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Abstract: We show that the resolution of moduli space of ideal instantons parameterizes
the instantons on noncommutati®é. This moduli space appears to be the Higgs branch

of the theory ofk DO-branes bound t&V D4-branes by the expectation value of the

B field. It also appears as a regularized version of the target space of supersymmetric
guantum mechanics arising in the light cone description df2uperconformal theories

in six dimensions.

1. Introduction

The appearence of noncommutative geometry [1] in the physiéslofanes has been
anticipated with the very understanding of the fact that the gauge theory on the world-
volume of N coincidentD-branes is a non-abelian gauge theory [2], [3]. In this theory
the scalar fieldsY; in the adjoint representation are the non-abelian generalizations of
the transverse coordinates of the branes.

Itis known that the compactifications of Matrix theory [4], [5] on tBfiexhibit richer
structures as the dimensionalityof the tori increases [6], [7]. The compactification on
a torus implies that certain constraints are imposed on the mafXices

X; + 27TRi5ij = UinUj_l. (11)

It seems natural to study all possible soluti@nsto the consistency equations for the
compactification of the matrix field].

Recently, the noncommutative torus emerged as one of the solutions to (1.1), [9].
It has been argued that the parameter of noncommutativity is related to the flux of the
B-field through the torus. It has been further shown in [10], that the compactification
on a noncommutative torus can be thought of d@sdual to a limit of the conventional

1 The conjecture of [8] is that the non-abelian tensor fields in six dimensions would also appear as such
solutions.
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compactification on acommutative torus. See [11] for further developments in the studies
of compactifications on low-dimensional tori.

On the other hand, the modified self-duality equations on the matrices in the Matrix
description of fivebrane theory has been used in [12] in the study of quantum mechanics
on the instanton moduli space. The modification is most easily described in the frame-
work of ADHM equations. It makes the moduli space smooth and allows to define a six
dimensional theory decoupled from the eleven-dimensional supergravity and all other
M-theoretic degrees of freedom. The heuristric reason for the possibility of such decou-
pling is the fact that the Higgs branch of the theory is smooth and there is no place for
the Coulomb branch to touch it.

In this paper we propose an explanation of the latter construction in terms of non-
commutative geometry. We show that the solutions to modified ADHM equations pa-
rameterize (anti-)self-dual gauge fields on noncommut&titze

2. Instantons on a Commutative Space

Let X be afour dimensional compact Riemannian manifold AradprincipalG-bundle
on it, with G = U (V). The connectior is called anti-self-dual (ASD), or an instanton,
if its curvature obeys the equation:

F*=3(F+xF)=0,

wherex : QF — Q* ¥ isthe Hodge star. The importance of ASD gauge fields in physics
stems from the fact that they minimize the Yang—Mills action in a given topological sec-
tor, i.e. for fixedk = _sTlrz J TrF A F. In supersymmetric gauge theories the instantons
are the configurations of gauge fields which preserve some supersymmetry, since the
self-dual part off” appears in the right-hand side of susy transformations. For the same
reason they play a major role in Matrix theory.

The space of ASD gauge gauge fields modulo gauge transformations is called the
moduli space of instanton&1;, and in a generic situation it is a smooth manifold of

dimension
2

2

wherey ando are the Euler characteristics and signatur&aespectively.

The moduli spacé is non-compact. The lack of compactness is due to the so-called
point-like instantons. What can happen is that for a sequence of ASD connedtions
the regionD; where some topological charge&lr—2 / p, WEAF is concentrated can

shrink to zero size. There exists a compactificatley, due to Uhlenbeck [13] which
simply adds the centers of the point-like instantons:

ANk — (X+U)a

/\Zk=/\/lkUMk_1><XU...UMk_l><Sym‘X...

which is suitable for certain purposes but not for all. In particular, the spdgehas
orbifold singularities.

