartmann, & 1999 ; Elmegreen 2000 ;Va� zquez-Semadeni
Klessen, Heitsch, & Mac Low 2000).

In addition to studying cloud evolution, our previous
work also investigated structural properties of our model
clouds. We found that density contrasts produced by turbu-
lent stresses are compatible with the typical clump/
interclump ratio estimated in GMCs (Papers IÈIII). We also
found that velocity and magnetic Ðeld power spectra evolve
to be comparable to power-law forms of Burgers and Kol-
mogorov turbulence, regardless of the driving scale (Paper
I ; see also Stone, Gammie, & Ostriker 2000). Other workers
have also studied the basic structural properties of the turb-
ulent gas in compressible hydrodynamic and MHD simula-
tions, concentrating on distribution functions of density and
velocity 1994 ; Passot &(Va� zquez-Semadeni Va� zquez-

1998 ; Scalo et al. 1998 ; Nordlund & PadoanSemadeni
1999 ; Klessen 2000), the ability of stresses to produce tran-
sient structure (Ballesteros-Paredes, &Va� zquez-Semadeni,
Scalo 1999), and power spectra and related functions
(Passot, & Pouquet 1995 ;Va� zquez-Semadeni, Va� zquez-

Ballesteros-Paredes, & Rodriguez 1997 ; Elmeg-Semadeni,
reen 1997, 1999 ; Klessen et al. 2000 ; Mac Low & Ossenkopf
2000).

In this paper, we analyze decaying turbulence in self-
gravitating cloud models with varying mean magnetization
(i.e., massÈtoÈmagnetic Ñux ratio).4 We begin by brieÑy
describing the energy evolutions of our models, which serve
to conÐrm our earlier results on turbulent dissipation times
and the gravitational collapse criterion for magnetized
clouds. We then turn to detailed structural investigations.
We analyze the density, velocity, and magnetic Ðeld dis-
tributions in our models at those stages of evolution when
the turbulent Mach number is comparable to that in large
(D5È10 pc scale) clouds. Our goals are (1) to provide a basic
description of structural characteristics and how they
depend on input parameters ; (2) to make connections

4 All models reported here, and most models studied by other workers,
impose the somewhat artiÐcial constraint that the initial mass-to-Ñux ratio
is spatially uniform.

between cloud models seen in projection and their true
three-dimensional (3D) structure, so as to help interpret
observational maps ; and (3) to assess whether certain sta-
tistical properties of clouds can be used to estimate the
mean magnetization.

We divide our analysis of structure into three main sec-
tions. The Ðrst (° 4) is a discussion of density structure.
Numerical hydrodynamic and MHD simulations of super-
sonic, turbulent Ñows have shown that magnetic pressure
and ram pressure Ñuctuations produce structures with large
density contrast that appear to resemble analogous
““ clumpy and Ðlamentary ÏÏ structures in real clouds (e.g.,
Passot et al. 1995 ; Padoan & Nordlund 1999 ; Paper III ;
Klessen 2000 ; Balsara et al. 1999). Studies of density
maxima and their immediate surroundings (““ clumps ÏÏ)
show that many are transient, as indicated by comparable
values for the kinetic energy and kinetic surface terms in the
virial theorem (Ballesteros-Paredes, &Va� zquez-Semadeni,
Scalo 1999 ; see also McKee & Zweibel 1992). Clump
properties in our turbulent cloud models will be examined
in a companion paper (Gammie et al. 2000, in preparation).

Analysis of the correlations of overdensityÈvia clump
studies or multipoint statisticsÈwill be needed to charac-
terize fully how a spectrum of self-gravitating condensations
is established. This process is of great interest because it
may ultimately determine the stellar IMF. A Ðrst step in
understanding the e†ect of turbulence on density structure,
however, is to examine one-point statistics. Here, we
compute and compare the distributions of density and
column density in di†erent cloud models. We consider both
because volume densities can be inferred only indirectly
from observations, whereas column density distributions
can be obtained directly from surveys of stellar extinction to
background stars (Lada et al. 1994 ; Alves et al. 1998 ; Lada,
Alves, & Lada 1999).

The second structural analysis section (° 5) considers the
line widthÈsize relation. Observations give di†ering results
for the slope of this relation depending on whether the
structures involved are clearly spatially separated from the
surroundings (e.g., by a large density contrasts) or are iden-
tiÐed as coherent regions in position-velocity maps. The
former case yields relatively steep power spectra (Larson
1981 ; Solomon et al. 1987) ; the latter case yields shallower
power spectra and larger scatter (Bertoldi & McKee 1992 ;
Williams, de Geus, & Blitz 1994 ; Stutzki & 1990)Gu� sten
and has led to the concept of moderate-density ““ pressure-
conÐned clumps ÏÏ within GMCs. We believe the di†erent
slopes are a consequence of di†erent deÐnitions of ““ clump.ÏÏ
We use a simple binning algorithm to explore the scaling of
kinetic properties of apparent clumps within projected
clouds, and in particular to understand the consequences of
projection e†ects for line widthÈsize relations for 2D areas
and 3D volumes. We argue, consistent with the suggestions
of some other workers (e.g., Adler & Roberts 1992 ;
Pichardo et al. 2000) that it may be difficult to identify
spatially coherent condensations from observed position-
velocity maps.

The third structural analysis section (° 6) considers the
magnetic Ðeld. A topic of much interest in turbulence mod-
eling is understanding how the magnetic Ðeld a†ects both
the intrinsic dynamics and the observable properties of a
cloud. As shown in ° 3, a major dynamical e†ect of the
magnetic Ðeld is to prevent gravitational collapse in sub-
critical clouds. Because magnetic Ðeld strengths are difficult
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to measure directly, however, it is highly desirable to deter-
mine if more-readily observable structural properties of
clouds could act as proxies for the magnetic Ðeld strength.
With simulations, it is possible to make comparisons of
di†erent models in which the mean Ðeld strength is varied,
but other key properties (such as the turbulent Mach
number and power spectrum) are controlled.

An important theme in our analysis in °° 4 and 5 is to test
how the quantitative measures of structure depend on the
mean magnetization, to evaluate the potential use of such
measures as indirect magnetic Ðeld diagnostics. In ° 6 we
analyze how more direct magnetic Ðeld diagnostics may be
a†ected by cloud turbulence. We evaluate the distribution
of total magnetic Ðeld strength as a function of density in
cloud models with di†erent mean magnetization. We also
compute the distribution of mean line-of-sight integrated
magnetic Ðeld (one-point statistic), which is relevant for
interpreting Zeeman e†ect measurements of magnetic Ðeld
strength. Finally, we study the distribution of polarization
directions in simulated maps of polarized extinction pro-
duced by turbulent clouds (one-point statistic). One of the
earliest estimates of magnetic Ðeld strength in the inter-
stellar medium (Chandrasekhar & Fermi 1953) was based
on the dispersion in polarization direction, using a simple
one-wave description of the magnetic Ðeld. We update the
Chandrasekhar-Fermi (CF) estimate using our simulations
as presumably more realistic descriptions of the magnetic
Ðeld geometry.

The plan of this paper is as follows : We start (° 2) by
describing our numerical method and model parameters.
We then (° 3) describe our results on energy evolution, con-
Ðrming the previous results from 3D nonÈself-gravitating
models on dissipation rates and 2.5D self-gravitating
models on the criterion for collapse. We present our struc-
tural analyses in °° 4È6, and conclude in ° 7 with a summary
and discussion of these investigations.

2. NUMERICAL METHOD AND MODEL PARAMETERS

We create model clouds by integrating the compressible,
ideal MHD equations using the ZEUS code (Stone &
Norman 1992a, 1992b). ZEUS is an operator-split, Ðnite-
di†erence algorithm on a staggered mesh that uses an artiÐ-
cial viscosity to capture shocks. ZEUS uses ““ constrained
transport ÏÏ to guarantee that $ Æ B \ 0 to machine preci-
sion, and the ““ method of characteristics ÏÏ to update the
magnetic Ðeld in a way that ensures accurate propagation
of disturbances (Evans & Hawley 1988 ; Hawley &Alfve� nic
Stone 1995). The solutions are obtained in a cubic box of
side L with grids of 2563 zones, which permits spatial
resolution over a large dynamic range at manageable com-
putational cost. We apply periodic boundary conditions in
all models. The simulations were run on an SGI Origin
2000 at NCSA.

For the energy equation, we adopt an isothermal equa-
tion of state with sound speed In the absence of a fullyc

s
.

time-dependent radiative transfer, this represents a good
Ðrst approximation for the gas at densities higher than the
meanÈcomprising most of the matterÈfor conditions
appropriate to molecular clouds (see discussion in Paper
III, and also Scalo et al. 1998).

The gravitational potential is computed from the density
using standard Fourier transform methods. The k \ 0 com-
ponents of the density are not included in the solution due
to the periodic boundary conditions. Rather than the usual

Poisson equation, the gravitational potential therefore/
Gobeys where is the mean+2/

G
\ 4nG(o [ o6 ), o6 4 M/L3

density (mass/volume in the box).
The initial conditions are as follows : We start with

uniform density, a uniform magnetic Ðeld and aB04 B0 xü ,
random velocity Ðeld dv. As in our earlier decay models
(Papers IÈIII), is a Gaussian random perturbation Ðeldd¿
with a power spectrum subject to the con-o dv

k
o2P k~4,

straint so that the initial velocity Ðeld is noncom-$ Æ d¿\ 0
pressive. This power spectrum is slightly steeper than the
Kolmogorov spectrum and matches the( o dv

k
o2 P k~11@3)

amplitude scaling of the Burgers spectrum associated with
an ensemble of shocks (but di†ers from Burgers turbulence
in that the initial phases are uncorrelated).

In conÐguration space, the velocity dispersion of the
initial conditions averaged over a volume of linear size R
increases as This spectrum is comparable to thep

v
P R1@2.

spectrum inferred for large-scale cold interstellar clouds
(e.g., Larson 1981 ; Solomon et al. 1987 ; Heyer & Schloerb
1997) and the spectrum that naturally arises from the evolu-
tion of compressible turbulence that is either decaying or is
driven over a limited range of scales (Stone 1999 ; Stone et
al. 2000, in preparation). We use an identical realization of
the initial velocity Ðeld for all of the models, so that initial
states of the simulations di†er only in the strength of the
(uniform) mean magnetic Ðeld.

