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Abstract: We show that the resolution of moduli space of ideal instantons parameterizes
the instantons on noncommutativeR4. This moduli space appears to be the Higgs branch
of the theory ofk D0-branes bound toN D4-branes by the expectation value of the
B field. It also appears as a regularized version of the target space of supersymmetric
quantum mechanics arising in the light cone description of (2, 0) superconformal theories
in six dimensions.

1. Introduction

The appearence of noncommutative geometry [1] in the physics ofD-branes has been
anticipated with the very understanding of the fact that the gauge theory on the world-
volume ofN coincidentD-branes is a non-abelian gauge theory [2], [3]. In this theory
the scalar fieldsXi in the adjoint representation are the non-abelian generalizations of
the transverse coordinates of the branes.

It is known that the compactifications of Matrix theory [4], [5] on toriTd exhibit richer
structures as the dimensionalityd of the tori increases [6], [7]. The compactification on
a torus implies that certain constraints are imposed on the matricesXi:

Xi + 2πRiδij = UjXiU
−1
j . (1.1)

It seems natural to study all possible solutionsUi to the consistency equations for the
compactification of the matrix fields1[9].

Recently, the noncommutative torus emerged as one of the solutions to (1.1), [9].
It has been argued that the parameter of noncommutativity is related to the flux of the
B-field through the torus. It has been further shown in [10], that the compactification
on a noncommutative torus can be thought of as aT -dual to a limit of the conventional

1 The conjecture of [8] is that the non-abelian tensor fields in six dimensions would also appear as such
solutions.
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compactification on a commutative torus. See [11] for further developments in the studies
of compactifications on low-dimensional tori.

On the other hand, the modified self-duality equations on the matrices in the Matrix
description of fivebrane theory has been used in [12] in the study of quantum mechanics
on the instanton moduli space. The modification is most easily described in the frame-
work of ADHM equations. It makes the moduli space smooth and allows to define a six
dimensional theory decoupled from the eleven-dimensional supergravity and all other
M -theoretic degrees of freedom. The heuristric reason for the possibility of such decou-
pling is the fact that the Higgs branch of the theory is smooth and there is no place for
the Coulomb branch to touch it.

In this paper we propose an explanation of the latter construction in terms of non-
commutative geometry. We show that the solutions to modified ADHM equations pa-
rameterize (anti-)self-dual gauge fields on noncommutativeR4.

2. Instantons on a Commutative Space

LetX be a four dimensional compact Riemannian manifold andP a principalG-bundle
on it, withG = U (N ). The connectionA is called anti-self-dual (ASD), or an instanton,
if its curvature obeys the equation:

F + := 1
2(F + ∗F ) = 0,

where∗ : �k → �4−k is the Hodge star. The importance of ASD gauge fields in physics
stems from the fact that they minimize the Yang–Mills action in a given topological sec-
tor, i.e. for fixedk = − 1

8π2

∫
TrF ∧F . In supersymmetric gauge theories the instantons

are the configurations of gauge fields which preserve some supersymmetry, since the
self-dual part ofF appears in the right-hand side of susy transformations. For the same
reason they play a major role in Matrix theory.

The space of ASD gauge gauge fields modulo gauge transformations is called the
moduli space of instantonsMk and in a generic situation it is a smooth manifold of
dimension

4Nk − N2 − 1
2

(χ + σ),

whereχ andσ are the Euler characteristics and signature ofX respectively.
The moduli spaceM is non-compact. The lack of compactness is due to the so-called

point-like instantons. What can happen is that for a sequence of ASD connectionsAi

the regionDi where some topological charge− 1
8π2

∫
Di

TrF ∧ F is concentrated can
shrink to zero size. There exists a compactification̄Mk due to Uhlenbeck [13] which
simply adds the centers of the point-like instantons:

M̄k = Mk ∪ Mk−1 ×X ∪ . . . ∪ Mk−l × SymlX . . .

which is suitable for certain purposes but not for all. In particular, the spaceM̄k has
orbifold singularities.

One can also study non-compact spaces,X = R4 being the first example. In posing
a moduli problem one has to specify the conditions on the behavior of the gauge fields
at infinity. The natural condition is :Aµ ∼ g−1∂µg +O( 1

r2 ) asr → ∞. One may also
restrict the allowed gauge transformations to those which tend to 1 at infinity.
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2.1. Review of ADHM construction.Atiyah–Drinfeld–Hitchin–Manin describe [14] a
way of getting the solutions obeying the asymptotics stated above to the instanton equa-
tions onR4 in terms of solutions to some quadratic matrix equations. More specifically,
in order to describe chargeN instantons with gauge groupU (k) one starts with the
following data:

1. A pair of complex hermitian vector spacesV = CN andW = Ck.
2. The operatorsB0, B1 ∈ Hom(V, V ), I ∈ Hom(W,V ), J ∈ Hom(V,W ), which

must obey the equationsµr = 0, µc = 0, where:

µr =[B0, B
†
0] + [B1, B

†
1] + II† − J†J,

µc =[B0, B1] + IJ.
(2.1)

There is also a non-degeneracy condition which must be imposed by hand, namely, the
set (B, I, J) should have trivial stabilizer in theU (V ) group.