One can also study non-compact spacés; R* being the first example. In posing
a moduli problem one has to specify the conditions on the behavior of the gauge fields
at infinity. The natural condition is4,, ~ g=10,g + O(T—lz) asr — oo. One may also
restrict the allowed gauge transformations to those which tend to 1 at infinity.
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2.1. Review of ADHM constructionAtiyah—Drinfeld—Hitchin—Manin describe [14] a

way of getting the solutions obeying the asymptotics stated above to the instanton equa-
tions onR* in terms of solutions to some quadratic matrix equations. More specifically,

in order to describe chargh' instantons with gauge group(k) one starts with the
following data:

1. A pair of complex hermitian vector spacgés= CY andW = C*.
2. The operator®y, By € Hom(V,V), I € Hom(W,V), J € Hom(V, W), which
must obey the equations. = 0, u. = 0, where:

pr =[Bo, B{] + By, B{]+ 111 — J1, 2.1)
He :[BO7 Bl] +1J. '
There is also a non-degeneracy condition which must be imposed by hand, namely, the
set (B, I, J) should have trivial stabilizer in th& (V") group.
For z = (20, 21) € C? ~ R* define an operatd®! : VoV e W — V @ V by the

formula:
p— TZ
?=(1).
Bl — 21 (22)

TZ:(Bo—Zo—B]_+Z]_I), o,=1|Bo— 20
J

Given the matrices obeying all the conditions above, the actual instanton solution is
determined by the following rather explicit formulae:

A, =918, (2.3)

wheret) : W — V @ V @ W solves the equation®?fy = 0 and is normalized :
Py = 1.

The moduli space of instantons with fixed framing at infinity is identified with
M = (u,10) N H0)) JUWV), (2.4)

whereU (V) is the group of unitary transformations Bfacting on the matriceB, I, J
in a natural way.

2.2. Regularization of ADHM dataAs we noted above the compactificatigny, is a
singular manifold. One may resolve it to a smooth variety by deforming the equations
tr = pe = 0top, = (. ld, p. = 0. One may add a constant g9 as well but this
modification is equivalent to the one already considered by a linear transformation of
the dataBy 1, B&PI,IT, J, JT. The modification has been studied mathematically by
various people and we recommend the beautiful lectures by H. Nakajima [15] for a
review. The deformed data form a moduli space:

M = (p(¢1d) N pgH0)) /UV) (2.5)

and they parameterize the torsion free sheaveS§®hwith fixed framing at the line at
infinity. As we shall show in the next section, the deformed moduli space parameterizes
the instantons on the noncommutativé
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3. Instantons on Noncommutative Spaces

The paradigm of noncommutative geometry is to describe the geometry of ordinary
spaces interms of the algebra of (smooth, continuous, ...) functions and then generalizing
to the noncommutative case. In this sense, the noncommuRitive the algebrad,
generated by, o = 1, 2, 3, 4 which obeys the relations:

[$a7xﬁ] = Was, (31)

wherew, s is a constant antisymmetric matrix. There are three distinct cases one may
consider:

1. whasrankO. In this casé, is isomorphic to the algebra of functions on the ordinary
R%.

2. whasrank 2. In this casd,, is the algebra of functions on the ordinay times the
noncommutativiR? = {(p, ¢)|[p, q] = —i}.

3. w has rank 4. In this casd,, is the noncommutativeR*. Let 7*° be the inverse
matrix tow,s andz® = 70z, Let ¥ = () andz" = (z,).

The algebra depends essentially on one nunjgrhich can be scaled away, but we
shall keep itin order to be able to take a limit to the commutative case). We shall denote
it as.A.. Introduce the generatorss = 2! +iz?, 23 = 23 + iz?, ther?

L2020 = [21, 7] = — . (32)
The commutation relations (3.2), have an obvious group of automorphisms of the form
To — Tot 001, Ba € R.We denote the Lie algebra of this groupdpyFor the algebra
(3.2) to represent the algebra of real-valued functions (and be represented by Hermitian
operators) we neede R. (Inthe language of mathematics we can say that this condition
means that the algebra at hand has an involution.) We chposed. Of course, the
algebra of polynomials i, z should be completed in some way. We propose to start
with the algebra Ent of operators acting in the Fock spalde= 3, .. <72 C|no, n1),
wherez, z are represented as creation-annihilation operators:

z0|no, n1) %\/no + 1ng + 1, n1) 20|ng,n1) = g‘ /nolno — 1, n1), (3.3)
z1lno, n1) = 3v/n1 + 1no,n1 + 1) z1no, n1) = 5/n1lno, n1 — 1).