This paper considers three di†erent simulated cloud
models. All are initiated with kinetic energy E

k
\ 100o6 L3c

s
2,

corresponding to initial Mach number M4 p
v
/c

s
\

For the purposes of comparison with observations,10J2.
we shall use a Ðducial mean matter density (i.e., correspond-
ing to the total mass divided by total volume) nH2

\ 100
cm~3 and isothermal temperature T \ 10 K in normalizing
the local simulation variables of our models to dimensional
values. The velocity dispersion in physical units is given by

km s~1(T /10 K)1@2, so that the initial valuep
v
\ 0.19]M

is km s~1(T /10 K)1@2.p
v
\ 2.7

The models di†er in their initial magnetic Ðeld strength,
parameterized by with physicalb 4 c

s
2/v

A,02 \ c
s
2/(B02/4no6 ),

value given by

B0\ 1.4] b~1@2kG
A T
10 K

B1@2A nH2
100 cm~3

B1@2
. (1)

We run a ““ strong Ðeld ÏÏ model with b \ 0.01, a ““ moderate
Ðeld ÏÏ model with b \ 0.1, and a ““ weak Ðeld ÏÏ model with
b \ 1. For characteristic Ðducial densities and temperatures
of molecular clouds (T D 10 K, cm~3), the corre-nH2

D 100
sponding uniform magnetic Ðeld strengths are 14, 4.4, and
1.4 kG. Of course, the evolved Ðelds are spatially nonuni-
form and can di†er greatly from these initial values (see ° 6),
although the mean magnetic Ðeld (i.e., the volume-averaged
value or k \ 0 Fourier component) is a constant inB0 xü
time. The values of bÈhalf the ratio of the gas pressure to
the mean Ðeld magnetic pressureÈare proportional to the
square of the massÈtoÈmagnetic Ñux ratio in the simulation
box ; this ratio cannot change in time.

We may identify several di†erent, physically signiÐcant
timescales in the model evolution. The sound crossing time,

is Ðxed owing to the isothermal equation of state.t
s
4 L /c

s
,

Another important timescale is the Ñow crossing time over
the box scale L , Myr ] (L /10t

f
4 L /p

v
\ 9.8 pc)(p

v
/km

s~1)~1. Because the turbulence decays (i.e., M decreases),
the instantaneous Ñow crossing time increases relative to



No. 2, 2001 STRUCTURE OF MODEL CLOUDS 983

the sound crossing time as Where we relatet
f
\ t

s
/M. t

fand we use the Mach number associated with the initialt
s
,

turbulent velocity dispersion, such thatp
v
/c

s
\ 14.1, t

f
\

0.07t
s
.

This paper concentrates on structures that form as a con-
sequence of turbulence, before self-gravity becomes impor-
tant. However, we also use the present models to test our
previous results from lower-dimensional simulations (Paper
III) on the di†erences in the gravitational collapse times
with strong and weak mean magnetic Ðelds It is there-B0.fore useful to deÐne a gravitational contraction timescale

t
g
4
A n
Go6
B1@2\ 9.9 Myr

A nH2
100 cm~3

B~1@2
. (2)

In the absence of self-gravity, the unit of length L deÐning
the linear scale of the simulation cube would be arbitrary.
In a self-gravitating simulation, an additional parameter
must be chosen to represent the relative importance of
gravity and thermal pressure forces to the evolution. A
useful dimensionless measure of this is in all thet

g
/t
s
;

models considered here this ratio is A more transparent13.
way of stating this is that there are three thermal Jeans
lengths across a box scale L .5L

J
4 c

s
(n/Go6 )1@2

The three simulations described herein di†er in the rela-
tive importance of magnetic and gravitational forces to
their ultimate evolution. As described in Paper III, a cloud
with constant massÈtoÈÑux ratio is super- or subcritical if t

gis smaller or larger than respectively. A supercriticalnL /v
A
,

(subcritical) cloud has a ratio of massÈtoÈmagnetic Ñux
greater (smaller) than the critical value, 1/(2nG1@2). Sub-
critical clouds can collapse along the Ðeld but not perpen-
dicular to the Ðeld (““ pancake ÏÏ) ; in the nonlinear outcome
the peak density would be limited by the thermal pressure.
Supercritical clouds can collapse both parallel and perpen-
dicular to the Ðeld, with unlimited asymptotic density. The
three models discussed here have andt

g
v
A
/(nL )\ 0.11,0.34,

1.1. Thus, the strong-Ðeld model is subcritical and the other
two models are supercritical. The results on long-term
gravitational evolution reported in ° 3 conÐrm the expected
di†erences between super- and subcritical clouds under the
condition that turbulence secularly decays.

Since self-gravity is weak for the Ðrst portion of the evolu-
tion in our simulations, the freedom of normalization of L
that applies to nonÈself-gravitating models also e†ectively
applies during this temporal epoch. In particular, the struc-
tural analyses of °° 4È6 are performed at stages of the simu-
lationsÏ evolutions for which the kinetic energy is at least 5
times as large as the components of the gravitational energy

associated with the Ñuctuating density distribution.E
GBecause of our periodic boundary conditions, the gravita-

tional energy associated with the mean density (i.e., the
k \ 0 Fourier component) is not included in In orderE

G
.

of magnitude, the value of this lowest-order gravity is
which equals for ourDGM2/L \ Mc

s
2 n(L /L

J
)2, 28Mc

s
2

present models. This energy is in the middle of theL /L
J
\ 3

range of kinetic energies for the M\ 9,7,5 snapshots we
analyze. Thus, as for observed clouds (e.g., Larson 1981 ;
Myers & Goodman 1988), the lowest-order gravitational

5 Of course, the presence of strong turbulence makes the classical, linear
Jeans stability analysis inapplicable ; the velocity Ðeld is in the nonlinear
regime from the Ðrst instant.

energy in these snapshots would be comparable to the
kinetic energy.

A useful reference length scale may be obtained by com-
bining the well-known observational relations between
velocity dispersion, mass, and size for GMCs (see Paper III).
The characteristic outer linear size scale for observedL obsclouds scales with Mach number M according to

L obsB 1.1]M pc
A T
10 K

B1@2A nH2
100 cm~3

B~1@2
. (3)

Because the observed scale is proportional to the Mach
number, the Ñow crossing time for observed clouds is inde-
pendent of M, and given by

t
f,obs B 5.8 Myr ]

A nH2
100 cm~3

B~1@2
. (4)

For observed clouds, the Ñow crossing time and gravita-
tional contraction time are proportional, with t

f,obs B0.59t
g
.

Since the turbulence (and therefore M) decays in our
models, they are comparable in their kinetic properties to
increasingly small clouds as time progresses. For example,
using the relation (3), the observational scale associated
with the initial models with M\ 14.1 would be L obs,init\16 pc ] (T /10 cm~3)~1@2. At this size scale,K)1@2(nH2

/100
the corresponding sound crossing time would be t

s
\ 82

cm~3)~1@2. In the structural analyses ofMyr] (nH2
/100

°° 4È6, we report on properties of model snapshots in which
MD 9, 7, and 5 ; observed clouds of linear size scale D10, 8,
and 6 pc, respectively, have kinetic energies corresponding
to those of the model snapshots. To the extent that gravity
may be unimportant for much of the internal substructure
in multiparsec scale observed clouds (suggested by GMCsÏ
lack of central concentration, and by the weak self-gravity
of substructures aside from the dense cores and largest
clumps [e.g., Bertoldi & McKee 1992 ; Williams et al.
1994]), the correspondence between the intermediate-scale
(““ clump ÏÏ) structure in real clouds and in our model snap-
shots may be quite direct.

Since some ambiguity remains in associating an overall
physical length scale with our simulated models (due to the
periodic boundary conditions), we report integrated quan-
tities solely in dimensionless units, giving e.g., column den-
sities in units of the mean column density, ForN1 4 o6 L .
local variables (such as magnetic Ðeld strengths), which bear
no such ambiguity, we report values in dimensionless units
and also transform to physical units based on our adopted
Ðducial density and temperature.

3. ENERGY EVOLUTION IN MODEL CLOUDS

The early evolution in all the models follows a similar
course. Kinetic energy initially decreases as the Ñuid works
to deform the magnetic Ðeld. The initially noncompressive
velocity Ðeld is transformed into a compressive Ðeld, by
interactions with the magnetic Ðeld and nonlinear coupling
of the spatial Fourier components. This leads to the devel-
opment of density-enhanced and density-deÐcient regions,
and results in the dissipation of energy in shocks. Fluctua-
tions in the density cause Ñuctuations in the gravitational
potential that begin to dominate the dynamics at late times
and lead to runaway gravitational collapse for supercritical
models.
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To quantify the energetic evolution, we deÐne the kinetic
energy

E
K

\ 12
P

d3r(v
x
2] v

y
2 ] v

z
2)o , (5)

the perturbed magnetic energy

dE
B
\ 1

8n
P

d3r(B
x
2] B

y
2] B

z
2)[ E

B,0 , (6)

where is the energy in the mean magneticE
B,0\ L3B02/8n

Ðeld, and the gravitational potential energy

E
G

\ 12
P

d3r(o/
G
) , (7)

where is the gravitational potential computed from the/
GPoisson equation modiÐed for periodic boundary condi-

tions.
Figure 1 shows the evolution of Etot4 E

K
] dE

B
] E

G
,

and (see Figs. 1aÈ1d, respectively). From FigureE
G
, E

K
, E

B1b, it is clear that, consistent with expectations and previous
results on self-gravitating cloud models with decaying turb-
ulence (Paper III), all but the magnetically subcritical

b \ 0.01 model su†ers a gravitational runaway. Both of the
supercritical models become gravitationally bound at time

corresponding to D6 cm~3)~1@2. 6 TheD0.6t
g
, Myr(nH2

/102
gravitational runaway time is comparable to that found in
lower-dimensional simulations.

The kinetic energies in all models decay rapidly. After one
Ñow crossing time the kinetic energy has been reduced byt

f
,

73%È85% compared to the initial value (see Table 1). The
kinetic energy is reduced by a factor 2 after 0.2È0.4 Ñow
crossing times (Table 1), with this kinetic loss time decreas-
ing toward lower b (stronger because of the more rapidB0)transfer of kinetic to perturbed magnetic energy when the

frequency is higher. For GMC parameters (see eq.Alfve� n
[4]), the corresponding dimensional kinetic energy decay
time would be 1È2 Myr. The growth of magnetic energy
stored in these magnetic Ðeld Ñuctuations (due to advection

6 The simulations are terminated shortly after the onset of gravitational
runaway because the coincident development of low-density regions where

is large causes the Courant-conditionÈlimited timestep to become veryv
Ashort. For the b \ 1 model, the gravitational binding time (the time to

reach is an extrapolation based on the evolutions of the b \ 0.1Etot\ 0)
and b \ 1 models shown in Figs. 1a, 1b.

