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Synopsis

A refined version of the Doi and Edwards tube model for entangled polymer liquids is presented.
The model is intended to cover linear chains in the full range of deformation rates from linear to
strongly nonlinear flows. The effects of reptation, chain stretch, and convective constraint release
are derived from a microscopic stochastic partial differential equation that describes the dynamics
of the chain contour down to the length scale of the tube diameter. Contour length fluctuations are
also included in an approximate manner. Predictions of mechanical stresses as well as the single
chain structure factor under flow are shown. A comparison with experimental data is made in which
all model parameters are fixed at universal values or are obtained from linear oscillatory shear
measurements. With no parameter modification the model produces good agreement over a wide
range of rheological data for entangled polymer solutions, including both nonlinear shear and
extension. ©1993 The Society of RheologyDOI: 10.1122/1.1595099

I. INTRODUCTION

The tube theory of Doi and Edward$986 is remarkably successful in describing a
wide range of qualitative features of the rheology of entangled polymer fluids. A recent
detailed formulation of the rheological properties of linear polymers, including numerous
refinements has produced excellent agreement between theory and experiment in the
linear regimg Likhtman and McLeisi2002]. There have also been attempts to unify the
model parameters used for linear polymers with those for chemically identical polymers
with different molecular topologiefPattamapronet al. (2000]. Despite the ongoing
progress a definitive theory for nonlinear flows remains elusive. In particular, it has
proven difficult to find consistency in the model parameters used to fit linear and non-
linear data when the assumptions of the Doi—Edwards approach suggest that this ought to
be possible. These problems are notoriously manifest in a qualitative failing of the Doi—
Edwards(DE) theory in steady state of shear. When steady-state shear ﬁ@sis
plotted as a function of shear rate, the model predicts a shear stress maximum when
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the shear rate exceeds the inverse reptation tijnes= (1/7y). However, experimental

data in this regime indicate that shear stress is a monotonically increasing function of
shear rate. Worse still, a consequence of the shear stress maximum is that the DE model
predicts a striking shear banding instability occurring in moderately nonlinear flows.
Such a feature is not observed in experiments.

Two possible mechanisms to rectify this problem are chain stretch and constraint
release. Both processes were discussed by Doi and Edwards but omitted from their
constitutive model. Chain stretch refers to configurations in which the length of occupied
tube exceeds its equilibrium value. In the DE model chain orientation relaxes on the
time-scale of the reptation time, while chain retraction, which is unhindered by tube
constraints, occurs at a rate determined by the Rouse time. In entangled systems these
two times scales are reasonably well separatgdrr = 3Z whereZ is the number of
chain entanglements. Consequently, it is, in principle, possible to model moderately non-
linear flows, in whichyry = 1 andyrr < 1, by assuming retraction occurs instanta-
neously. However, the effect of chain stretch becomes significant when= 1, a
regime which is accessible in well controlled experiments on entangled polymers, par-
ticularly in shear. A refinement to the DE model known as the Doi—Edwards—Marrucci—
Grizzuti (DEMG) theory[Marrucci and Grizzut{1988; Pearsoret al. (1991); Mead and
Leal (1995] adds stretch to the basic DE model. The inclusion of stretch improves
transient predictions in startup of shear in several ways. The DEMG model predicts
transient overshoots in shear stress and normal stress that grow in size with shear rate. In
addition, the strain at peak stress of these overshoots grows with shear rate. All of these
features are observed experimentally. The DEMG theory is less successful in steady state
of shear. In many circumstances the theory still predicts a shear stress maximum. In fact,
any approach that merely adds chain stretch, relaxing via Rouse retraction, to the DE
theory is doomed to suffer a similar fate. The reasons for this are twofold. In rapid shear
flows the DE orientation tensor predicts strong steady-state chain alignment along the
shear direction. As a consequence, the highly aligned chains present a very slim profile to
the velocity gradient and so predicted steady-state stretch values are modest even at high
stretch Weissenberg numberg/{ = y7g). A more fundamental problem is that the
separation of orientation timey, and stretch timerg, is fixed at Z. Hence, ifZ is set
to a large enough value the onset of chain stretch is delayed to shear rates well in excess
of 1/7q and the bare DE behavior, including the stress maximum, is recovered at shear
rates around %} . The degree of entanglement necessary to see this effect is within the
range of existing experiments.