For z = (z0, z1) ∈ C2 ≈ R4 define an operatorD†
z : V ⊕ V ⊕W → V ⊕ V by the

formula:

D†
z =

(
τz
σ†

z

)
,

τz =
(
B0 − z0 −B1 + z1 I

)
, σz =

B1 − z1
B0 − z0
J

 .

(2.2)

Given the matrices obeying all the conditions above, the actual instanton solution is
determined by the following rather explicit formulae:

Aµ = ψ†∂µψ, (2.3)

whereψ : W → V ⊕ V ⊕ W solves the equations:D†ψ = 0 and is normalized :
ψ†ψ = 1.

The moduli space of instantons with fixed framing at infinity is identified with

M =
(
µ−1

r (0) ∩ µ−1
c (0)

)
/U (V ), (2.4)

whereU (V ) is the group of unitary transformations ofV acting on the matricesB, I, J
in a natural way.

2.2. Regularization of ADHM data.As we noted above the compactification̄Mk is a
singular manifold. One may resolve it to a smooth variety by deforming the equations
µr = µc = 0 to µr = ζrId, µc = 0. One may add a constant toµc as well but this
modification is equivalent to the one already considered by a linear transformation of
the dataB0,1, B

†
0,1, I, I

†, J, J†. The modification has been studied mathematically by
various people and we recommend the beautiful lectures by H. Nakajima [15] for a
review. The deformed data form a moduli space:

Mζ =
(
µ−1

r (ζId) ∩ µ−1
c (0)

)
/U (V ) (2.5)

and they parameterize the torsion free sheaves onCP2 with fixed framing at the line at
infinity. As we shall show in the next section, the deformed moduli space parameterizes
the instantons on the noncommutativeR4.
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3. Instantons on Noncommutative Spaces

The paradigm of noncommutative geometry is to describe the geometry of ordinary
spaces in terms of the algebra of (smooth, continuous, ...) functions and then generalizing
to the noncommutative case. In this sense, the noncommutativeR4 is the algebraAω

generated byxα, α = 1, 2, 3, 4 which obeys the relations:

[xα, xβ ] = ωαβ , (3.1)

whereωαβ is a constant antisymmetric matrix. There are three distinct cases one may
consider:

1. ω has rank 0. In this caseAω is isomorphic to the algebra of functions on the ordinary
R4.

2. ω has rank 2. In this caseAω is the algebra of functions on the ordinaryR2 times the
noncommutativeR2 = {(p, q)|[p, q] = −i}.

3. ω has rank 4. In this caseAω is the noncommutativeR4. Let παβ be the inverse
matrix toωαβ andxα = παβxβ . Let ~x = (xα) and~x∨ = (xα).

The algebra depends essentially on one numberζ (which can be scaled away, but we
shall keep it in order to be able to take a limit to the commutative case). We shall denote
it asAζ . Introduce the generators:z0 = x1 + ix2, z1 = x3 + ix4, then2

[z0, z̄0] = [z1, z̄1] = −ζ

2
. (3.2)

The commutation relations (3.2), have an obvious group of automorphisms of the form
xα 7→ xα +βα ·1,βα ∈ R. We denote the Lie algebra of this group byg. For the algebra
(3.2) to represent the algebra of real-valued functions (and be represented by Hermitian
operators) we needζ ∈ R. ( In the language of mathematics we can say that this condition
means that the algebra at hand has an involution.) We chooseζ > 0. Of course, the
algebra of polynomials inz, z̄ should be completed in some way. We propose to start
with the algebra EndH of operators acting in the Fock spaceH =

∑
(n0,n1)∈Z2

+
C|n0, n1〉,

wherez, z̄ are represented as creation-annihilation operators:

z0|n0, n1〉 = ζ
2

√
n0 + 1|n0 + 1, n1〉 z̄0|n0, n1〉 = ζ

2

√
n0|n0 − 1, n1〉,

z1|n0, n1〉 = ζ
2

√
n1 + 1|n0, n1 + 1〉 z̄1|n0, n1〉 = ζ

2

√
n1|n0, n1 − 1〉. (3.3)

The algebra EndH has a subalgebra End0H of operatorsA which have finite norm; we

will take the Hilbert–Schmidt norm: TrH(AA†)
1
2 . We consider an algebraAζ defined

as a subalgebra of End0H which consists of smooth operators, i.e. thoseA for which the
functionfA : g → End0H, fA(~t) = Ad~t·~xA is smooth. Notice that 1 does not belong
to this algebra. This is a consequence of non-compactness ofR4. One can represent the
elements of the Fock spaceH asL2 functions in two variablesq0 = x1 andq1 = x3