FIG. 1.ÈEnergy evolution of model clouds. Models with b \ 0.01, 0.1, and 1 are shown with dotted, solid, and dashed curves, respectively.
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TABLE 1

COMPARATIVE ENERGY EVOLUTION

Model b E
K
(t
f
)/E

K,inita dE
B
/E

K
(t
f
)a tdec/tfa,b tdecK /t

f
a,b tbind/tgc

B . . . . . . 0.01 0.27 0.51 0.76 0.21 [0.9
C . . . . . . 0.1 0.15 1.13 0.55 0.31 0.6
D . . . . . . 1.0 0.17 0.35 0.41 0.37 0.6

a The Ñow crossing time t
f
4 L /(2EK,init)1@2 ] 0.07t

s
.

is the time to reduce the initial energy (kinetic energy) by 50%.b tdec (tdecK )
is the time at whichc tbind E

K
] dE

B
] E

G
\ 0 ; t

g
4 (n/Go6 )1@2] 0.33t

s
.

by the turbulent velocity Ðeld) is apparent in Figure 1d ; the
initial increase is followed by decreasing or Ñat perturbed
magnetic energy as the turbulent velocity Ðeld decays. The
time to reach the maximum perturbed magnetic energy lies
in the range 0.1È0.2 times the crossing time, similarAlfve� n
to what was found in lower-dimensional simulations (Paper
III). At the point when is maximal, it accounts fordE

B20%È50% of The fraction increases with the meanEturb.Ðeld strength B0.The total ““ turbulent ÏÏ energy secu-(Eturb\ E
K

] dE
B
)

larly decreases in time ; after somewhat more than half of
the initial turbulent energy is lost, the decay approaches a
power-law temporal behavior with (Fig. 2). ThisEturbP t~1
late-time scaling in nonÈself-gravitating models of 3D
MHD turbulence has been noted previously (Mac Low et
al. 1998 ; Paper II). Most of the turbulent losses, however,
occur before the onset of this behavior. The turbulent decay
can be characterized by the time to reduce the turbulenttdecenergy by a factor 2 from its initial value. We Ðnd that this
time is in the range 0.4È0.8 Ñow crossing times (see Table 1),
comparable to our results from Paper II, and consistent
with other Ðndings (Paper III ; Mac Low et al. 1998 ; Mac
Low 1999 ; Padoan & Nordlund 1999) that dissipation

FIG. 2.ÈEvolution of turbulent energy in modelEturb \E
K

] dE
Bclouds. Models with b \ 0.01, 0.1, and 1 are shown with dotted, solid, and

dashed curves, respectively. The dot-dash lines indicate a slope P t~1, for
reference.

times vary by only a factor D2 over the range of Mach
numbers and magnetic Ðeld strengths present in GMCs.
The corresponding dimensional time for turbulent energy
decay with GMC parameters is 2È4 Myr.

4. DENSITY AND COLUMN DENSITY DISTRIBUTIONS

A basic statistical property of a real or model cloud is the
distribution of density in its constituent parts. This distribu-
tion may be described either by its fractional volume per
unit density (dV /do) or by its fractional mass per unit
density (dM/do). Previous analyses of the density distribu-
tions in compressible hydrodynamic turbulence simulations
(before gravity becomes important) show that when the
equation of state is approximately isothermal, the density
distribution is close to a log-normal (Va� zquez-Semadeni
1994 ; Padoan, Jones, & Nordlund 1997 ; Passot &

1998 ; Paper III). Scalo et al. (1998),Va� zquez-Semadeni
Passot & (1998), and Nordlund &Va� zquez-Semadeni
Padoan (1999) also show that in a medium where the tem-
perature decreases (increases) with increasing density, an
extended tail in the density distribution function develops at
density higher (lower) than the mean density. In the present
models we assume an isothermal equation of state. This is a
reasonable approximation here since most of the gas is con-
tained in condensations at density larger than the mean
value where the temperature likely varies by less than a
factor D2 (see Paper III ; also Scalo et al. 1998).

As described in ° 1, a key question is whether it is possible
to discriminate the magnetic Ðeld strength in a cloud from
its structural properties. Using our present models, we can
test how the strength of the mean magnetic Ðeld a†ects the
observable density and column density statistics. For these
tests, we choose sets of model ““ snapshots ÏÏ from the three
decay models in which the Mach number M4 Sv2/c

s
2T1@2

(or kinetic energy) matches in the three models ; because the
energy evolves at somewhat di†erent rates in the runs with
di†erent b, these times of the snapshots vary. The sets of
model snapshots have MB 9,7,5.

Figure 3 shows an example of the distributions of volume
and mass as a function of volume density, o, where o is
measured in units of the mean density in theo6 \M/L3
simulation cube. The volume-density distributions are well
approximated by log-normal functions, i.e., volume and
mass distributions in of the formy 4 log (o/o6 )

f
V,M(y) \ 1

J2np2
exp [[(y ^ o k o )2/2p2] , (8)

where the upper/lower sign on the subscript applies to the
volume/mass distribution ; is the fraction of thef

V,M dy
volume or mass with y in the interval (y, y ] dy). It is
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FIG. 3.ÈComparative statistics of volume density in three model snap-
shots (B2, C2, D2 from Table 2) with matched Mach numbers MD 7.
Solid curves show fraction of volume as a function of density relative to the
mean dashed curves show fraction of mass as a function of(o/o6 ) ; o/o6 .
Dotted curves show lognormal distributions with the same mean and
dispersion as in each model snapshot.

straightforward to show that the mean k and dispersion
p are related by o k[y] o\ ln (10)p[y]2/2 for a log-normal
distribution, so Table 2 (Ðfthp[y]\ 0.93Jk[y].7
and sixth columns) gives the values of k

V
[y] (4SyT

V
)

and for three sets of models at di†erentk
M
[y] (4SyT

M
)

Mach numbers (where the subscript on the angle brackets
denotes weighting by volume or mass). In all cases,

consistent with a lognormal distribution.k
V
[y]D[k

M
[y],

For a log-normal distribution, the weighted mean and
dispersion of the density itself are related to the mean of the

7 Elsewhere, distributions are sometimes given as a function of x 4
in that case, o k[x] o\ p[x]2/2 since k[y]\ k[x]/ ln (10) andln (o/o6 ) ;

p[y]\ p[x]/ ln (10).

logarithmic density contrast k[y] using

log
To

o6
U

M
\ 2
T

log
o
o6
U

M
4 2 o k[y] o , (9)

TAo
o6
B2U

V
\
To

o6
U

M
\ 102@k*y+@ , (10)

and

TAo
o6
B2U

M
\
To

o6
U

M

3 \ 106@k*y+@ , (11)

where ““V ÏÏ and ““M ÏÏ subscripts denote weighting by
volume and mass, and From Table 2, k[y] is inSoT

V
4 o6 .

the range D0.2È0.4 for M\ 5È9, implying from equation
(9) that the typical mass element has been compressed by a
factor compared to its unperturbed initialSo/o6 T

M
D 2.5È6

value. Because of the log-normal form of the distribution,
two-thirds of the matter is within a factor 100.93S@k*y+@
(D2.7È3.8) above or below the value 10@k*y+@o6 D (1.6È2.5)o6 ,
and 95% is within a factor (D7.2È14) above101.86S@k*y+@
or below this value. The volume-weighted rms standard
deviation in is (102k*y+[ 1)1@2 (D1.3È2.2), and theo/o6
mass-weighted rms standard deviation in iso/o6
102k*y+(102k*y+[ 1)1@2 (D3È13).

The above results on density contrast may be compared
with previous work. In Paper III, we found that for 2.5-
dimensional models of decaying turbulence with
b \ 0.01,0.1,1.0, the mean logarithmic density contrast
o k[y] o\ 0.2È0.5 for Mach numbers in the range 5È10, with
a weak trend toward an increase in the contrast with
increasing Mach number, and the largest contrast in the
strong-Ðeld (b \ 0.01) group. For the quasi-steady forced-
turbulence models with MB 5 reported on in Paper II, the
mean logarithmic density contrasts o k[y] o are in the range
0.20È0.28, increasing from b \ 1.0 to 0.01. Thus, overall, we
Ðnd comparable values of the density contrast in all our
analyses of turbulence in those stages where self-gravity is
not important.

Nordlund & Padoan (1999) and Padoan et al. (1997)
report Ðndings implying that, for 3D unmagnetized forced
turbulence, k[y] is related to the Mach number M by
o k[y] o\ (1/2) log (1 ] 0.25M2). For the range of Mach
numbers (MD 5È9) in our Table 2, the corresponding
values of o k[y] o would be D0.4È0.7, somewhat larger than

TABLE 2

COMPARATIVE DENSITY AND COLUMN DENSITY

Snapshot b t/t
s

M k
V
[y]a k

M
[y]a k

M‰x
[Y ]b k

M‰y
[Y ]b k

M‰z
[Y ]b

B1 . . . . . . . 0.01 0.03 8.8 [0.25 0.30 0.024 0.033 0.029
C1 . . . . . . . 0.1 0.03 8.8 [0.27 0.28 0.030 0.037 0.047
D1 . . . . . . . 1.0 0.03 9.4 [0.42 0.37 0.044 0.047 0.061
B2 . . . . . . . 0.01 0.07 7.4 [0.38 0.38 0.038 0.037 0.046
C2 . . . . . . . 0.1 0.04 7.6 [0.27 0.29 0.034 0.046 0.048
D2 . . . . . . . 1.0 0.05 7.2 [0.37 0.34 0.060 0.054 0.065
B3 . . . . . . . 0.01 0.19 4.9 [0.23 0.21 0.015 0.028 0.021
C3 . . . . . . . 0.1 0.09 4.9 [0.35 0.37 0.047 0.050 0.056
D3 . . . . . . . 1.0 0.09 4.9 [0.31 0.33 0.048 0.057 0.063

a Volume-weighted or mass-weighted average of the logarithmic density contrast, y 4 log (o/o6 ) ;
expected sampling error is D10~4.

b Mass-weighted average of logarithmic column density contrast, for projectionY 4 log (N/o6 L ),
along or expected sampling error is D10~3.xü , yü , zü ;
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those we found ; however, Nordlund & Padoan (1999)
remark that they Ðnd lower density contrasts when the
magnetic Ðeld is nonzero, which would yield better agree-
ment with our results for magnetized turbulence. Analysis
of simulations of compressible, isothermal, unmagnetized
turbulence in one dimension by Passot & Va� zquez-

(1998) suggest a linear rather than logarithmicSemadeni
scaling for k[y] with Mach number M and much larger
values of the contrast than those found in 3D simulations.
This may be due to the purely compressive velocity Ðeld in
1D.

The present analysis suggests that for nonsteady magne-
tized turbulence, there is no one-to-one relationship
between the density contrast and the sonic Mach number or
other simple characteristic of the Ñow. There does, however,
appear to be a secular increase in the minimum value of the
contrast with the e†ective Mach number for magnetized
Ñow, the fast magnetosonic Mach number deÐned byM

FIn Figure 4, we plot the logarithmicM
F
24 Sv2T/Sv

A
2 ] c

s
2T.

contrast factors against the value of the lowerlog (1 ]M
F
2) ;

envelope of the contrast is found to be Ðtted by o k[y] o\
for the models studied. There is no0.2[log (1]M

F
2) ] 1]

similar secular relationship between the density contrast
and the ordinary sonic Mach number M.