A second possible solution is constraint release. This is an additional relaxation
mechanism that recognises that whenever a chain end passes through a tube segment the
constraint that was imposed by this chain on a neighboring chain is lost. Hence, the
neighboring chain is free to explore a wider region via lateral moteee Fig. 1
Constraint release is a self consistent closure of the mean field approximation of the tube
model. In the linear regime constraint release events are caused by reptation of the
surrounding chains. This is known as reptative or thermal constraint release. Since repta-
tive constraint release occurs on the time-scale of the reptation time of the whole chain
and one event only relaxes a small part of the chain Doi and Edwards argued that has a
negligible effect on relaxation. However, Likhtman and McLe{@002 demonstrated
that constraint release has significant effects near the terminal time. In addition, constraint
release becomes increasingly important in the nonlinear regime. In a crucial insight,
Marrucci (1996 demonstrated that in nonlinear flows, chain retraction also contributes to
the constraint release rate. The effect of chain retraction greatly increases the influence of
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FIG. 1. Schematic representation of a constraint release event.

constraint release. The release rate grows with the convection rate, becoming of order of
the shear rate at high rates. This process is known as convective constraint (EleRse

since tube constraints are swept away by the convection. The mechanism becomes sig-
nificant asy approaches 1, precisely the rate as which the Doi Edwards model begins

to fail.

There have been various attempts to incorporate CCR into a constitutive model both
without chain stretchlanniruberto and Marrucc{1996; lanniruberto and Marrucci
(2000] and more recently with stretdtanniruberto and Marrucgi2001); Mead et al.

(1998 ]. However, all of these theories model the effect of CCR by directly modifying the
overall chain relaxation time. Effectively, the relaxation time becomes dependent on the
molecular response to the deformation. While the arguments for this modification are
molecularly motivated, the connection between constraint release and the global relax-
ation time is, in the end, heuristic. Additionally, the assumption that CCR acts in a global
manner destroys any molecular detail on length scales of less than the overall chain
length. Thus, only rudimentary predictions for quantities that are sensitive to finer mo-
lecular structure such as the single chain structure factor can be made. New experimental
techniques, in addition to mechanical stress measurements, are proving to be useful tests
of molecular based theorig¢blcLeish et al. (1999; McLeish (2002; Wischnewskiet al.

(2002; Mdiller et al. (1993; Watanabeet al. (2002]. A consideration of the local influ-

ence of constraint release is essential in this context. The idea of the tube itself experi-
encing constraint release being modeled as a Rouse object was postulated by de Gennes
(1979. It utilizes the fact that the Rouse model generically describes the global behavior
of the local jump model for a connected object. The approach allows a description of
constraint release down to the length-scale of the tube diameter. \ébay (1991
formulated these ideas to model the linear rheology of bimodal blends. With a careful
choice of blend composition Rouse tube motion can be directly observed in experimental
data in the linear regimgRubinstein and Colby1988]. Recently Milneret al. (20021

and Likhtmanet al. (2000 derived a nonlinear constitutive model by treating CCR as
local Rouse-like tube motion. Their model is intended to cover only nonstretching flows
in order to consider the CCR mechanism in isolation. The approach successfully elimi-
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nates the shear stress maximum without relying on chain stretch. In addition, since the
model is able to make detailed predictions for the single chain structure factor, it offers an
explanation for the relatively low anisotropy observed in sheared migligler et al.

(1993] when compared to the predictions of the DE theory. However, in practice it is
very hard to remove the effects of chain stretch as in the best characterized experiments,
the degree of entanglement is never extreme. The inclusion of chain stretch into a Rouse-
tube theory of entangled dynamics is therefore urgent. In this paper we propose a gener-
alization of the Milneret al. (2002 theory in which the chain retraction is not instanta-
neous. We review the Milner McLeish and Likhtman model in Sec. Il and generalize the
model to cover stretching flows in Sec. Ill. An approximate treatment of contour length
fluctuations(CLF) is added in Sec. IV. The inclusion of contour length fluctuations is not

a luxury—it enables a proper quantitative comparison with experimental data and a
correct limit in linear response. A numerical method of solution is outlined in Sec. V and
we present the model predictions in Sec. VI, focusing on the difficulties discussed above.
Finally, we compare the theory with published experimental data on nearly monodisperse
entangled solutions of linear polymers under shear and extension in Sec. VII.