(oscillator wave functions in real polarization). It is actually possible to prove using the
results of [16] that smooth operators are those whose matrix elementsA(q′

0, q
′
1; q0, q1)

belong to the Schwartz spaceS(R2 ×R2). We consider representations of the involutive
algebraAζ by means of operators in Hilbert space (Hilbert modules with involution
in mathematical terminology). A vector bundle over a noncommutative spaceA is a

2 So,πµν is proportional toζ, whileωαβ is proportional to1
ζ

in accordance with the standard quasiclassical

limits.
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projective moduleE , i.e. such a module for which another moduleE⊥ exists with the
propertyE ⊕ E⊥ = A ⊕ . . . ⊕ A. (The last module is called free. In the commutative
case free modules correspond to trivial bundles.) In our description of instantons over
R4 we shall be dealing with free modules only.

The notion of connection in the bundleE has several definitions. The most convenient
for us at the moment will be the following one. Letg ⊂ Aut(A) be a Lie sub-algebra of
the algebra of automorphisms ofA. Then the connection∇ is an operator∇ : g×E → E
which obeys the Leibnitz rule:

∇ξ(f · s) = f · ∇ξs + ξ(f ) · s, f ∈ A, ξ ∈ g, s ∈ E . (3.4)

The curvature of∇ is an operator:

F (∇) : 32g × E → E , F (∇)(ξ, η) = [∇ξ,∇η] − ∇[ξ,η] . (3.5)

3.1. Instantons on noncommutativeR4. Just like in the commutative case one may
define the Yang–Mills action, the instanton equations, etc. See [1] for the definitions and
[9] for recent discussion. We are looking at the solutions of the ASD conditions

F + = 0

on the connection in the moduleE overAζ , where the + sign means the self-dual part
with respect to the natural Hodge star operator acting on the32g whereg ≈ R4 is the
abelian Lie algebra of automorphisms ofAζ .

Now we are going to show that the resolution (2.5) gives rise to the ADHM descrip-
tion of instantons on the noncommutativeR4.

Indeed, the core of the ADHM construction are the equations

τzσz = 0, τzτ
†
z = σ†

zσz, (3.6)

where the operatorsσz, τz are constructed as above. Now suppose that the matrices
B,B†, I†, I, J, J† obey the modified equations (2.5). Then (3.6) are no longer valid
but they will be valid if the coordinate functionszi, z̄i will not commute! In fact, by
imposing the commutation law [z0, z̄0] = [z1, z̄1] = − ζ

2 we fulfill (3.6) as the term with
ζ from commutators ofB’s is now compensated by the commutators ofz’s! We now
follow the steps of the ordinary ADHM construction. We define an operator:

D†
z : (V ⊕ V ⊕W ) ⊗ Aζ → (V ⊕ V ) ⊗ Aζ (3.7)

by the same formula (2.2). We look for the solution to the equation

D†
zψ = 0, ψ : W ⊗ Aζ → (V ⊕ V ⊕W ) ⊗ Aζ (3.8)

which is again normalized:ψ†ψ = IdW⊗Aζ
. These are defined up to unitary gauge

transformationsg acting onψ on the right. Again,Aµ = ψ†∂µψ, where the derivative
is understood as the action ofg = R4 on Aζ by translations. We may now derive the
formula for the curvature of the gauge fieldA. The derivation is very similar to the
commutative case and it yields:

F = ψ†
(
dDz

1

D†
zDz

dD†
z

)
ψ. (3.9)
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The operatorD†
zDz : (V ⊕ V ) ⊗ Aζ → (V ⊕ V ) ⊗ Aζ is again block-diagonal:

D†
zDz =

(
1z 0
0 1z

)
, 1z = τzτ

†
z = σ†

zσz. (3.10)

Hence, just as in the commutative case:

F =ψ†
(
dτ †

z

1
1z

dτz + dσz
1

1z
dσ†

z

)
ψ =

= ψ†

 dz̄0
1

1z
dz0 + dz1

1
1z
dz̄1 −dz̄0

1
1z
dz1 + dz1

1
1z
dz̄0 0

−dz̄1
1

1z
dz0 + dz0

1
1z
dz̄1 dz̄1

1
1z
dz1 + dz0

1
1z
dz̄0 0

0 0 0

ψ

(3.11)

which is anti-self-dual. We should warn the reader that heredzi, dz̄i are just the gen-
erating anti-commuting parameters for representing the matrixF∇(ξ, η) in short print.
They commute withzi, z̄i.