Applying similar reasoning to the argument of Passot &
(1998), the weak relation between theVa� zquez-Semadeni

e†ective Mach number and the density contrast may beM
Funderstood heuristically as follows. From equations (9) and

(11), we may write the mean logarithmic contrast in terms of
the mass-weighted dispersion in density amplitude as

T
log
Ao
o6
BU

M
\ 1

6
log
CTAo

o6
B2U

M

D
. (12)

In strong, unmagnetized, isothermal shocks, which would
occur for Ñow parallel to the Ðeld, the preshock and post-

FIG. 4.ÈMass- and volume-weighted mean values of the logarithmic
density contrast as a function of mean-square fast magnetosonic Mach
number from model snapshots in Table 2. Pentagons, squares, and tri-
angles correspond to b \ 0.01,0.1, and 1, respectively. Dashed lines show
Slog (o/o6 )T

M,V \ ^0.2[log (1 ]M
F
2)] 1].

shock densities and have Foro1 o2 (o2/o1)[ 1 BM2.
strong isothermal shocks magnetized parallel to the shock
front and is linear rather than quadraticb [ 1, (o2/o1) [ 1
in approaching If the typical shockM

F
, J2v/v

A
D J2M

F
.

jump compression factor determines the rms dispersion in
the density, then the term in square brackets in equation
(12) would scale between quadratically and quartically in

for a range of b and shock geometries (noting thatM
F for b large). The real situation is of course moreM
F
]M

complicated. It is interesting, however, that the slope D0.2
of the lower envelope of the versusSlog (o/o6 )T log (1]M

F
2)

relation does fall in the range between 0.17 and 0.33 sug-
gested by this heuristic argument. The fact that this lower
envelope lies closer to the (shallower) slope corresponding
to parallel-magnetized shocks indicates that the model
turbulent clouds do not invariably evolve to be dominated
by (more compressive) Ñows aligned with the mean mag-
netic Ðeld.

Because of the potential for direct comparison with
observation, it useful to examine the distributions of
column density N. In particular, we would like to ascertain
if the distribution depends on the mean magnetization. The
distribution of column densities can be described by the
fractional area, or fractional mass, perdA/dN(sü ), dM/dN(sü )
unit column density, where is the orientation of the line ofsü
sight through the cloud. In Figure 5 we compare the dis-
tributions of projected area and mass as a function of
column density for model snapshots (B2, C2, D2 from Table
2) with matched Mach numbers and di†erent values of the
mean magnetic Ðeld strength. Although the statistics are
poorer than for the distributions of volume density, the
column density distributions are also approximately log-
normal in shape. Thus, the column density distributions can

FIG. 5.ÈComparative statistics of column density in three model snap-
shots (B2, C2, D2 from Table 2) with matched Mach numbers. Projection
is along the axis (perpendicular to the magnetic Ðeld). In each frame,zü
left-displaced curves show fraction of projected area as a function of column
density relative to the mean right-displaced curves show(N/o6 L 4 N/N1 ) ;
fraction of mass as a function of Dotted curves show lognormalN/N1 .
distributions with the same mean and dispersion as in each model snap-
shot.
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be described using the same form as equation (8), but repla-
cing where The mean and dis-y ] Y 4 log (N/N1 ), N1 4 o6 L .
persion may depend on the projection direction sosü ,

and To the extent that the dis-k[y]] k
s
[Y ], p[y]] p

s
[Y ].

tributions follow log-normal forms, the formal relations (9)È
(11) would apply, with and area weightingo/o6 ] N/N1
replacing volume weighting.

In Table 2 we list the values of the mass-weighted mean
of the logarithmic column density contrast ( o k

M‰s
[Y ] o4

for the di†erent model snapshots in each ofSlog (N/N1 )T
M‰s

)
three projection orientations From the data insü \ xü , yü , zü .
the table, the projections in the various directions for any
model snapshot yield somewhat di†erent statistics (mostly
10%È20% di†erences in p[Y ] and twice that in k[Y ]) ; the
projection along the magnetic Ðeld tends to give slightly
lower contrast than the two perpendicular projections. Dif-
ferences between the two perpendicular directions and(zü yü )
are simply a result of speciÐc realizations of random initial
conditions. Because the models have the same initial veloc-
ity perturbation realization, they will have similar evolved
structure to the extent that the magnetic Ðelds only weakly
a†ect the dynamicsÈthis explains, for example, why models
C and D both have larger contrast for projections thanzü yü
projections.

Notice that models with the strongest magnetic Ðeld tend
to have lower column density contrasts than models with
the same Mach number and weaker mean (20%È50%B0di†erences in p[Y ] for most sets). This e†ect is most pro-
nounced for the Mach-5 set MB3, C3, D3N ; this set has a
factor 2 (3) di†erence in the p[Y ] (k[Y ]). Padoan & Nor-
dlund (1999) previously pointed out that column density
contrasts may be larger in weaker models. Ourmean-B0results conÐrm this tendency, although we Ðnd that the
e†ect is relatively weak in magnitude, and does not hold in
all cases (see e.g., the results for snapshots B2 and C2 in the
Table).

Overall, the range of mean logarithmic column density
contrasts in Table 2 is k[Y ]D 0.015È0.065, corresponding
to typical mass-averaged column density in the range

i.e., only a modest enhancement overSN/N1 T
M

\ 1.07È1.35,
the average in a uniform cloud. The range of logarithmic
column density contrasts is an order of magnitude lower
than the range of mean logarithmic density contrasts. This
is understandable, since each column contributing to the
distribution samples a large number of over- and under-
densities along the line of sight. The column density dis-
tributions still require a density correlation length over a
signiÐcant fraction of the box size L along the line of sight,
however ; otherwise the dispersion in column densities
would be wiped out by line-of-sight averaging.

This can be seen more quantitatively as follows. Each of
columns that contributes to the distribution is created byn

Ataking the sum of densities in cells along the line of sight.n
sFrom the central limit theorem we know that if the density

in each cell along the line-of-sight were an independent
random variable, then for large, the distribution ofn

scolumn densities would approach a GaussianÈrather than
log-normalÈshape, with (area-weighted) mean of N/N1
equal to 1 (where and (area-weighted) standardN1 4 o6 L ),
deviation in equal to times the (volume-N/N1 n

s
~1@2

weighted) standard deviation in For a log-normalo/o6 .
volume-density distribution obeying equation (10), an
assumption of independent sampling along the line-of-sight
would therefore predict an (area-weighted) rms deviation of

from unity given byN/N1

p
N@N1Gauss \ 1

Jn
s

(102@k*y+@ [ 1)1@2 , (13)

with typical sampling error in determining theDp
N@N1 /Jn

Amean and dispersion of For o k[y] oD 0.2[ 0.4, theN/N1 .
expected standard deviation in would be D0.08È0.14,N/N1
with sampling error D0.0003È0.0006, if the line-of-sight
cells were all independent. In fact, using the area-weighted
equivalent of relation (10) for the log-normal (not Gaussian)
column density distribution that is evidently produced, the
area-weighted standard deviation in isN/N1

p
N@N1logvnorm \ (102@k*Y+@ [ 1)1@2 , (14)

or approximately M2 ln (10)k[Y ]N~1@2 for k[Y ]> 1. For our
tabulated values, this is in the range 0.27-0.59, signiÐcantly
larger (by hundreds of times the sampling error) than would
be predicted by assuming uncorrelated values of the density
along any given line of sight. Thus, both the non-Gaussian
shape and the breadth of the dispersion of the column
density distributions argues that the volume densities are
not independent but are correlated along any line of sightÈ
as indeed should be expected since there are large coherent
regions of density created by the dynamical Ñow.

We speculate that it may be possible to understand the
dynamical process behind the development of the log-
normal column density distribution following similar
reasoning to the argument of Passot & Va� zquez-Semadeni
(1998) for the development of a log-normal volume density
distribution. They argue that if consecutive local density
enhancements and decrements occur with independent
multiplicative factors due to independent consecutive veloc-
ity compressions and rarefactions, then the log of the
density in some position is the sum of logs of independent
enhancement/decrement factors ; this would yield a lognor-
mal density distribution if there are many independent
compressions/rarefactions, each sampling independently
from the same distribution of enhancement/decrement
factors.

Suppose, similarly, that the gas along any line of sight is
subject to multiple independent compression/rarefaction
events ; since the compression/rarefaction axes are not in
general along the line of sight, column density on a given
line of sight is not conserved. Each compression/rarefaction
event which produces a local change in the volume density
by a factor X a†ects only a fraction f of the column of gas,
resulting in an e†ective enhancement/decrement factor for
the column closer to unity than X. A simple model would
be to suppose that each event i independently produces a
change in the column density by a factor X

i
@\ (1 [ f

i
)

(taking the fraction] f
i
X

i
\X

i
[ (1[ f

i
)(X

i
[ 1) 1 [ f

iof the gas in the column at unchanged volume density and
the fraction at volume density enhanced/decreased by af

ifactor If (respectively, thenX
i
). X

i
[ 1 X

i
\ 1), X

i
@\ X

i
i [ (1[

(respectively The logarithm of the column densityX
i
@[ X

i
).

contrast would then be a sum of terms taking theselog X
i
@ ;

as random variables, the resulting distribution would be
log-normal (assuming a large number of [spatially
overlapping] successive events). Since each is closer toX

i
@

unity than the mean and dispersion of the logarithmicX
i
,

column density distribution are expected to be smaller than
those of the volume-density distribution. Although it would
be interesting to test in detail whether this sort of heuristic
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model could be reÐned and used to relate projected density
distributions to volume-density distributions, the potential
for Ðnding a unique inversion (even in a statistical sense) is
limited by the many degrees of freedom associated with the
extended spatial power spectrum producing the compres-
sions.

For the power-law input turbulent spectrum that we
adopt, the spatial correlations which produce the column
density distribution occur at sufficiently large scale that the
distributions are not, except at columns N much larger than
the mean, very sensitive to the ““ observerÏs ÏÏ resolution. For
example, Figure 6 shows the statistics of column density for
one model at the full resolution of the simulation, and for
resolving power reduced by factor of 4 by averaging the
column density values within squares of edge size four times
that of simulation cells (so that each ““ pixel ÏÏ has sixteen
times the area of a projected simulation cell). The overall
shapes and mean values of the distributions are quite com-
parable. At column densities much larger than the mean, of
course, the distributions become sensitive to resolution
because of the scarcity of regions with the highest column
density ; averaging these with their lower column-density
neighbors results in a cuto† of the distribution at lower N.
A related point for observed 13CO data was discussed by
Blitz & Williams (1997). They showed that the distribution
of the number of cells in position-velocity space as a func-
tion of in the cell Ñattens as the linear resolutionT

A
/T

A,maxscale increases, due to the smearing-out of the highest-
column regions. We have veriÐed that the distribution of
number of projected cells with similarly becomesN/NmaxÑatter if the map of projected density is averaged over grids
with increasing cell size.

Because the periodic boundary conditions introduce an
e†ective correlation in the density along the line of sight at
scale DL , a potential concern might be that the typical
column density contrast might be enhanced by introducing

FIG. 6.ÈComparative statistics of column density at full simulation
resolution (a) and at resolution a factor four larger in linear scale (b) ;
simulation data is from snapshot B2.

FIG. 7.ÈSame as in 5, except line-of-sight integration is only over
z[ L /2.

““ artiÐcial ÏÏ coherence along lines of sight.8 To investigate
this e†ect, we have evaluated sets of ““ half-column ÏÏ density
distributions by summing only over distances L /2 along the
line of sight. In general, the resultant half-column distribu-
tions are still lognormal in form (although noisier), with
larger means and dispersions than those found for the full-
column integrations. Figure 7 shows one such set of dis-
tributions, obtained from the z[ L /2 ““ front half ÏÏ of the
volume snapshots B2, C2, D2. This result suggests that the
coherent volume-density regions responsible for the lognor-
mal column density distribution in fact have intermediate
scaleÈthey are much larger than the cell size, but signiÐ-
cantly smaller than the overall size of the box. In this situ-
ation, one would expect that a factor 2 decrease in the
number of (multicell) correlated regions along the line of
sight would produce a factor increase in corre-J2 p

N@N1 ,sponding to a factor D2 increase in o k[Y ] o (cf. eq. 14).
Indeed, we Ðnd the half-column values of o k[Y ] o are typi-
cally larger than the full-column values by a factor D1.5È2,
supporting this interpretation.