The algebra EnH has a subalgebra Egit of operatorsA which have finite norm; we

will take the Hilbert—Schmidt norm: I[(AAT)%. We consider an algebtd, defined

as a subalgebra of EgH{ which consists of smooth operators, i.e. thdser which the
function f4 : g — EndyH, fa(t) = Ady A is smooth. Notice that 1 does not belong
to this algebra. This is a consequence of non-compactné&s Gine can represent the
elements of the Fock spa@¢ as L? functions in two variablegy = 2! and¢; = 28
(oscillator wave functions in real polarization). It is actually possible to prove using the
results of [16] that smooth operators are those whose matrix eleégitsy;; qo, ¢1)
belong to the Schwartz spasSéR? x R?). We consider representations of the involutive
algebra A, by means of operators in Hilbert space (Hilbert modules with involution
in mathematical terminology). A vector bundle over a noncommutative sgaisea

2 So,7MV is proportional ta, whilew, 3 is proportional t0<1 in accordance with the standard quasiclassical
limits.
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projective module£, i.e. such a module for which another moddle exists with the
property€ @ £+ = A@ ... ® A. (The last module is called free. In the commutative
case free modules correspond to trivial bundles.) In our description of instantons over
R* we shall be dealing with free modules only.

The notion of connection in the bundidhas several definitions. The most convenient
for us at the moment will be the following one. Legtc Aut(.A) be a Lie sub-algebra of
the algebra of automorphisms.df Then the connectioW is an operato¥ : gx & — &
which obeys the Leibnitz rule: B

Ve(f-s)=f-Ves+E(f) s, feA §e€g, sef. (3.4)
The curvature o¥ is an operator:

F(V):A’gx €= &, FV)En) = Ve, Vil = Vie. (3:5)

3.1. Instantons on noncommutati®é. Just like in the commutative case one may
define the Yang—Mills action, the instanton equations, etc. See [1] for the definitions and
[9] for recent discussion. We are looking at the solutions of the ASD conditions

F'=0

on the connection in the moduteover A¢, where the + sign means the self-dual part
with respect to the natural Hodge star operator acting omtliewhereg ~ R* is the
abelian Lie algebra of automorphisms.4f. a B

Now we are going to show that the resolution (2.5) gives rise to the ADHM descrip-
tion of instantons on the noncommutati®é.

Indeed, the core of the ADHM construction are the equations

7.0, =0, TZTZT = O’iJz, (3.6)

where the operators,, 7, are constructed as above. Now suppose that the matrices
B,B', It 1,J,J" obey the modified equations (2.5). Then (3.6) are no longer valid
but they will be valid if the coordinate functions, z; will not commute! In fact, by
imposing the commutation lawe{, zq] = [21, 2z1] = —% we fulfill (3.6) as the term with

¢ from commutators of3’s is now compensated by the commutators.'sf We now
follow the steps of the ordinary ADHM construction. We define an operator:

DI.(VaeVeW)eA — (VoV)e A 3.7)
by the same formula (2.2). We look for the solution to the equation
D=0, v WA —-(VaVeW)e A (3.8)

which is again normalizedyf) = ldw e, . These are defined up to unitary gauge
transformationg acting ony on the right. AgainA,, = wTa,ﬂp, where the derivative
is understood as the action gf= R* on A; by translations. We may now derive the
formula for the curvature of the gauge field The derivation is very similar to the
commutative case and it yields:

=t 1 T)
F=q (dDZDTD D! ) . (3.9)

z z
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The operatoDID, : (V& V) ® A: — (V & V) ® A is again block-diagonal:
’DZDZ = <AOZ AOZ) , A,= TZTZT = UiO’Z. (3.10)

Hence, just as in the commutative case:

1 1
F =yl (deAszz + daZAZdai> Y=

dzoq-dzo + dz15-dzy —dzon-dz1+dz17-dz 0 (3.11)
=t | —dzydzo +dzo-dz daydz +dzodz 0| ¢
0 0 0

which is anti-self-dual. We should warn the reader that kiefedz; are just the gen-
erating anti-commuting parameters for representing the mati, ) in short print.
They commute with;, z;.