3.2. Commutative interpretation of the noncommutative equations.The construction
above is not yet completely rigorous. We must prove thatψ exists and that1z is invert-
ible. A useful technique is to represent the equations overAζ in terms of the (perhaps
differential) equations on ordinary functions. In this way the multiplication of operators
a · b is mapped to

a ? b(x) = e
1
2πµν ∂2

∂ξµ∂ην a(x + ξ)b(x + η)|ξ=η=0. (3.12)

Now we can study the questions we posed in the beginning of the section.
It follows from (3.10) that the condition thatυ is a zero mode of1z is equivalent to

the conditions:τ †
zυ = 0,σzυ = 0, whereυ is an element of our algebra that is considered

as an algebra of Hilbert–Schmidt operators in Fock space.
Let us remark that an operator equationKL = 0 is equivalent to the condition that

the image of the operatorL is contained in the kernel ofK . In other words if we can
solve the equationKv = 0, wherev is a vector then we can also solve the operator
equationKL = 0, whereL is an unknown operator. This remark allows us to say that
in the conditions above we can considerυ as an element of Fock space; if a non-zero
solution does not exist in this new setting it does not exist in the old setting either. The
elements of the Fock spaceH can be represented either as polynomials inz0, z1 (this
representation we use below) or asL2 functions onR2 with coordinatesq0, q1.

The equations for the vectorυ can be written in holomorphic representation as
follows:

B0υ = z0υ, B
†
0υ = ζ

4
∂

∂z0
υ,

B1υ = z1υ, B
†
1υ = ζ

4
∂

∂z1
υ,

Jυ = 0, I†υ = 0.

(3.13)

The right column suggests that:

υ ∼ e
4z0B0

ζ z0B0υ0(z1),

which is inconsistent with the left column equations. We also say that the left column
equations imply that the creation operators have a finite-dimensional invariant subspace
which is impossible. In the caseN = 1 the operator1z is explicitly positive definite.
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The question of existence ofψ is addressed similarly: writeψ = ψ+ ⊕ ψ− ⊕ ξ, then
(3.8) assumes the form:

(B0 +
ζ

4
∂

∂z̄0
− z0)ψ+ − (B1 +

ζ

4
∂

∂z̄1
− z1)ψ− + Iξ = 0,

(B†
1 − ζ

4
∂

∂z1
− z̄1)ψ+ + (B†

0 − ζ

4
∂

∂z0
− z̄0)ψ− + J†ξ = 0.

(3.14)

Hereψ is a function which corresponds to an operator from our algebra. Equation (3.14)
can be rewritten in the form:

DA9 = −4 (3.15)

for

9 =

(
ψ+
ψ−

)
, 4 =

(−J†ξ
Iξ

)
andDA being the Dirac operator in the gauge fieldAµdx

µ, where(
Aµ − 1

2ωµνx
ν
)
dxµ =

4
ζ

(
−B†

1dz1 −B†
0dz0 +B0dz̄0 +B1dz̄1

)
.

The gauge fieldA has constant curvature.
Now let us write down Eq. (3.14) for vectors in the Fock space, this time using the

L2 representation:v = v+(q) ⊕ v−(q) ⊕ w(q),

(B0 +
ζ

4
∂

∂q0
− q0)v+ − (B1 − ζ

4
∂

∂q1
+ q1)v− + Iw = 0,

(B†
1 − ζ

4
∂

∂q1
− q1)v+ + (B†

0 − ζ

4
∂

∂q0
− q0)v− + J†w = 0.

(3.16)

It has again the form (3.15) withDA being a Dirac-like operator in two dimensions.
Let us assume that the operatorDA has no zero modes (we hope that this assumption
can be justified in the framework of perturbation theory with respect toζ). Then we can
write a solution to (3.15) in terms of the Green’s function of the operatorDA. The space
of solutions to (3.16) is identified with the space ofw’s, i.e. the space ofW -valuedL2

functions onR2. Now, given the solutionv+(w) ⊕ v−(w) ⊕ w to (3.16) we construct a
solution to (3.15) as follows:ψ is supposed to mapW⊗H⊗H → (V ⊕V ⊕W )⊗H⊗H
(where we used the fact that the algebra of Hilbert–Schmidt operators can be identified
with the Hilbert tensor productH ⊗ H and thatAζ ⊂ H ⊗ H). Now,

ψ̃ = w ⊗ w′ 7→ (
v+(w) ⊕ v−(w) ⊕ w

) ⊗ w′g

does the job for any non-degenerateg ∈ GLk(A). What remains is to normalize:ψ =(
ψ̃†ψ̃

)− 1
2 ψ̃. This normalizationψ†ψ = 1 reduces the freedom of the choice of solutions

to (3.16) to the unitary gauge transformations inU (k).
One can also rewrite the ASD equations for the gauge field on the noncommutative

R4 in terms of commutative functions which are Wick symbols of the gauge fields. Let
Aµ(x) be four functions onR4 and consider the equations:

F +
µν = 0 (3.17)

with
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F i
µν,j = ∂µA

i
ν,j − ∂νA

i
µ,j +Ai

µ,k ? A
k
ν,j −Ai

ν,k ? A
k
µ,j . (3.18)

Thus, the noncommutative ASD equations can be thought of as the deformation of
the ordinary ASD equations. The solutions to (3.17) are automatically the solutions to
the deformed Yang–Mills equations:

∂µFµν +Aµ ? Fµν = 0. (3.19)

3.3. The completeness of the ADHM construction in the noncommutative case.Just
like in the case of ordinaryR4 one faces the question – whether the full set of solutions
of ASD equations on noncommutativeR4 is enumerated by the solutions to the matrix
equation (3.6). It is natural to try to imitate the arguments of [17] and express the matrices
Bα, I, J in terms of solutions to the massless Dirac equations in the instanton background
field. We simply sketch the relevant steps of the construction without giving any proofs.

The setup is similar to the commutative case. Given a projective moduleE overAζ

one studies the associated modulesS± = E⊗Aζ
S±,S± = C2⊗Aζ . Given a connection

∇ in the moduleE we form the Dirac-Weyl operators

D† : S+ → S−, D : S− → S+ (3.20)

by the standard formulae:D† = ∇α ⊗ σα, D = ∇α ⊗ σ̄α, whereσα : S+ → S−,
σ̄µ : S− → S+ are essentially the ordinary Pauli matrices andσ4 = σ̄4 = 1. One proves
the identities:

DD† = 1∇ ⊗ 1 + F−
µν ⊗ σµν , D†D = 1∇ ⊗ 1 + F +

µν ⊗ σ̄µν . (3.21)

Here1∇ is the covariant LaplacianE → E. Since there are no normalizable (see below)
solutions to the equations1∇φ = 0 then for the ASD∇ one concludes that there are no
solutions to the equationDψ = 0. On the other hand, the index arguments predict, just
like in the commutative case, the existence ofN normalizable (in the sense, described
in the next paragraph) zero modes ofD†.

Let ψi ∈ E ⊗ S+ be a solution toD†ψi = 0, i = 1, . . . , N . Then one may define a
projection (just like in the commutative case) ofxαψ

i onto the space of zero modes of
D†: (

xαδ
i
j − Bi

α,j

)
ψj = D(. . . ), (3.22)

whereBα is some matrix (withC-valued entries). We callB0 = B1 +iB2, B1 = B3 +iB4,
etc.

The matricesI, J are recovered from the large~x2 asymptotics ofψi. In order to
explain what it means in the noncommutative setting we represent the coordinates on
the noncommutativeR4 as creation-annihilation operators acting in the auxiliary Fock
spaceH. Then the operatorψi has the corresponding Wick symbolψ̃i which is simply
a function onR4 whose large~x2 limit is well-defined and is independent on the ordering
prescription since for large~x2 >> ζ one may neglect the noncommutativity of the
coordinates.

4. Examples

4.1. Abelian instantons.It is very interesting to study the casek = 1. In the com-
mutative case there are no solutions to the abelian instanton equations except for the
trivial ones. We shall see that for everyN there are non-trivial abelian instantons in the
noncommutative case.
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We need to solve the equationsµr = ζId, µc = 0. It can be shown that forζ > 0 the
solution must haveJ = 0 [0]. Moreover, on a dense open set inMζ the matricesB0, B1

can be diagonalized by a complex gauge transformation3:

Bα → diag
(
β1

α, . . . , β
N
α

)
. (4.1)

The eigenvaluesβi
α parameterize a set ofN points onR4. The actual moduli space is

the resolution of singularities of the symmetric product. Now suppose (B0, B1, I) is a
solution to the ADHM equations. If we write the element ofV ⊕V ⊕W asψ = ψ0⊕ψ1⊕ξ
then the equationD†ψ = 0 is solved as:

ψα = −(Bα − zα)†δ−1Iξ,

δ =
1∑

α=0

(Bα − zα)(B†
α − z̄α).

(4.2)

The operatorξ is determined from the equationψ†ψ = 1:

ξ =
(
1 + I†δ−1I

)− 1
2 . (4.3)

The connectionA = ψ†dψ has Yang’s form:

A = ξ−1∂̄ξ − ∂ξξ−1, (4.4)

where∂ = dzα
∂

∂zα
, ∂̄ = dz̄ᾱ

∂̄
∂z̄ᾱ

. Explicitly:

A = ξ−1dξ + ξ−1αξ,

where the “gauge transformed” connectionα is equal to:

α = ξ2∂ξ−2 =

1
1 + I†δ−1I

I†δ−1(B†
α − z̄α)dzαδ

−1I.
(4.5)

ForN = 1:ξ =
(

d−ζ/2
d+ζ/2

) 1
2 ,d = z0z̄0+z̄1z1, and the gauge fieldα is explictly non-singular

if the correct ordering is used:

α =
1

d(d + ζ/2)
(z̄0dz0 + z̄1dz1) . (4.6)

One can also compute the curvature:

FA =
ζ

(d− ζ/2)d(d + ζ/2)

(
f3 (dz0dz̄0 − dz1dz̄1) + f+dz̄0dz1 + f−dz̄1dz0

)
,

f3 = z0z̄0 − z1z̄1, f+ = 2z0z̄1, f− = 2z1z̄0.