The robustness of the column density distribution to
resolution changes makes it a viable statistic for comparing
simulations to the observable properties of turbulent
clouds. Such comparisons are a test of the idea that much of
the moderate-density ““ clumpy ÏÏ structure in molecular
clouds may be produced by turbulent stresses. Preliminary
results are promising ; for example, we have compared the
distribution of the extinction data values from the dark
cloud IC5146 (Lada, Alves, & Lada 1999) with column
density distributions from our simulation snapshots. Figure
8 shows that the cumulative distributions are indeed
remarkably similar in form (although this particular real
cloud has a slightly larger dispersion than our models have).
Unfortunately, however, the column density distribution is

8 We thank E. for noting this point.Va� zquez-Semadeni
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FIG. 8.ÈComparison of (a) cumulative column density distribution for
simulated cloud model (data from Fig. 7, with hexagons, squares, and
triangles marking the b \ 1,0.1,0.01 model distributions) and (b) cumula-
tive extinction distribution for the cloud IC5146. Dotted curves in both
panels show cumulative log-normal Ðts.

determined by more than just a few simple global param-
eters. In some circumstances, there may be as much varia-
tion in the column density distributions between the same
cloud viewed at di†erent orientations as there is in two
clouds with the same turbulent Mach number but a factor
10 di†erence in the mean magnetic Ðeld. This large ““ cosmic
variance,ÏÏ and the relatively weak variation with parame-
ters of k and p compared to their scatter, make it unlikely
that it will be possible to estimate individual cloudsÏ mean
magnetic Ðeld strengths, for example, from column density
distributions alone.

5. LINE WIDTHÈSIZE RELATIONS AND

PROJECTION EFFECTS

An important way of characterizing the kinetic structure
in turbulent clouds is to measure the distribution of the
velocity dispersion versus the physical size or mass of the
regions over which it is averaged. Means over these dis-
tributions then represent ““ line widthÈsize ÏÏ relations. The
regions over which velocity dispersions are averaged in
observed clouds are often apparent ““ clumps ÏÏ. At the most
basic level, an apparent ““ clump ÏÏ in a cloud or projected
cloud is a spatially connected, compact region that stands
out against the surrounding background. In any hierarchi-
cal structure, clumps will contain other smaller clumps, and
in general the identiÐcation of clumps is a resolution-
dependent procedure. Starting from the fundamental
concept of a ““ clump ÏÏ as a region of contrast (ROC) on a
given spatial scale, we have developed a simple algorithm to
identify and characterize the ensemble of projected ROCs at
multiple scales, so as to explore the scaling of kinetic
properties with physical size.9

The procedure is as follows : First, we choose a size scale s
(here, a factor 2n times the simulation grid scale, where
n \ 2È8). We then divide the projected cloud into zones of
area s2. Within each zone, we compute the mean projected
surface density as the total zone mass divided by s2 ; we also
compute the mass-weighted mean surface density &[s] for
the set of zones on scale s. We label a zone as a ROC on
scale s if its surface density is at least a factor times &[s].f

c

9 In Gammie et al. (2000), we use an alternative approach to deÐne
clumps and characterize their properties.

Typically we use but the results are not qualitativelyf
c
\ 1,

sensitive to this choice ; we note that (1) regions above the
mean column density at a given scale occupy less than half
the area owing to mass conservation, and (2) since &[s]
increases with decreasing s, the ROCs on a given scale
would appear ““ by eye ÏÏ to stand out against the back-
ground even with For each projected ROC, we alsof

c
\ 1.

compute the (mass-weighted) dispersion of the line-of-sight
velocity this represents the ““ line width ÏÏ for a region ofp

v
;

projected area s2.
We are now in a position to examine the correlations

among line width mass M, and spatial size s for ourp
v
,

ROC collections. In a data set based on molecular line
emission, the contributions from any local region would
depend on the local excitation rather than simply being
proportional to the amount of matter present. For the
analysis described below (except as noted), we only include
contributions from material if its local density (mass/
volume) is at least equal to as a simple way ofomin\ 3o6 ,
selecting material in the range of densities that contribute to
common molecular lines.10

Figure 9 shows an example of how the ROCs at multiple
scales are distributed on the map of model snapshot B2
projected in the direction (Fig. 22 shows a color-scalezü
image of the column density for the same snapshot
projection). For the ROC ensemble shown in the Ðgure, we
compute masses, velocity dispersions, and values of the so-
called virial parameter (Bertoldi & McKeea 4 5p

v
2 s/GM

1992). In Figure 10, we plot the values as a function of
(linear) size scale and/or mass. We also evaluate least-

squares linear Ðts to d log (M)/d log (s),d log (p
v
)/d log (s),

and d log (a)/d log (s) ; the respectived log (p
v
)/d log (M),

values in this example are 0.09, 1.87, 0.06, and [0.4.
From Figures 10a and 10c, it is clear that although the

there is a mean increase in velocity dispersion with mass and
linear size, there is a great deal of scatter as well. The upper
envelopes of the velocity dispersion distributions in fact
even decrease as a function of increasing M and s ; the lower
envelopes increase more steeply. The distribution of a
versus M also shows large dispersion, with a nearly-Ñat
lower envelope and an upper envelope showing a decrease
in a with M. The M versus s distribution has a relatively low
dispersion.

Many of the features evident in Figure 10 can be under-
stood by reference to the scaling properties of the under-
lying three-dimensional distribution, together with the
e†ects of projection onto a plane. First consider the

distribution. The procedure we have used tolog (p
v
)Èlog (s)

identify ROCs in the projected plane also can be used in the
3D data cube itself ; we can then compute the mass and
velocity dispersion for each 3D cell of edge size s that meets
the contrast criterion. In Figure 10a, we show how the mean
velocity dispersion for these 3D cells depends on size scale.
Interestingly, this curve traces fairly closely the lower
envelope of the distribution of versus projected size forp

vROCs on the projected plane. Thus, for nearly all projected
regions of area s ] s, the majority the velocity dispersion

10 Realistically, of course, the contribution to observed lines depends on
more than the local density ; because of radiative transfer e†ects, it might
even be possible for lower density material to contribute more efficiently
than higher density material if its emission occurs in line wings and su†ers
less absorption.
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FIG. 9.ÈIdentiÐcation of regions of contrast (ROCs) as a function of
spatial scale for data from model snapshot B2. Figs. 1aÈ1g outline regions
that meet the contrast criterion at increasingly Ðne spatial resolution. A
gray-scale representation of the projected density is shown in Fig. 1h for
comparison.

can be attributed to the superposition along the line of sight
of many regions of volume s ] s ] s with di†erent mean
velocities. The relatively weak dependence of mean line
width on projected size (or mass) simply reÑects the ubiquity
of ““ contamination ÏÏ by foreground and background
material. Previously, Issa, MacLaren, & Wolfendale (1990)
and Adler & Roberts (1992) have made a related point that
inferred broad line widths of apparently quite massive
GMCs may arise from overlapping in velocity space of
narrower velocity distributions from individual smaller
clouds superimposed along the line of sight. Relatively steep

increases of line width with size, as reported by Larson
(1981) and subsequent authors, may be obtained in obser-
vations provided that a structure is distinguishable from its
surrounding by a sufficient density or chemical contrast ;
these steeper laws correspond to what we measure with our
3D ROC procedure (solid lines in Figs. 10a and 11a).

In Figure 10b we show the distribution of mass with
projected size for the ROCs; the mean logarithmic slope is
nearly equal to 2Èrather than 3, as would be the case for
compact objects with three comparable dimensions. The
mean slope is close to 2 simply because each ROC samples
along the entire line of sight so that mass is nearly pro-
portional to projected area ; note, however, that at small
scales, the masses can lie considerably above the mean Ðt.

It is interesting to compare the virial parameter a versus
M distribution shown in Figure 10 with the analogous plot
presented by Bertoldi & McKee (1992) analyzing the
properties of apparent clumps in four di†erent observed
clouds. For the data sets considered in that work, linear Ðts
to the log a versus log M relation gave slopes between [0.5
and [0.68. For the model data shown in Figure 10 (and for
our other snapshots as well), the mean Ðt has a somewhat
shallower slope. But the upper envelope of this distribution
(and those for other snapshots) has slope D[0.5 to [0.6.
We can understand this upper envelope as follows : First,
the largest velocity dispersions at a given projected scale (cf.
Fig. 10a) are nearly independent of scale (typical logarith-
mic slope is D0 to [0.1). With this, together with the mass
scaling nearly as s2, the result is an upper envelope of
a P M~0.5 to M~0.6. The relatively Ñat lower envelope of
the a versus M distribution can be explained by the project-
ed ROCs that sample the lower-envelope of thep

v
P s0.5

line widthÈsize distribution (following the true 3D line
widthÈsize relation), together with the approximate M P s2
scaling.

All of the other model snapshots show qualitatively
similar distributions of the kinetic parameters for ROCs to
those shown in Figure 10. For example, we show the same
distributions obtained for a weak magnetic Ðeld model
snapshot (D2) in Figure 11 ; qualitatively, all of the kinetic
scalings are quite comparable to those obtained for the
strong magnetic Ðeld model. In general, for the model snap-
shots in Table 2, the projections parallel to the magnetic
Ðeld axes yield slightly stronger increase of line width with
size than do the other projections. For projections perpen-
dicular to the mean Ðeld, the ranges in the Ðts for the
di†erent snapshots are d log (p

v
)/d log (s)\ 0.07È0.12,

and d log (a)/d log (s)\d log (p
v
)/d log (M) \ 0.03È0.08,

[0.45 to [0.34 (using the same minimum surface density
contrast factor and For projections paral-f

c
\ 1 omin\ 3o6 ).

lel to the mean Ðeld, the respective ranges for these Ðts are
0.11È0.19, 0.06È0.12, and [0.40 to [0.29. The Ðts to
d log (M)/d log (s) have a very small range, 1.83È1.89, for all
projections (using andf

c
\ 1 omin\ 3o6 ).