3.2. Commutative interpretation of the noncommutative equatidffse construction
above is not yet completely rigorous. We must prove thakists and thaA\ ., is invert-

ible. A useful technique is to represent the equations giein terms of the (perhaps
differential) equations on ordinary functions. In this way the multiplication of operators
a - bis mapped to

1 4w o2
axb(r)=e2" T a(x + )bz + n)|e=n=0- (3.12)

Now we can study the questions we posed in the beginning of the section.

It follows from (3.10) that the condition thatis a zero mode oA ., is equivalent to
the conditionsrfv = 0,0,v = 0, wherev is an element of our algebra that is considered
as an algebra of Hilbert—Schmidt operators in Fock space.

Let us remark that an operator equatkdn = 0 is equivalent to the condition that
the image of the operatdr is contained in the kernel d€. In other words if we can
solve the equatioiKkv = 0, wherev is a vector then we can also solve the operator
equationKL = 0, whereL is an unknown operator. This remark allows us to say that
in the conditions above we can consideas an element of Fock space; if a non-zero
solution does not exist in this new setting it does not exist in the old setting either. The
elements of the Fock spaéé can be represented either as polynomialspire; (this
representation we use below) or&&functions onR? with coordinatesyo, ¢:.

The equations for the vectar can be written in holomorphic representation as
follows:

Bov = zgv, Bgv = %6%01),
Byv = zv, Bjv = §52v, (3.13)

Ju =0, Ifv=0.
The right column suggests that:

4znB
v e 0By (),
which is inconsistent with the left column equations. We also say that the left column
equations imply that the creation operators have a finite-dimensional invariant subspace
which is impossible. In the cag€ = 1 the operaton , is explicitly positive definite.
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The question of existence gfis addressed similarly: write¢ = ¢, ® ¥ _ @ &, then
(3.8) assumes the form:

¢ 0 ¢ 0

(Bo"'zaiz—o_ZO)Q/A—(Bl"'ZaiZ—l_Zl)¢7+15:07
AP Cs (3.14)
(Bl = 335 — A0+ (By = 35—~ 20—+ ¢ =0,

Herey is a function which corresponds to an operator from our algebra. Equation (3.14)
can be rewritten in the form:
Dav=—-E (3.15)

(v gl (T
v=() == ()

andD 4 being the Dirac operator in the gauge fielddz#, where

for

4 _ _
(Au = Jo®) dot = ¢ (—Bldz1 — Bidzo + Bodzo + Budz)

The gauge fieldd has constant curvature.
Now let us write down Eq. (3.14) for vectors in the Fock space, this time using the
L? representationy = v.(q) ® v_(q) @ w(q),

0 0
(Bo+ S0 — qovs — (By— S o+ qv_ + Iw =0,
4 dqo 40q;
L co .o T (3.16)
(Bl72167(]17(11)“4-(3072167%7%)\/_4-(]W_O'

It has again the form (3.15) witP 4 being a Dirac-like operator in two dimensions.
Let us assume that the operafdrn has no zero modes (we hope that this assumption
can be justified in the framework of perturbation theory with respe¢).tdhen we can
write a solution to (3.15) in terms of the Green’s function of the opertorThe space
of solutions to (3.16) is identified with the spacews$, i.e. the space o’ -valued?
functions onR?. Now, given the solution.(w) @ v_(w) @ w to (3.16) we construct a
solution to (3.15) as follows} is supposed to may QHOH — (VEVEW)QHRIH
(where we used the fact that the algebra of Hilbert—Schmidt operators can be identified
with the Hilbert tensor produdt! ® H and thatd, C H @ H). Now,

P=wW i (Va(w) & v_(w) Sw) @Wg
does the job for any non-degenergte GL;(.4). What remains is to normalize: =
1

(1) 2 4. This normalization)y = 1 reduces the freedom of the choice of solutions
to (3.16) to the unitary gauge transformationg/i(k).