(4.7)

The factor ζ
(d−ζ/2)d(d+ζ/2) has a singularity at the state|0, 0〉 but it is projected out since

f3,± always have ¯z0 or z̄1 on the right. The action density is given by

3 We thank D. Bernard for pointing out an error in the earlier version of this paper.
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Ŝ = − 1
8π2

FAFA =
ζ2

4π2

1
d2(d− ζ/2)(d + ζ/2)

5, (4.8)

where5 = 1− |0, 0〉〈0, 0|. We may define the total action as

(ζπ)2TrHŜ = 4
∞∑

N=1

1
N (N + 1)(N + 2)

= 1.

4.2. ’t Hooft solutions. It is also relatively easy to describe the noncommutative ana-
logues of ’t Hooft solutions fork = 2:

Aµ = i6µν8−1∂ν8, (4.9)

where6µν is self-dual inµν and takes values in traceless two by two Hermitian matrices.
In the commutative case the ASD conditions boil down to the Laplace equation on8 [18].
In the noncommutative case the potential trouble comes from the term in the curvature
Fµν :

{6µα,6νβ}[Jα, Jβ ]

with Jα = 8−1∂α8. It is easy to show that the problematic piece is equal to

[Jµ, Jν ] − 1
2εµναβ [Jα, Jβ ]

which is explicitly anti-self-dual. Hence we have shown that the ansatz (4.9) works in
the noncommutative case if8 obeys the Laplace equation which is now to be solved in
the noncommutative setting. A solution looks exactly like the commutative ansatz:

8 = 1 +
N∑
i=1

ρ2
i

|~x− ~βi|2
, (4.10)

where now the components of~x = (xµ) represent the noncommuting coordinates.
One might wonder what are the properties of8 viewed as an operator in a Fock

space, wherexα’s are realized as the creation and annihilation operators. By acting on
a vacuum state|0, 0〉 in the occupation number representation8 creates a sum of the
coherent states. We may represent8 as follows:

8 = 1 +
N∑
i=1

ρ2
iυi,

whereυi = e−~x∨·~βiϒe~x∨·~βi , ϒ = 1
~x2 . Let us now prove that eachυi obeys the Laplace

equation. Since the automorphisms ing = R4 are internal and they commute it is
sufficient to prove thatϒ obeys the Laplace equation. For the latter it is enough to check
that

~x2ϒ + ϒ~x2 = 2~xϒ~x

which is true forϒ = 1
~x2 . The operatorϒ is diagonal in the occupation number repre-

sentation and its eigenvalue on a state|n0, n1〉 is equal to 1
ζ
2 (n0+n1+1)

.
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5. Relation to Matrix Description of Six Dimensional (2, 0) Theory

In the recent papers [12], [19] the proposal for Matrix description of six dimensional
(2, 0) superconformal theory ofk coincident fivebranes has been made. The theory
which arises on the worldvolume ofk coincident fivebranes has the property that when
it is compactified on a circle it becomesU (k) gauge theory in 4 + 1 dimension which
the coupling which goes to zero as the radius goes to zero. So, by compactifying the
theory on a light-like circle one gets the gauge theory with zero coupling. Of course, in a
given instanton sector the only surviving gauge configurations are instantons. The theory
becomes a quantum mechanics on the moduli space of instantons. But, the latter space
has singularities coming from the point-like instantons and at these singularities a second
branch of the theory, corresponding to the emission or absorption ofD0-branes develops.
The theory becomes interacting with the bulk degrees of freedom which makes it harder
to study. The proposal of [12] was to deform the instanton moduli space by turning on
aB field along four dimensions which serves as a FI termζ in (2.5). The interpretation
of our paper is that turning on theB field effectively makesR4 noncommutative and the
instantons live on it.

Now, the problem of instantons shrinking to zero size is cured by quantum fluc-
tuations! Indeed, the position of the point-like instanton is smeared over a region of
size∼ ζ which makes it no longer point-like. So the Higgs branch becomes a smooth
hyperkahler manifold and the theory becomes six dimensional (at least decoupled from
the bulk degrees of freedom).

6. Future Directions

In this section we briefly sketch a few directions of future research.

6.1. Nahm’s transform.Let us define ann-dimensional noncommutative torusAθ as an
associative involutive algebra with unit generated by the unitary generatorsU1, ..., Un

obeying
UµUν = eiθµνUνUµ.