The results depend weakly on the deÐnition of a ROC,
and in particular on Reducing tends to yieldomin. ominÑatter slopes for andd log (p

v
)/d log (s) d log (p

v
)/d log (M)

(because velocity is anticorrelated with density, so that
additional low-density material along the line of sight
increases the dispersion closer to the maximum), and
steeper slopes for d log (M)/d log (s) (approaching 2, the
limiting form for uniform column density), and for d log (a)/
d log (s) (approaching [0.5, the limiting form for velocity
dispersion independent of size and uniform column
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FIG. 10.ÈScale dependence of kinetic quantities in a projected map. In Figs.aÈd, each point represents one of the square regions of contrast (ROCs)
identiÐed in Fig. 9, with edge size s. In (a), we plot vs. size s (normalized to the box length L ) the dispersion of the line-of-sight velocity in each projectedp

vsquare ROC, and also show (solid line) the mean dispersion in line-of-sight velocity for 3D cubes of side s. In (b), we plot vs. s/L the mass M of each ROC
(normalized to the total mass in the simulation box In (c) we show vs. M. In (d) we show the virial parameter a vs. M. In each frame, dashed lineso6 L3). p

vrepresent linear least-squares Ðts to the data ; dotted lines represent 1p deviations from the Ðt. In (c) and (d), we plot points from di†erent-sized regions with
di†erent expansion factors.

density). Increasing has the opposite e†ect. Theominchanges in slopes come about mainly from variations in the
loci of the lower envelopes of the distributions when ominvaries ; the upper envelopes change very little, since they
reÑect the kinetic properties of ROCs that sample through
the largest possible portion of the model cloud.

Because the projected ROC identiÐcation algorithm does
not take into account any line-of-sight information for the
material in any projected region, it should not be surprising
that the velocity dispersions for projected regions can be
much larger than the velocity dispersions for 3D cubes with
the same projected size. One might argue that foreground
and background material extraneous to a principal conden-
sation could easily be removed based on velocity informa-
tion, so that structures identiÐed as contrasting regions in
observed molecular line l-b-v data cubes would truly rep-
resent spatially coherent structures. Examination of the
line-of-sight velocity and line-of-sight position distributions
for individual projected ROCs, however, suggests that it

may in fact be difficult to eliminate foreground/background
contamination.

To illustrate the problem, Figure 12 shows histograms of
line-of-sight velocity (equivalent to a line proÐle for an opti-
cally thin tracer uniformly excited above foromin\ 3o6 )
regions of projected linear scale s \ L /8. Although some of
the line shapes are irregular, none of those meeting the
ROC criterion (in this example) are clearly multicomponent
distributions. For comparison, in Figure 13, we show the
distribution of mass with position along the line of sight.
Evidently almost every regionÈboth ROCs and non-
ROCsÈhas multiple spatial components along the line of
sight. Figures 14 and 15 show the same distributions for
spatial regions at higher resolution ; again, almost all veloc-
ity proÐles are single-component, while spatial distributions
are multicomponent. By dividing our data cubes in half and
computing velocity histograms separately for the ““ front ÏÏ
and ““ back ÏÏ halves, we have checked that the ubiquity of
single-component velocity distributions is not an artifact of
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FIG. 11.ÈSame as in Fig. 10, but for model snapshot D2

periodic boundary conditions. We have also checked that
the phenomenon of multispatial component/ single-velocity
component ROCs is still prevalent even when the density
threshold is set higher ; for example, Figures 16a andomin16b shows the velocity and position distributions for the
same model as before, but now with A comple-omin\ 10o6 .
mentary phenomenon that we have also identiÐed in several
model projections is that multiple velocity components in a
given ROC may correspond to a single extended spatial
componentÈas a consequence, for example of two
““ colliding ÏÏ clumps being viewed during a merger along the
line of sight.

The general lack of correspondence between structures in
position and velocity space in ISM models has previously
been noted, based on various sorts of analyses. For
example, Adler & Roberts (1992) analyze the model galactic
disks generated from two-dimensional N-body cloud-Ñuid
simulations, and show that apparent single ““ clouds ÏÏ in
longitude-velocity space are often highly extended along the
line of sight, and that what appears to be a single GMC in a
spatial plot may be assigned to multiple ““ clouds ÏÏ in
longitude-velocity space. Pichardo et al. (2000) show that
the morphology of structures in position-position-velocity

space (equivalent to channel maps) in their 3D MHD simu-
lations is more strongly correlated with velocity structures
in physical space than with density structures in physical
space.

The current analyses and previous work on this question
do not treat molecular excitation and radiative transfer in
detail. Studies that do include these complex e†ects will be
required to reach deÐnitive conclusions on the relation
between maps of molecular lines and 3D physical density-
temperature-velocity cubes. If spatially compact regions
have substantially higher molecular excitation than more
di†use surroundings due to line trapping, then it is still
possible that velocity information could be used to separate
spatially connected clumps from foreground and back-
ground material. Large amplitude rotation of clouds, if
present, would also help to di†erentiate superposed line-of-
sight clumps in the velocity domain. Potentially, methods
that use speciÐc information about spectral line shapes (e.g.,
Roslowsky et al. 1999) may also be adapted to discriminate
spatially separated regions. The present simpliÐed analysis
suggests, however, that foreground and background
material may at least signiÐcantly increase the dispersion in
the line widthÈsize distributions for clumps identiÐed from
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FIG. 12.ÈDistribution of mass with line-of-sight velocity for model snapshot B2 projected in the direction, for regions of linear size L /8. Regions meetingzü
surface density contrast criterion (cf. Fig. 9) are indicated with heavy outlines.

molecular emission data cubes (e.g., Williams, de Geus, &
Blitz 1994 ; Stutzki & 1990).Gu� sten

6. MAGNETIC FIELD DISTRIBUTIONS AND

SIMULATED POLARIZATION

We now turn to magnetic Ðeld structure and begin by
considering how the distribution of the magnetic Ðeld varies
for models with di†erent mean magnetization. As seen in
Figure 1d, the rms magnetic Ðeld strength initially increases,
due to the generation of perturbed Ðeld by velocity shear
and compression. The distribution of the individual com-
ponents of B for matched Mach number model snapshots
B2, C2, D2 is shown in Figure 17. The dimensionless Ðeld
strength that we report can be convertedB4B/(4no6 c

s
2)1@2

to a physical value using

B\ 1.4]B] (T /10 K)1@2(nH2
/102 cm~3)1@2 kG . (15)

As illustrated by the Ðgure, the component distributions are
more nearly Gaussian for the case of stronger magnetic
Ðelds ; this is true for all of the model snapshots, although
the distributions in the high-b (low- cases do becomeB0)more Gaussian in time. For the weak-Ðeld models, the dis-

persion in each component of the magnetic Ðeld is larger
than the mean Ðeld component.

Because magnetic Ðelds are measured via the Zeeman
e†ect with di†erent atomic and molecular tracers in di†er-
ent density regimes, it is interesting to analyze how the
mean Ðeld strength in simulations may depend on density.
Since the magnetic Ðeld is weaker and less able to resist
being pushed around by the matter in the b \ 0.1,1 (C and
D) simulations, one expects that the Ðeld strength will have
stronger density dependence for these models than for the
b \ 0.01 simulation. This is indeed the case, as can be seen
in Figure 18. Particularly at densities below the mean, the
magnetic Ðeld strengths in the high-b models are strongly
density dependent ; the low-density slope of d log B/d log o
for these models is near the value associated with a con-23stant ratio of mass to magnetic Ñux and isotropic volume
changes.

At high densities (above the relatively Ñat slope ofD10o6 )
the b \ 0.01 model increases, becoming comparable to the
slopes of the b \ 0.1,1 models. Figure 19 shows the high-
density B versus o dependence, for various model snap-
shots ; Ðts for Ðducial density in the range 103È104 cm~3nH2(i.e., to 100) yield slopes 0.3È0.7 for d log B/o/o6 \ 10
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FIG. 13.ÈDistribution of mass with line-of-sight position for model snapshot B2 projected in the direction, for regions of linear size L /8. Regionszü
meeting surface density contrast criterion (cf. Fig. 9) are indicated with heavy outlines.

d log o. Only the Mach-9 b \ 1 model yields a high-
densityÈregime slope as steep as the isotropic contraction
limit. The other snapshots have slopes 0.3È0.5, which may
be compared with the slope 0.47 found from a compilation
of Zeeman measurements at high densities nH2

\ 102È107
cm~3 (Crutcher 1999). The values of the mean B2 in any
density regime generally increase with increasing mean net
magnetic Ñux (i.e., decreasing b), but because there isB0signiÐcant dispersion about the mean B2, there is consider-
able overlap of the 1 p deviation regions among the di†erent
model snapshots (Fig. 18).

The numerical results on the B-versus-o relation present-
ed by Padoan & Nordlund (1999) (see their Fig. 7) are
qualitatively similar to our results, with some di†erences
apparent at the high-density end. The lower Mach number
in their low-b model compared to their high-b model likely
accounts for its relatively weaker increase of B with o at
high density, compared to our results. We also di†er with
those authors regarding the astronomical implications of
the numerical results. In particular, we do not attempt a
comparison of the low-density end of the B-versus-o dis-
tributions with observations made in the di†use ISM,

because (1) the physical regime modeled by the simulations
is not appropriate for the di†use ISM (where thermal pres-
sure is comparable to, rather than much smaller than,
Sov2T) ; and (2) the transformation from simulation to
physical variables for local magnetic Ðeld values involves
multiplying by the mean magnetic Ðeld on the largestB0scale, and this need not be the same in the di†use and cold
ISM (b parameterizes this mean Ðeld strength). We con-
clude that the B versus o relations obtained from simula-
tions do not at present constrain the value of b. At high
densities, all models (either weak or strong on the largeB0scale) yield slopes which are consistent with high-density
molecular Zeeman observations. At very low densities,
where the predictions of models with varying b do di†er,
estimating B within clouds would be difficult, since H I

Zeeman observations probe the high columns of foreground
and background material, rather than the low column of
cloud material (although velocity information may help ; see
Goodman & Heiles 1994). The Ðeld strengths in the low-
density regions within molecular clouds may in fact be sys-
tematically higher than those at comparable density in the
di†use ISM.
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FIG. 14.ÈSame as Fig. 12, but for projected region size s \ L /16

For all the snapshots, there is signiÐcant dispersion in the
total magnetic Ðeld strength. In addition to this overall
dispersion in magnitude, there is a dispersion in the mag-
netic Ðeld vector direction, which increases with decreasing
strength of the mean Ðeld component simply becauseB0,
Ðxed amplitude Ñuctuations have larger relative amplitudes
compared to a weak mean magnetic Ðeld. The dispersion in
Ðeld directions has important consequences for any obser-
vational measurement of the mean magnetic Ðeld via
Zeeman splitting. Observations of Zeeman splitting at any
position on a map yield the line-of-sight average value for
the line-of-sight magnetic Ðeld, weighted at each point
along the line of sight by the local excitation. When a given
line of sight has many Ñuctuations in the direction of the
magnetic Ðeld, the average value of will be small, evenSBlosTif individual local components of the Ðeld have large magni-
tudes.

To demonstrate how the averaged line-of-sight Ðeld com-
ponents vary with mean Ðeld strength and observer orienta-
tion, we depict in Figure 20 an overlay of on theSBlosTcolumn density for three model snapshots with matched
Mach number. In Figure 21 we plot the values of SBlosTversus column density of dense gas. The Ðgures show,

unsurprisingly, that the line-of-sightÈaveraged magnetic
Ðeld strengths are greatest when the mean Ðeld is largestB0and is oriented along the observerÏs line of sight (top left
panel). For the weaker-Ðeld models, the average line-of-
sight Ðeld is lower, and there is larger dispersion. For all the
snapshots, there is considerable dispersion in the values of

on the map, and the largest values do not correspondSBlosTto the positions of highest column density ; in fact, there is
some tendency of line-of-sightÈaveraged Ðeld to anti-
correlate with column density. Thus, although the local Ðeld
strength oB o increases with density (see Figs 18, 19) and
may be much larger than the volume-averaged mean Ðeld

for the entire box, line-of-sight superpositions of non-B0aligned vector components produce average line-of-sight
Ðeld strengths closer to the large-scale volume-averaged
value.