One can also rewrite the ASD equations for the gauge field on the noncommutative
R*in terms of commutative functions which are Wick symbols of the gauge fields. Let
A,,(z) be four functions ofR* and consider the equations:

Ff,=0 (317)

with
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- i i i k i k
Fl, i =0uA, ; —O0A, i+ A o x Ay i — A, x Aj S (3.18)

Thus, the noncommutative ASD equations can be thought of as the deformation of
the ordinary ASD equations. The solutions to (3.17) are automatically the solutions to
the deformed Yang—Mills equations:

Oy Fu + Ay x Fyy = 0. (3.19)

3.3. The completeness of the ADHM construction in the noncommutative dase.

like in the case of ordinarR* one faces the question — whether the full set of solutions

of ASD equations on noncommutati® is enumerated by the solutions to the matrix

equation (3.6). Itis natural to try to imitate the arguments of [17] and express the matrices

B., I, J interms of solutions to the massless Dirac equations in the instanton background

field. We simply sketch the relevant steps of the construction without giving any proofs.
The setup is similar to the commutative case. Given a projective mddoler A,

one studies the associated mod8es= £ ® 4, S¢, S+ = C? ® A¢. Given a connection

V in the moduleF we form the Dirac-Weyl operators

D':S,—S., D:S. —S (3.20)

by the standard formulaed = V, ® 0%, D = V, ® 0%, wheres® : S, — S_,
o S_ — S, are essentially the ordinary Pauli matrices agd o4 = 1. One proves
the identities:

DD'=Ay ®1+F,, ®c", D'D=Ag®1+F}, @o". (3.21)

HereAy isthe covariant Laplacia — E. Since there are no normalizable (see below)
solutions to the equationsy ¢ = 0 then for the ASDV one concludes that there are no
solutions to the equatioy = 0. On the other hand, the index arguments predict, just
like in the commutative case, the existence\bhormalizable (in the sense, described
in the next paragraph) zero modes/of.

Lety® € E ® S, be a solution taD+* =0,i = 1,... , N. Then one may define a
prTojection (just like in the commutative case)gf)’ onto the space of zero modes of
Dt

(xaé; - B;J) P =D(...), (3.22)

whereB,, is some matrix (witlC-valued entries). We calby = B; +iB;, By = B3 +iBy,
etc.

The matriced, .J are recovered from the largé asymptotics ofy’. In order to
explain what it means in the noncommutative setting we represent the coordinates on
the noncommutativl* as creation-annihilation operators acting in the auxiliary Fock
spaceH. Then the operatap’ has the corresponding Wick symhoi which is simply
a function onR* whose large? limit is well-defined and is independent on the ordering
prescription since for large? >> ¢ one may neglect the noncommutativity of the
coordinates.

4. Examples

4.1. Abelian instantons.It is very interesting to study the cage= 1. In the com-
mutative case there are no solutions to the abelian instanton equations except for the
trivial ones. We shall see that for evelythere are non-trivial abelian instantons in the
noncommutative case.
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We need to solve the equations = ¢ld, 1. = 0. It can be shown that far > 0 the
solution must have = 0 [0]. Moreover, on a dense open setfi: the matricesBy, By
can be diagonalized by a complex gauge transformétion

B, —diag(8s,...,6Y). (4.1)

The eigenvalueg’, parameterize a set 6f points onR*. The actual moduli space is
the resolution of singularities of the symmetric product. Now supp8gsel;, I) is a
solutionto the ADHM equations. If we write the elementob V& W asy = oDy BE
then the equatio®’+ = 0 is solved as:

Yo = —(Ba — Za)T(S_llfv

6= i(Ba — 2a)(Bf — z). #.2)
a=0
The operatot is determined from the equatiaii ) = 1:
= (1+176711) -3 : 4.3)
The connectiom = ¢ dy has Yang's form:
A=¢%9¢ — gee Y, (4.4)
whered = dza 52, 0 = dzz 2. Explicitly:
A=¢Hde+ € ag,
where the “gauge transformed” connectiotis equal to:
a=¢£209¢%=
1 (4.5)

ts—1pt = -1
1+IT5*1116 (Bl — 2,)dzo00" 1.

1
ForN =1:¢ = (‘f;g//,f) 2 d = 2070+ 2121, and the gauge fieldis explictly non-singular
if the correct ordering is used:

« (zodzo + z1dz1) . (4.6)

1
T d(d+¢/2)
One can also compute the curvature:

- ¢
(d—¢/2)d(d+(/2)

fa= 2020 — 2121, fr = 22021,  f- = 22120.