II. MILNER, MCLEISH, AND LIKHTMAN MODEL

In this section we present a brief review of the model of Milner, McLeish, and Likht-
man (2001 (MML ) for convective constraint release. The model describes the dynamics
of a monodisperse melt of entangled, linear polymer molecules under a strong deforma-
tion. The chain is confined to a tube of diamedettue to constraints formed by surround-
ing chains and the aim of the model is to derive dynamic equations for the entire con-
figuration of a single chain down to the length-scale of the tube diameter. The
configuration is described by the space cuR(s,t), which denotes the position vector
of tube segmend at timet. The tube comprises & = M/Mg segments and spans the
chain length, running from 0 to Z. From a knowledge of the chain shape various macro-
scopic quantities can be deduced.

The model accounts for a range of sources of motion and each process has a corre-
sponding term in the stochastic partial differential equation that models the dynamics of
the entire chain. The simplest of these is convection due to the applied deformation. The
deformation is described by the velocity gradient tensor Vv and all points on the
chain move affinely with the flow. Relaxation is then relative to this affine motion. Three
relaxation mechanisms act on each tube segment. The first of these is reptation which is
curvilinear diffusion of the entire chain along its own contour. This processes relaxes
stress since the chain ends escaping the tube are free to choose any new orientation. The
expression for reptation is taken directly from the original DE model. The second process
is CCR, which is assumed to act at an equal rate at all points along the chain. It is
modeled by Rouse tube hops of lengttand frequencw. Finally, retraction acts along
the tube contour, holding the total length fixed at its equilibrium value. The retraction rate
is proportional to the distance of the segment from the chain center and the constant of
proportionality,\, is chosen at each instant to maintain the chain at its equilibrium length.
Figure 2 shows these processes schematically. Collecting all terms together into a sto-
chastic difference equation for a single chain gives

3v °R
R(s,t+At) = R(S+A§(t),t)+At K'R‘f‘?F"‘g(S,t)"’)\

Z
—-s
2

JR

g) - (@

The terms in Eq(1) represent reptation, convection, CCR and retraction, respectively.
Equation(1) contains two noise term& &(t) describes the displacement of the chain due
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FIG. 2. Three relaxation mechanism available to an unbranched, entangled polymer(ehaaptation,(b)
constraint release, ar(d) retraction.

to Brownian diffusion along the tubé&eptation and g(s,t) describes motion due to
random constraint release events. Both terms are mean zero Gaussian and have the
following second moments:

2
(AEDA&L)) = 327> at—t"),
e

i 2 ’ ’ (2)
(9a(shgg(s' ') = vads—s")At—t')6,p

The angular brackets denote averages over an ensemble of chains and thedratides

B denote Cartesian components. The local time scale for the model is sgtviyich is

the Rouse time of a single entanglement segment. This leaves the constraint release rate,

v, as the only remaining unknown quantity. It can be determined self-consistently from

the retraction rate), via the equation

4
C, A+ m) 3

Equation(3) counts the constraint release from retraction and the preaveraged contribu-
tion from reptation, respectively, with the parametgrdetermining the number of re-
traction events necessary to result in one tube hop of a tube diameter. Blilake(2001)
argue that entanglements result from “the mutual, delocalized topological interaction of
many structures” and so several retraction events are required to produce a tube hop of
lengtha. Consequently, a value @f, < 1 is expected.