Hereθµν is an antisymmetric tensor; we can also consider it as a 2-form onRn. The in-
finitesimal automorphismsδαUβ = δαβUβ generate the abelian Lie algebraLθ acting on
Aθ. As before we useLθ to define the notion of connection in aAθ-module. We always
consider modules equipped with Hermitian inner product and Hermitian connections.
We will construct a generalization of Nahm’s transform [20] relating connections onAθ-
modules to connections onAθ̂-modules [21]. HereAθ andAθ̂ are two four-dimensional
noncommutative tori. To define a noncommutative generalization of Nahm’s transform
we need a (Aθ,Aθ̂)-moduleP with Aθ -connection∇α andAθ̂-connection∇̂µ. The
fact thatP is a (Aθ,Aθ̂)-module means thatP is a left Aθ-module and a rightAθ̂-
module; we assume that (ax)b = a(xb) for a ∈ Aθ, b ∈ Aθ̂, x ∈ P. In other words,
P can be considered as aAθ⊕θ̂-module, whereAθ⊕θ̂ is an eight-dimensional noncom-

mutative torus corresponding to the 2-formθ ⊕ θ̂ onR8. Assume that the commutators
[∇α,∇β ], [∇̂µ, ∇̂ν ], [∇α, ∇̂µ] arec-numbers:

[∇α,∇β ] = ωαβ , [∇̂µ, ∇̂ν ] = ω̂µν , [∇α, ∇̂µ] = σαµ. (6.1)

The condition (6.1) implies that the curvature of connection∇α ⊕ ∇̂µ on Aθ⊕θ̂ is
constant. One more assumption is that∇α commutes with multiplication by elements
of Aθ̂ and∇̂α commutes with multiplication by elements ofAθ. Of course, the module
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P and the connections∇α, ∇̂µ obeying the above requirements exist only under certain
conditions onθ, θ̂. For any rightAθ-moduleR with connection∇R

α we consider Dirac
operatorD = 0α(∇R

α + ∇α) acting in the tensor product

(R⊗Aθ
P) ⊗ S.

(To define0-matrices we introduce an inner product inLθ and inLθ̂.) This operator
commutes with multiplication by the elements ofAθ̂, hence the space of zero modes
of D can be regarded asAθ̂-module; we denote it aŝR. The connection̂∇µ induces a
connection∇̂′

µ on
(R⊗Aθ

P) ⊗ S.

We define a connection∇R̂
µ on R̂ asP ∇̂′

µ, whereP is the orthogonal projection:

(R⊗Aθ
P) ⊗ S → R̂.

The above construction can be regarded as a generalized Nahm’s transform. To
prove that its properties are similar to the properties of the standard Nahm’s transform
we should impose additional conditions on moduleP and connections∇α, ∇̂µ. It is
sufficient to assume thatσαµ determines a non-degenerate pairing betweenLθ andLθ̂.
Then we can use this pairing to define an inner product inLθ̂. A connection∇R

α is
an analogue of ASD connection if its curvatureFαβ obeysF +

αβ + ωαβ · 1 = 0. (This
condition is equivalent to antiselfduality of the connection∇R

α + ∇α.) Then one can
prove that the curvaturêFµν satisfiesF̂ +

µν − ω̂µν · 1 = 0.

The formsω, ω̂ obey certain quantization conditions which depend onθ, θ̂. We plan
to return to this issue elsewhere.

Thus, Nahm’s transform maps the modified instantons on one noncommutative torus
to the modified instantons on the other noncommutative torus. It can be thought of as
an analogue of Morita equivalence. The last notion is usually used in the context of
equivalence of algebras and the categories of left- and/or right- modules over them.4 In
the context of gauge theories we study the modules with connections. Nahm’s construc-
tion gives correspondence between such modules; modules with ASD connections are
mapped to each other.

The instantons on the noncommutative torus appear in the problem ofD0-branes
bound toD4-branes wrapping the four-torusA = T 4 with theB-field turned on.T -
duality maps the torusA to its dual and the natural conjecture [22] is that on the level
of low-energy fields it maps the instantons onA to those onA∨. There exist stronger
conjectures about the moduli space of instantons on the four-torus which fulfill the base
of the constructions of six dimensional interacting string theories [23] and also provide
a heuristic test ofU -dualities [24]. One assumes thatMN,U (k) = SymkNT 4 and studies
the two dimensional sigma model with targetMN,U (k). Since the symmetric product
is an orbifold of the hyperkahler space one may perturb the theory by the marginal
operators responsible for blowing up the singularities of the orbifold. As was argued in
[25] such a perturbation breaks the natural symmetries of the problem (and cannot be

4 Two algebrasA, B are called Morita equivalent if there exist the (A, B) moduleE and (B, A) module
F s.t.E ⊗B F ≈ A, F ⊗A E ≈ B. For example, every algebraA is Morita equivalent to the algebra
MatN (A) of matrices with coefficients inA. Given two Morita equivalent algebras one may construct for any
A-moduleE aB-moduleF and vice versa:F = F ⊗A E .