Fu (f3(dzodz0 — dzadz1) + fedzodzy + f—dz1dzo)

4.7)

The factorm has a singularity at the stal@ 0) but it is projected out since
fa,+ always havey or z; on the right. The action density is given by

3 We thank D. Bernard for pointing out an error in the earlier version of this paper.



698 N. Nekrasov, A. Schwarz

. 1 CZ 1
S = 7@FAFA 472 42(d — C/Z)(d+(/2)

(4.8)

whereIl =1 —|0,0)(0, 0]. We may define the total action as

A e 1 _
(Cm)°TryS = 4; NS

4.2. 't Hooft solutions. It is also relatively easy to describe the noncommutative ana-
logues of 't Hooft solutions fok = 2:

A, =iz o719, 0, (4.9)

whereX*” is self-dual inur and takes values in traceless two by two Hermitian matrices.
Inthe commutative case the ASD conditions boil down to the Laplace equatibifildj.

In the noncommutative case the potential trouble comes from the term in the curvature
F

pvt

{4, 2} o, Jp]
with J, = @719, ®. Itis easy to show that the problematic piece is equal to
[Jyis Jo] = Suvasl ™, J7]

which is explicitly anti-self-dual. Hence we have shown that the ansatz (4.9) works in
the noncommutative casedf obeys the Laplace equation which is now to be solved in
the noncommutative setting. A solution looks exactly like the commutative ansatz:

®= 1+Z mz (4.10)

where now the components 8f= (z*) represent the noncommuting coordinates.

One might wonder what are the propertiesd®fviewed as an operator in a Fock
space, where,’s are realized as the creation and annihilation operators. By acting on
a vacuum stat¢0, 0) in the occupation number representatibrereates a sum of the
coherent states. We may represéras follows:

N
=1+ plu,
=1

whereu; = =% Aive A 1 = L. Let us now prove that eaah obeys the Laplace
equation. Since the automorphismsgn= R* are internal and they commute it is
sufficient to prove thal’ obeys the Laplace equation. For the latter it is enough to check
that

Y + Y7 = 277

which is true forY = % The operatofy is diagonal in the occupation number repre-
sentation and its eigenvalue on a statg n,) is equal to——=——.

C(n +n1+1)
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5. Relation to Matrix Description of Six Dimensional (2, 0) Theory

In the recent papers [12], [19] the proposal for Matrix description of six dimensional
(2,0) superconformal theory df coincident fivebranes has been made. The theory
which arises on the worldvolume éfcoincident fivebranes has the property that when

it is compactified on a circle it becomégk) gauge theory in 4 + 1 dimension which

the coupling which goes to zero as the radius goes to zero. So, by compactifying the
theory on a light-like circle one gets the gauge theory with zero coupling. Of course, in a
given instanton sector the only surviving gauge configurations are instantons. The theory
becomes a quantum mechanics on the moduli space of instantons. But, the latter space
has singularities coming from the point-like instantons and at these singularities a second
branch of the theory, corresponding to the emission or absorptiofdfranes develops.

The theory becomes interacting with the bulk degrees of freedom which makes it harder
to study. The proposal of [12] was to deform the instanton moduli space by turning on
a B field along four dimensions which serves as a FI térim (2.5). The interpretation

of our paper is that turning on thg field effectively make®* noncommutative and the
instantons live on it.

Now, the problem of instantons shrinking to zero size is cured by quantum fluc-
tuations! Indeed, the position of the point-like instanton is smeared over a region of
size~ ¢ which makes it no longer point-like. So the Higgs branch becomes a smooth
hyperkahler manifold and the theory becomes six dimensional (at least decoupled from
the bulk degrees of freedom).

6. Future Directions

In this section we briefly sketch a few directions of future research.

6.1. Nahm’s transform.Let us define an-dimensional noncommutative toryl as an
associative involutive algebra with unit generated by the unitary genef@tors, U,
obeying '

U, = U,U,.