The stress and single chain structure factor both follow from a knowledge of the chain
configuration,R(s,t). The stress tensor, is given by

3k T R R
¢ 3kg foz<<9 (S) 3 'B(S)>ds

g = —
BTN &l s s

4

Here, c/N is the polymer chain concentration. The single chain structure factor is ob-
tained from

_(z(z qaq,g IR, (s1) R()
Sq) = fo fo exr{ 2 J'j< P ds,ds, |dsds. (5)

Equations 4 and 5 show that a knowledge of the function

IR,(S) dR4(S")
faﬁ(s's’) = < 7 ;35/ >
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is sufficient to evaluate both the stress and the single chain structure factor. By taking
suitable averages of E¢l) a deterministic partial differential equatiéRDE) for f(s,s’)

can be obtained. In deriving an expression figp(s,s’) the following closure approxi-
mation is necessary.

(Ru(SHR4(S" HN(D) ~ MO(R(SHR4(S'1)). (6)
Milner et al. (2001) verified this approximation by direct stochastic simulation of equa-
tion 1 and found it to be valid whenever CCR is the dominant relaxation mechanism,
namely whenever 1} < y < 1/7g. The resulting PDE fof(s,s’) is then solved by
converting to a Fourier sine series.

Ill. TUBE MODEL FOR LINEAR POLYMERS WITH CCR AND STRETCH

Steady-state shear stress measurements on nearly monodisperse entangled polymer
liquids typically show three regimes of behavior with increasing sheaf Berceaet al.
(1993; Menezes and Graessleyl982; Menezes (1980]. At low shear rates
(ymqg < 1) the stress increases linearly with shear rate, at intermediate rates
(1/rq < ¥ < 1ll7R) there is a region of nearly constant shear stress and at high rates
(yTr > 1) the stress shows a steeper gradient. Thus, the overall steady flow curve is a
monotonically increasing function of shear rate. The MML theory accounts for the first
two of these regimes. Reptation is the dominant relaxation in the linear regime and CCR
controls the plateau region. The third regime has been widely attributed to the influence
of chain stretch. We aim to generalize the MML theory to cover stretching flows, thus
extending its region of validity in the steady flow curve and testing our understanding of
transient shear flows. The approach of our generalisation is to introduce any new physics
necessary to model stretching flows directly into B, produce a deterministic PDE for
the tube tangent correlation function by taking suitable averages and to solve this equa-
tion using an appropriate numerical scheme.

A. Rouse retraction term

To model the effect of finite rate retraction we replace the instantaneous retraction
term in equation 1 with a term that arises from Rouse motion of the chain inside its tube.
The force-extension law for the chain is the usual linear spring relationship. Hence a
microscopic force balance for this term at tube segmengives Nglg (JR/dt)

= (3kgT/ Nebz) R”(s) where the primes denote derivatives with resped, téy is the
monomer friction constant artal is the Kuhn step length. Retraction acts only along the
tube direction so we project the retraction force along the unit tangent vector to the tube
R’(s)/|R’(s)|. By introducingze = (§0b2N§/3w2kBT) the new retraction terms reads

AR(S) 1 (R'(s)-R'(s)) _,
at -t T |R’(5)|2
e
_ (9 !’ !’ !
=t o —SIIR'(5)-R"(9]|R'(5). @)

This term necessitates a stricter application of the boundary conditions at the chain ends
than in the approach of Milnest al. (2001). The end tangent vectors should be isotropic
vectors of lengtha at all times so ensuring a totally relaxed condition for both orientation
and stretch at all times. The length condition fixes the tube equilibrium length to its
correct value and the isotropic condition ensures that as a chain end escapes the tube it
takes on a random orientation. These boundary conditions are not straightforward to
express in terms oR and are more readily expressed for the tangent vector correlation



THEORY OF LINEAR, ENTANGLED POLYMER CHAINS 1177

b s ﬁ or

Deformation
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length fixed

FIG. 3. Two possibilities for the effect of a step deformation on the entanglement net@rklumber of
entanglements points is fixed, and so the tube persistence length gopwsibe persistence length remains
fixed, soZ grows in proportion with the primitive path length.

function, f(s,s’) = (R’(s)R’(s’)), and so further discussion of the boundary condi-
tions is delayed until a full formulation in terms &fs,s’) is introduced.