The fact that the holomorphic counterpart of Nahm’s transform – the Fourier–Mukai transform – can be
understood in the framework of generalized Morita equivalence has been pointed out to us by M. Kontsevich.
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interpreted as responsible for interactions of little strings). We have argued that given a
noncommutative torus (or noncommutativeR4), where the relevantSU (2) symmetry is
already broken by the noncommutative deformation, the moduli space of instantons is
already smooth, and the decoupling arguments can be applied.

6.2. Instantons on noncommutative ALE spaces.The asymptotically locally euclidean
(ALE) manifoldsX0 are the hyperkahler resolutions of singularities of the orbifold
C2/0 for 0 ⊂ SU (2) being a discrete subgroup. The subgroups correspond toADE
Lie groupsG via McKay’s correspondence [26]. The spaceX0 depends onr = rkG
parameters~ζi ∈ R3, i = 0, . . . , r, ∑

i

~ζi = 0.

The spacesX0 as well as the moduli spaces ofU (N ) instantons onX0 can be constructed
via hyperk̈ahler reductions of vector spaces [27][28]. These constructions were inter-
preted in [29] as originating from the gauge theory onv Dp-branes, put at the orbifold
point ofC2/0 inside thew D(p + 4)-branes. It has been noticed in [29] that in principle
the condition

∑
i
~ζi = 0 can be relaxed by turning on a self-dual part ofBµν alongC2/0.

As before, we interpret this as the process of going to the noncommutative ALE space
with instantons on it. The ADHM construction of [28] generalizes straightforwardly to
this case provided the original vector spaceV = Hom(C0,C0 ⊗ C2)0 whose reduction
yields the ALE space is replaced by its noncommutative deformation:

V q = Hom(C0,C0 ⊗ Aζ)0.

6.3. Instantons and holomorphic bundles on noncommutative surfaces.It is well-known
that solutions to the instanton equations on the complex surface determine the holo-
morphic structure in the bundle where the gauge field is defined. In fact, Donaldson-
Uhlenbeck-Yau theorem establishes an equivalence between the moduli space of stable
in a certain sense holomorphic bundles over a surfaceS and solutions to the instanton
equations onS [30][31]. The holomorphic bundleE defines a sheaf of its sections, and
can be replaced by this sheaf for many purposes. In fact, not every sheafF comes from
a bundle - for this it must be what is called a locally-free sheaf (the term free means that
the sections ofF form a free module over the sheafO of holomorphic functions onS).
By relaxing the condition of being locally free but insisting on being torsion free, one
gets a generalization of the notion of a holomorphic bundle. However, it was not clear
how to obtain the corresponding generalization of the notion of instanton. Of course, the
consideration of torsion free sheaves allows us to compactify themoduli spaceof instan-
tons [32], [15]. But it is by no means clear whether the compactification can be achieved
within a gauge theory. It has been conjectured in [33] that such a compactification occurs
in string theory.

We claim thatthere exists a generalization of the instanton fieldfor the torsion free
sheaves. This is simply the gauge field on thenoncommutative surfaceS.

The importance of the spacesMζ has been appreciated in the context of string
duality and field theory a while ago (see [34], [35], [24], [12]). We hope that the proposed
interpretation will help to find further applications as well as justify various assertions
needed for establishing string/field dualities.

In our presentation the noncommutativity ofR4 entered only through the construc-
tion of the connection in a given bundle. The holomorphic bundle underlying the in-
stanton could be described in purely commutative terms. This relies on the fact that
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with our choice of the Poisson structure the subalgebraO of holomorphic functions
on C2 is commutative. It is interesting to study the picture in other complex structures.
In fact, a slightly redundant but interesting deformation of ADHM equations is the
three-parametric one:

µr = ζrId, µc = ζcId, (6.2)

whereζr ∈ R, ζc ∈ C. It is customary to combine (ζr, ζc, ζ̄c) into a three vector~ζ ∈ R3.
The specifics ofR4 is that one can always get rid ofζc by appropriate rotation in the

SU (2)R global group. Let us not do it but rather look at the complex equationµc = ζcId:

τzσz = 0, iff [ z0, z1] = − 1
2ζc (6.3)

Thus theζc-deformation allows one to construct a coherent sheaf over the noncommu-
tativeC2 as the cohomology of the complex of sheaves:

σz τz
0 → V ⊗ Oζc → (

V ⊗ C2 ⊕W
) ⊗ Oζc → V ⊗ Oζc → 0,

(6.4)

whereOζc
is the associative algebra generated byz0, z1 obeying the relation [z0, z1] =

− 1
2ζc andτz, σz are given by the same formulae (2.2).
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