Hered,,,, is an antisymmetric tensor; we can also consider it as a 2-forRf'ofThe in-
finitesimal automorphism$,Ug = d,3U3 generate the abelian Lie algeldraacting on

Ay. As before we uséy to define the notion of connection in4y-module. We always
consider modules equipped with Hermitian inner product and Hermitian connections.
We will construct a generalization of Nahm's transform [20] relating connection&en
modules to connections o#;-modules [21]. Heredy and.A; are two four-dimensional
noncommutative tori. To define a noncommutative generalization of Nahm’s transform
we need afly, Ay)-module’P with 44 -connectionV, andA@-connection@#. The

fact thatP is a (4, Aj)-module means thaP is a left Ay-module and a rightd ;-
module; we assume thaif)b = a(zb) for a € Ag, b € Az, x € P. In other words,

P can be considered as4,,;-module, where4, . ; is an eight-dimensional noncom-

mutative torus corresponding to the 2-fofre 6 onR8. Assume that the commutators
[Va, V3], [V, Vi, [Va, V)] arec-numbers:

[VOM vﬁ] = Wag, [ﬁuv @V] = &)uw [vom @u] =0Oap- (61)

The condition (6.1) implies that the curvature of connectign @ V,, on Apgi is
constant. One more assumption is tRaf commutes with multiplication by elements
of A; andV,, commutes with multiplication by elements df. Of course, the module
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‘P and the connectiong,, @H obeying the above requirements exist only under certain

conditions orY, 0. For any right4,-moduleR with connectionV we consider Dirac
operatorD = I'*(VE + V) acting in the tensor product

(R4, P)®S.

(To defineI’-matrices we introduce an inner productfig and inL;.) This operator
commutes with multiplication by the elements.df, hence the space of zero modes

of D can be regarded a4;-module; we denote it aB. The connectiorﬁ“ induces a

connectiori/, on
(R4, P)®S.

We define a connectioﬁf onR asP@iL, whereP is the orthogonal projection:

(R®4,P)®S — R.

The above construction can be regarded as a generalized Nahm’s transform. To
prove that its properties are similar to the properties of the standard Nahm'’s transform
we should impose additional conditions on mod®end connection¥ ,, @H. It is
sufficient to assume that,,, determines a non-degenerate pairing betwegandL;.

Then we can use this pairing to define an inner produdtjnA connectionVZ is
an analogue of ASD connection if its curvaturgs obeysF;ﬁ + wqp -1 = 0. (This

condition is equivalent to antiselfduality of the connecti@ff + V,.) Then one can
prove that the curvaturg,,, satisfiesF;V — O -1=0.

The formsw, & obey certain quantization conditions which depen@p?h We plan
to return to this issue elsewhere.

Thus, Nahm'’s transform maps the modified instantons on one noncommutative torus
to the modified instantons on the other noncommutative torus. It can be thought of as
an analogue of Morita equivalence. The last notion is usually used in the context of
equivalence of algebras and the categories of left- and/or right- modules ovet them.
the context of gauge theories we study the modules with connections. Nahm’s construc-
tion gives correspondence between such modules; modules with ASD connections are
mapped to each other.

The instantons on the noncommutative torus appear in the probldn@-dfranes
bound toD4-branes wrapping the four-torus = 7% with the B-field turned on1-
duality maps the torud to its dual and the natural conjecture [22] is that on the level
of low-energy fields it maps the instantons drto those on4Y. There exist stronger
conjectures about the moduli space of instantons on the four-torus which fulfill the base
of the constructions of six dimensional interacting string theories [23] and also provide
a heuristic test of/-dualities [24]. One assumes th&t x 7y = SynT™Y 7% and studies
the two dimensional sigma model with target x 7(1). Since the symmetric product
is an orbifold of the hyperkahler space one may perturb the theory by the marginal
operators responsible for blowing up the singularities of the orbifold. As was argued in
[25] such a perturbation breaks the natural symmetries of the problem (and cannot be

4 Two algebrasA, B are called Morita equivalent if there exist thé,(B) moduleE and (B, A) module
FstE®p F~ A, F®asFE =~ B.Forexample, every algebr4 is Morita equivalent to the algebra
Maty (A) of matrices with coefficients irl. Given two Morita equivalent algebras one may construct for any
A-module€ a B-moduleF and vice versaF = FF ®4 £.