It is well known that it is difficult to detect the Zeeman
e†ect in molecular clouds (e.g., Heiles et al. 1993) because
the frequency splitting is small when the Ðeld is weak. This,
coupled with the possibility (see Fig. 21) that an impracti-
cally large number of measurements might be required to
obtain statististically signiÐcant results for the large-scale
Ðeld, underscores the importance of supplementing pro-



FIG. 15.ÈSame as Fig. 13, but for projected region size s \ L /16

FIG. 16.ÈSame as Figs. 12 and 13, but for omin \ 10o6
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FIG. 17.ÈComparative statistics of magnetic Ðeld components for three
model snapshots (B2, C2, D2 from Table 2) with matched Mach numbers.
Solid, dotted, and dashed curves show fraction of mass as a function ofB

x
,

and respectively. Mean Ðeld strengths are nonzero only in theB
y
, B

z
, xü

direction, with 3.16, and 1, for the top, middle, andB0/(4no6 c
s
2)1@2 \ 10,

bottom panels.

FIG. 18.ÈDependence of the total magnetic Ðeld strength on density in
three model snapshots (B2, C2, D2 from Table 2) with matched Mach
numbers. Triangles, squares, and pentagons show the mean value of B2 in
each density bin for Mach-7 models with b \ 0.01, 0.1, and 1, respectively.
Shaded regions surrounding each curve corresponds to the 1 p departures
from the mean (errors in the means from counting statistics are smaller
than the symbols shown). Dashed horizontal lines show the values of the
square of the mean magnetic Ðeld, for the three models. Left and bottom
scales give magnetic Ðeld strength B2 and density o in dimensionless units ;
right and top scales give corresponding Ðducial values of oB o and nH2assuming T \ 10 K and cm~3 for the temperature and volume-n6 H2

\ 100
averaged density.

grams of direct detection with other methods for estimating
the mean Ðeld strength. Long before direct Zeeman detec-
tions were Ðrst made, Chandrasekhar & Fermi (1953) esti-
mated mean spiral-arm Ðeld strengths from the mean gasB0density, line-of-sight velocity dispersion, and the dispersion
in orientations of the magnetic Ðeld in the plane of the sky.
The Ðeld line orientation is taken to be traced by the polar-
ization direction for background stars, which occurs pro-
vided that the dust grains producing the intervening
extinction are aligned with short axes preferentially parallel
to B, and so preferentially extinguish linear polarizations
perpendicular to B.

The Chandrasekhar & Fermi (1953) (hereafter CF) esti-
mate is based on the fact that for linear-amplitude trans-
verse MHD waves,(Alfve� n) B

p
\ (4no6 )1@2 o d¿ o /( o dB o /B

p
).

Here is the projection of the mean magnetic Ðeld on theB
pplane of the sky, and dB and are the components of thed¿

magnetic and velocity perturbations in the plane of the sky
transverse to If the interstellar polarization is parallel toB

p
.

the local direction of then the ratio in theB
p
, o dB o /B

pdenominator may be replaced by the dispersion d/ in
polarization angles (for small-angle/low-amplitude
perturbations). With the further assumption that the true
velocity perturbations are isotropic, then the dispersion in
the transverse velocity is equal to the rms line-of-sighto d¿ o
velocity We thus obtaindvlos.

B
p
\QJ4no6 dvlos d/~1 , (16)

where, for CFÏs Ðeld model, Q\ 1. ModiÐcations to the CF
formula allowing for inhomogeneity and line-of-sight
averaging are discussed by Zweibel (1990) and Myers &
Goodman (1991), respectively. Both of these e†ects (and
others ; see Zweibel 1996) tend to reduce Q.

Potentially, the CF ““ polarization-dispersion ÏÏ method
can be used to estimate plane-of-sky magnetic Ðeld
strengths on scales within turbulent interstellar clouds. It
may also be possible to combine these results with Zeeman
measurements to estimate the total magnetic Ðeld strength
(Myers & Goodman 1991 ; Goodman & Heiles 1994). In
order to evaluate the ability of the CF method to measure
mean plane-of-sky Ðeld strengths, we provide a Ðrst
(simpliÐed) test of it using our model turbulent clouds. For
this test, we have created simulated polarization maps for
each cloud by integrating the Stokes parameters along the
line of sight over a projected grid of positions, assuming the
polarizability in each volume element is proportional to the
local density. The details of this procedure, together with a
more extensive discussion of simulated polarization dis-
tributions, will appear in a separate publication (Ostriker et
al. 2000, in preparation).

For two projected model snapshots (B2 with b \ 0.01
and D2 with b \ 1 projected along Figures 22 and 23zü ),
show examples of the polarization maps overlaid on color
scale column density maps. The analogous map (not shown)
for the model C2 (b \ 0.1) looks quite similar to Figure 23.
From the Ðgures, it it immediately clear that the model with
a stronger mean magnetic Ðeld has more ordered polar-B0ization directions and larger typical values of the fractional
polarization, compared to the model with a weaker mean
magnetic Ðeld. These trends are as expected : a weaker
mean Ðeld has lower tensile strength, so that for a given
level of kinetic energy the Reynolds stresses will produce
larger fractional perturbations in the magnetic ÐeldÈ
corresponding to larger Ñuctuations in projected line-of-



0.333 0.357 0.664

0.405 0.468 0.465

No. 2, 2001 STRUCTURE OF MODEL CLOUDS 999

FIG. 19.ÈDensity vs. mean total magnetic Ðeld strength at high densities for Mach-9 (top row) and Mach-7 (bottom row) model snapshots (Ðducial values
assume T \ 10 K and cm~3). Error bars show expected (Poisson noise) error in determination of the means. Also shown (solid lines) are Ðts ton6 H2

\ 100
log (B) vs. log (n) for cm~3 ; the corresponding slope is indicated in each panel.nH2

[ 103

sight averaged position angle. Also, because of the larger
dispersion in local polarization directions along any line of
sight, cases with weaker mean magnetic Ðelds will show
lower net polarization through the cloud (from the line-of-
sight averaging of the varying local vector directions). While
local (line-of-sightÈaveraged) polarization directions may
have any orientation with respect to local projected surface
density, there is some tendency for the large-scale projected
density and large-scale polarization directions to align in
the high-b (but not low-b) models, because the magnetic
Ðeld and density are both strongly sheared and compressed
by the large-scale, large-amplitude velocity Ðeld.

In Figure 24 we show the distributions of polarization
angle at various ““ observer ÏÏ orientations for models with
matched kinetic energy and mean magnetic Ðeld strengths
at three di†erent levels (b \ 0.01,0.1,1, corresponding to
Ðducial B\ 14,4.4, and 1.4 kG from eq. 15). As is clear from
the Ðgure, only the strong-Ðeld model has signiÐcantly cor-
related directions in the simulated polarization vectors.
This is expected, since only this model has perturbed mag-
netic energy lower than the mean magnetic energy ; the
ratios are are 0.27, 4.0, and 12, respectively, for thedB2/B02snapshots presented.

For the cases shown in Figure 24 where the angle disper-
sion d/ is 25¡ or less (i.e., the b \ 0.01 projections at
i \ 0,30,45, and 60¡), we have compared the known value of
the mean plane-of-sky magnetic Ðeld withB

p
4 B0 cos (i)

the Chandrasekhar-Fermi estimate. We Ðnd that Q (see eq.
[16]) is in the range 0.46È0.51. This suggests that the CF
estimate, modiÐed by a multiplicative factor D0.5 to
account for a more complex magnetic Ðeld and density
structure, can indeed provide an accurate measurement of
the plane-of-sky magnetic Ðeld when the polarization angle
Ñuctuations are relatively small. The method fails, however,
when the polarization angle Ñuctuations are large. We will
present a more comprehensive analysis of this promising
diagnostic in a separate publication.

7. SUMMARY AND DISCUSSION OF

STRUCTURAL ANALYSES

With modern high-performance computational tools, it is
possible to create and evolve simulated dynamical represen-
tations of turbulent, magnetized clouds at comparable
plane-of-sky spatial resolution to that of radio-wavelength
observational maps of GMCs. This paper reports on the
properties of a set of such simulations.
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FIG. 20.ÈMean line-of-sightÈaveraged magnetic Ðeld strength for Mach-7 model snapshots (B2 : left column, C2 : center column, D2 : right column) viewed
from three orientations : along the mean Ðeld top row), at 45¡ relative to the mean Ðeld (center row), perpendicular to the mean Ðeld bottom row).(xü ; (zü ,
Contributions to are weighted by density, and include only zones with Point size is scaled linearly by the value of with positive andSBlosT o/o6 [ 10. SBlosT,
negative values as shown by the key. For Ðducial dimensional B values, we adopt T \ 10 K and cm~3. Only every 15th point in each direction onn6 H2

\ 100
the grid is plotted, for clarity. Gray-scale underlay shows the total column density for each projection.

We start by brieÑy summarizing (° 3) the results on
energy evolution in our simulations. We conÐrm the con-
clusions from our previous work that turbulent decay is
rapid even in magnetized models, Ðnding that an interval of
only 0.4È0.8 Ñow crossing times is sufficient to reduce the
total turbulent energy by a factor 2 from its initial value ; the
corresponding physical time for GMC parameters is only a
2È4 million years. We also conÐrm that in situations where
turbulence is not replenished, the criterion for a cloud to
collapse gravitationally depends only on whether it is sub-
or supercritical with respect to its mean magnetic Ðeld ; the
characteristic collapse time in the latter case is D6 Myr for
GMC parameters.

Following the presentation of energetics, the bulk of the
paper (°° 4È6) is concerned with developing tools for struc-
tural analyses and applying them to our simulated data
cubes. Although simpliÐed in their treatment of small scales

(ambipolar di†usion is neglected) and thermal properties (a
constant gas temperature is assumed), the 3D data cube
““ snapshots ÏÏ from our numerical experiments provide a
detailed portrait of the density, velocity, and magnetic Ðeld
structure in the simulated clouds. This structural portrait is
dynamically self-consistent in that it is an instantaneous
solution to the full time-dependent MHD equations : the
density and magnetic Ðeld variables have evolved in
response to a (time-dependent) turbulent velocity Ðeld,
which itself has evolved subject to gas pressure gradient
forces, magnetic stresses, and self-gravity.