The fact that the holomorphic counterpart of Nahm'’s transform — the Fourier—Mukai transform — can be
understood in the framework of generalized Morita equivalence has been pointed out to us by M. Kontsevich.
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interpreted as responsible for interactions of little strings). We have argued that given a
noncommutative torus (or noncommutatié), where the relevar§U(2) symmetry is
already broken by the noncommutative deformation, the moduli space of instantons is
already smooth, and the decoupling arguments can be applied.

6.2. Instantons on noncommutative ALE spac&he asymptotically locally euclidean
(ALE) manifolds X are the hyperkahler resolutions of singularities of the orbifold
C?/T for T' ¢ SU(2) being a discrete subgroup. The subgroups correspoddts

Lie groupsG via McKay's correspondence [26]. The spake depends on = rkG

parameters; € R3,i=0,... ,r,
> G=o

The spaceXt as well as the moduli spacesléf/NV) instantons ok - can be constructed

via hyperlahler reductions of vector spaces [27][28]. These constructions were inter-
preted in [29] as originating from the gauge theorywobp-branes, put at the orbifold
point of C2/T inside thew D(p + 4)-branes. It has been noticed in [29] that in principle

the condition)_, @ = 0 can be relaxed by turning on a self-dual patBgf, alongC?/T.

As before, we interpret this as the process of going to the noncommutative ALE space
with instantons on it. The ADHM construction of [28] generalizes straightforwardly to
this case provided the original vector space Hom(C", C" @ C?)" whose reduction
yields the ALE space is replaced by its noncommutative deformation:

V9 =Hom(C",C" @ A.).

6.3. Instantons and holomorphic bundles on noncommutative surfdtissvell-known

that solutions to the instanton equations on the complex surface determine the holo-
morphic structure in the bundle where the gauge field is defined. In fact, Donaldson-
Uhlenbeck-Yau theorem establishes an equivalence between the moduli space of stable
in a certain sense holomorphic bundles over a surfaaed solutions to the instanton
equations orp [30][31]. The holomorphic bundl€ defines a sheaf of its sections, and
can be replaced by this sheaf for many purposes. In fact, not everyBlezahes from

a bundle - for this it must be what is called a locally-free sheaf (the term free means that
the sections ofF form a free module over the she@fof holomorphic functions ory).

By relaxing the condition of being locally free but insisting on being torsion free, one
gets a generalization of the notion of a holomorphic bundle. However, it was not clear
how to obtain the corresponding generalization of the notion of instanton. Of course, the
consideration of torsion free sheaves allows us to compactifptuuli spacef instan-

tons [32], [15]. But it is by no means clear whether the compactification can be achieved
within a gauge theory. It has been conjectured in [33] that such a compactification occurs
in string theory.

We claim thathere exists a generalization of the instanton fildthe torsion free
sheaves. This is simply the gauge field ontleacommutative surface.

The importance of the spaces(, has been appreciated in the context of string
duality and field theory a while ago (see [34], [35], [24], [12]). We hope that the proposed
interpretation will help to find further applications as well as justify various assertions
needed for establishing string/field dualities.

In our presentation the noncommutativity®t entered only through the construc-
tion of the connection in a given bundle. The holomorphic bundle underlying the in-
stanton could be described in purely commutative terms. This relies on the fact that



702 N. Nekrasov, A. Schwarz

with our choice of the Poisson structure the subalge&draf holomorphic functions
onC? is commutative. It is interesting to study the picture in other complex structures.
In fact, a slightly redundant but interesting deformation of ADHM equations is the
three-parametric one:

/’[‘T' = CT'Id7 ,LI/C = C(Zld7 (62)

where(,. € R, (. € C. Itis customary to combin&y, ¢, (_C) into a three vectorfe R3.
The specifics oR* is that one can always get rid of by appropriate rotation in the
SU(2)r global group. Let us not do it but rather look at the complex equation (.1d:

7.0.=0, iff [z0,21]= —3C (6.3)

Thus the(.-deformation allows one to construct a coherent sheaf over the noncommu-
tative C? as the cohomology of the complex of sheaves:

(o Tz (64)
0-Ve0, - (VeCeaW)®0:, - V0, —0, '

whereQ, is the associative algebra generatedgyz, obeying the relationzp, z1] =
—%CC andr,, o, are given by the same formulae (2.2).
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