Model cloud snapshots from simulations provide a
unique opportunity to (1) explore the intrinsic character of
3D structure in magnetized gaseous systems subject to
supersonic turbulence, and (2) determine which aspects of
the observed properties of GMCs (from 2D plane-of-sky
integrated maps or l-b-v data cubes) can be explained as a
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FIG. 21.ÈMean line-of-sightÈaveraged magnetic Ðeld strength vs. column density N of gas at for model projections shown in Fig. 20. AllSBlosT o/o6 [ 10
points at are plotted ; straight solid lines show linear least-squares Ðts. Dashed horizontal lines show the value of the volume-averaged meanN/o6 L [ 0.5
line-of-sight Ðeld for each projection (i is the angle between the plane of sky andB0 sin i B0).

manifestation of their internal turbulence. The possibilities
for such exploration are enormous ; for practical purposes,
we have limited the scope of this paper to three groups of
analyses. We consider (1) the distributions of mass, volume,
and area as functions of volume density and column density
(° 4) ; (2) the distributions of velocity dispersion, mass, and
virial parameter a as a function of the spatial scale for zones
in projected maps and cells in 3D cubes (° 5) ; (3) the dis-
tributions of magnetic Ðeld strength versus local volume
density, line-of-sightÈaveraged line-of-sight magnetic Ðeld
versus column density, and distribution of simulated polar-
ization angles (° 6). For each of these analyses, we compare
sets of cloud snapshots in which the turbulent Mach
number is matched, and the large-scale mean magnetic Ðeld
strength varies by a factor 10, also allowing for di†erentB0““ observer ÏÏ viewing angles. The rms turbulent velocities for
the model snapshots are km s~1, and the meanp

v
\ 1 [ 2

magnetic Ðeld strengths are kG, assumingB0\ 1.4[ 14
Ðducial GMC parameters for volume-averaged density

cm~3 and temperature T \ 10 K.n
H2

\ 100
The main results of these structural analyses are as

follows :

1. The distribution of volume densities follows an
approximately log-normal form, with densities of typical
mass elements compressed by a factor D3È6 timesSoT

Mthe volume-averaged density for our sets of snap-o6 4 M/L3
shots with Mach number in the range 5È9 (seeM\ p

v
/c

sFig. 3 and Table 2). This typical density contrast is compa-
rable to that inferred for the concentrations in GMCs

from 13CO molecular-line studies (cf. Paper(So/o6 T
M

D 6È8)
III ; Bally et al. 1987 ; Williams, Blitz, & Stark 1995). The
corresponding rms mass-weighted dispersion in iso/o6
D3È13. Although the density contrast generally increases
with the value of the fast-magnetosonic Mach number

(see Fig. 4), there is no obviousM
F
4 p

v
/Sc

s
2] v

A
2T1@2

one-to-one functional relation between M, andb 4 c
s
2/v

A,02 ,
the density contrast. In particular, the result obtained by
Nordlund & Padoan (1999) for purely hydrodynamic quasi-
steady turbulence of the relation between the density con-
trast and the Mach number M does not carry over for
(evolving) MHD turbulence. When MD 5È9, the Nordlund
& Padoan (1999) quasi-steady hydrodynamic-turbulence
result would predict mass-weighted means and dispersions
of in the range D7È21 and D18È95, respectively, largero/o6
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FIG. 22.ÈColumn density (color scale, with units and simulated polarization map for model snapshot B2 (b \ 0.01, M\ 7), projected alongo6 L ) zü
perpendicular to the mean magnetic Ðeld. The fractional polarization at each point is proportional to the value of a Ðducial polarization P corresponding to a
uniform medium and uniform magnetic Ðeld perpendicular to the line of sight, arbitrarily set here to P\ 0.1 as shown in the key.

than the range we Ðnd for our MHD models. Further inves-
tigation would be required to determine whether, for quasi-
steady MHD turbulence, it is possible to Ðnd a clean
functional relation between the mean (and dispersion) of

and the dimensionless parameters M and b that is inde-o/o6
pendent of the particular instantaneous turbulent power
spectrum. Since, however, we expect that cold-ISM turbu-
lence is subject to signiÐcant transient e†ects, and in addi-
tion large ““ cosmic variance ÏÏ may result from low-k
dominance of the power spectrum, a one-to-one relation of
this kind would probably not be realized in GMCs in any
case.

2. The distributions of column densities N also follow an
approximately log-normal form, with mean logarithmic
contrasts an order of magnitude smaller thatSlog (N/N1 )T
the mean logarithmic density contrasts (seeSlog (o/o6 )T
Figs. 5È8 and Table 2). The mass-weighted mean column
density is thus just 75È35% greater than the area-weighted
column density and the mass-weightedN1 4 o6 L \M/L2,
(area-weighted) dispersion in N is 0.3È0.8 (0.3È0.6) times N1 ,
for models with the range of Mach numbers and magnetic
Ðeld strengths we have analyzed. Large-scale spatial corre-

lation of the density perturbations is indicated by the log-
normal, rather than Gaussian, form of the column density
distributions. These large-scale spatial density correlations
are associated with large-scale correlations in the velocity
and magnetic Ðelds (which, for the present models, are input
in the initial conditions).

3. We use a binning algorithm to investigate the distribu-
tion of kinetic properties for plane-of-sky ““ clumps ÏÏ as a
function of the spatial clump scale. The clumps at a given
scale are simply regions that contrast with the mean surface
density at that scale ; Fig. 9 shows an example of the maps of
these so-deÐned regions of contrast (““ ROCs ÏÏ) at di†erent
scales. We Ðnd that there is a scatter in the values of line-of
sight velocity dispersion averaged over projected regions of
area s2, ranging from the mean value of the velocity disper-
sion averaged over all cubes of size s3 up to the velocity
dispersion for the entire simulation of size L 3 (see Figs. 10,
11). The large velocity dispersions (““ line widths ÏÏ) arise due
to the superposition of many small volume elements with
di†ering mean velocity along lines of sight through a given
projected area. We show that ROCs that have single-
component velocity distributions (““ line proÐles ÏÏ) generally
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FIG. 23.ÈColumn density and polarization map for model snapshot D2 (b \ 1, M\ 7), projected along deÐnitions are as in Fig. 22zü ;

consist of several spatially separated components along the
line of sight (see Figs. 12È16). Thus, what looks like a
““ clump ÏÏ either on the plane of the sky or in position-
velocity data cube may in fact be a superposition of spa-
tially unconnected parts with smoothly overlapping
velocity distributions.

4. We Ðnd that when mean magnetic Ðelds are weak,B0there is a large scatter in the distribution of total magnetic
Ðeld strength o B o in any given density regime, and that the
mean value of o B o varies strongly with density (Fig. 18).
For strong mean magnetic Ðelds at moderate densities,B0there is less scatter in the distribution of o B o , and a weaker
variation of the mean value of o B o with density. At high
densities, the variation of the mean of o B o with density is
similar for all the models (Fig. 19), and is comparable to the
indications of increasing Ðeld strength from Zeeman obser-
vations in high-density tracers (Crutcher 1999).

5. We show that, for the models considered here, the
line-of-sight average of the line-of-sight magnetic Ðeld,

can vary widely across a projected map and is notSBlosT,
positively correlated with column density (see Figs. 20 and
21). Because of the large scatter in an accurate obser-SBlosT,
vational determination of the global average of fromSBlosT

the Zeeman method might require a very large number of
pointings.

6. We have created simulated polarized-extinction maps
by integrating the Stokes parameters along lines of sight for
di†erent simulation snapshots and orientations (Figs. 22
and 23). Because models with weak have much moreB0variation in the vector direction of o B o at a given Mach
number, the result is that they have lower average values of
the polarization and larger dispersions in the polarization
angle than their counterparts (Fig. 24). We showhigh-B0that the Chandrasekhar-Fermi formula can be slightly
modiÐed to estimate the plane-of-sky magnetic Ðeld
strength in terms of the mean density line-of-sightB

p
o6 ,

velocity dispersion and plane of sky polarization angledvlos,d/ as providedB
p
B 1.8o6 1@2dvlos/d/, d/[ 25¡.

One Ðnding particularly notable for the interpretation of
molecular-line observations concerns the nature of what
have long been thought of as large-scale turbulent
““ clumps ÏÏ within GMCs. The large scatter and relatively
shallow mean slope for line width versus projected size dis-
tributions of observed ““ clumps ÏÏ (e.g., Williams et al. 1994 ;
Stutzki & 1990) is similar to that found for project-Gu� sten
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FIG. 24.ÈDistribution of polarization angles for projections of models with matched kinetic energy and di†ering mean magnetic Ðeld strength. Left,
center, and right columns respectively show projections of strong, moderate, and cases (from M\ 7 snapshots B2, C2, D2), for the mean magneticweak-B0Ðeld direction lying at varying angles with respect to the plane of the sky (0¡, 30¡, 45¡, 60¡, and 90¡, from top to bottom). Each panel shows a histogram of the
distribution of polarization position angles with respect to the most-frequent direction, in degrees. Labels in each panel give the dispersion of the distribution.
Dashed curves show Gaussian Ðts.

ed ““ regions of contrast ÏÏ (ROCs) in our simulated clouds.
The observed clumps are identiÐed as coherent structures
(peaks and their surroundings) in position-velocity molecu-
lar line data cubes ; our ROCs are overdense on the plane of
the sky and generally have single-component line widths.

Because their line widths are comparable to those of the
larger cloud complexes in which they reside, the coherent
structures in observed l-b-v cubes have been interpreted as
pressure-conÐned clumps (Bertoldi & McKee 1992). We
believe that these apparent pressure-conÐned clumps may
in fact often be line-of-sight superpositions of spatially
unconnected condensations that collectively sample from
the full turbulent velocity dispersion along the line of
sightÈhence appearing to have internal pressure compara-
ble to that of the parent cloud as a whole. We Ðnd that the
lower envelope of our line widthÈsize distribution for ROCs
closely follows the relation between mean line width and 3D
cell size ; it may be possible to apply a similar binning pro-
cedure to observational maps in order to deduce the true
3D mean line widthÈsize relation.

Our structural analysis supports a revision (see references
in °° 1 and 5 for related work) in the understanding of GMC
clumps that parallels the recent paradigm shift in inter-
preting the cosmological Lya forest. Namely, we suggest
that the line widths of these apparent clumps is due not to
small-scale supersonic ““ microturbulence,ÏÏ but to a super-
position of bulk Ñows with a large range of correlation
lengths. Unlike the situation in cosmology, however, we do
not have a large-scale Hubble Ñow to spread out the veloc-
ity Ðeld and help us distinguish foreground and background
concentrations. As a consequence, what appears to be a
clump in projection may not, in three dimensions, be spa-
tially compact or connected at all !

A further di†erence with the cosmological situation is
that the overdense regions in clouds are not, in general,
fated to collapse. The overdense regions are transient
objects that form, and then disperse, from the e†ects of
time-dependent velocity and magnetic Ðelds. Eventually,
through the overall dissipation of turbulence and the
random superposition of temporary concentrations, a frac-
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tion of the material in a cloud must reach high enough
densities to become strongly self-gravitating. The sub-
sequent collapse and fragmentation, perhaps initiated at
many independent sites in a cloud, must ultimately produce
a collection of stars. The next generation of numerical simu-
lations will require adaptive mesh algorithms to follow this
gravitational collapse and fragmentation. Crucial questions
are whether the spectrum of stellar masses that forms can
ultimately be traced back to the bulk initial conditions (e.g.,
mean density, temperature, magnetic Ðeld strength, velocity
dispersion) in the parent turbulent cloud, and what factors
determine the overall rate of conversion of gas to stars.
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