B. Tube diameter and persistence length under deformation

The retraction term in Eq7) allows the accumulation of chain stretch in a sufficiently
rapid deformation. Consequently, further modifications of equation 1 are needed to model
the influence of chain stretch on the other relaxation processes. Before these modifica-
tions can be made the question summarized in Fig. 3 must be answered. Under the
influence of a strong deformation how does the entanglement network deform with the
test chain? We note that it is possible that both the tube diameter and tube persistence
length change under deformation. If we assume a constant tube diameter the two simplest
possibilities are that the number of entanglements experienced by the chain remains at its
equilibrium value and, effectively, the tube persistence length gfe\sr the number of
entanglements increases in proportion with the primitive path length of the @hairhis
corresponds to a tube persistence length which is fixed under deformation. The arguments
for scenario(b), the constant tube persistence length, appear to be stronger for a variety
of reasons. Our theory is explicitly applicable only to volume conserving deformations,
hence, the monomer density surrounding the test chain is not strain dependent. While the
theory covers rapid deformations these deformations are still slow with respect to the
local relaxation time on the scale of the tube diametgr,Since entanglements should be
considered as mutual, delocalized topological interactions acting on a length scale of the
tube diameter, the melt structure on this scale is not strongly perturbed from that of an
equilibrium melt. We will assume scenaiio) from now on, but will be mindful that this
choice directly affects how the local chain stretch influences the other relaxation mecha-
nisms. It should be noted that other scenarios are plausible, including nonaffine changes
to the tube diameter. For such effects in networks see Rubinstein and Par({9a\.

As a direct consequence of choosing a fixed tube persistence length the CCR term in
Eg. (1) has to be modified. The physical reason for this modification is shown in Fig. 3.
For an unstretched chali@ the number of tube segments between bgathd beads
+1 is one. However, for a stretched chdim the number of segments is increased. The
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value is now proportional to the local stretch ratj®((s)|/a). Therefore, [R'(s)|/a)?

times as many tube hops are necessary to relax the chain segment betarebs 1.
However, the spring constant of each entanglement segment is increased by a factor of
the local stretch. The net result is that the local influence of CCR is reduced by a single
factor of |[R’(s)|/a. A more detailed derivation based on this argument is given in
Appendix A. The renormalized CCR term is

JR(S) 3v
= ...+_ 7
ot 2 [R'(9)]

R"(s)+d(s,t). (8

Similarly, the corresponding noise term is also renormalized because of the greater num-
ber of constraint release sites per local contour, in proportion with the local stretch ratio.

a
~ ~ ’ _ 2 !
(B4(sD)Fg(s' 1) = ra —|<R’(s)>| A(s=s")8,p- (9)

We note that these two renormalisations are consistent with the fluctuation—dissipation
theorem, which itself applies to the CCR Rouse relaxation system, even though it is not
thermal, because it does drive the melt towards equilibrium. It is important to remember
that although we are using a continuous description, the model only describes the chain
correlation function on length scales greater than the tube diangetérhe function
A(s—s') is not infinitely high and thin, as in Milneet al. (2001), where a true delta
function was used, but it persists over a tube diameter with a height of one. Thus, we use
the form

1
1 for [s—s'| < =
A(s—s') = 2, (10

0 otherwise

This distinction is necessary since the solutions of the model are sensitive to the short
length scale cut off of this function and so this cut off must explicitly be the tube
diameter.

C. CCR stretch relaxation

Chain stretch can also be relaxed by CCR. This was demonstrated by éflehd
(1998 who discussed this at length. The mechanism is summarized in Fig. 4. The choice
of Rouse tube hops is influenced by the local stretch since tube hops that relax local
stretch will become increasingly energetically favorable as the chain stretch increases.
Hence, the distribution of CCR events between relaxing chain stretch and chain orienta-
tion depends upon the local chain stretch. Meddl. (1998 introduced anad hoc
function of chain stretch to switch the relaxation of CCR between orientation and stretch.
An advantage of our more detailed local consideration of CCR is that the Rouse tube
hopping term in Eq(2) is already weighted by the local potential due to chain stretch.
This term already contains the above mechanism in the balance between the terms
(3v/2) R"(s) andg(s). No “switch function” is necessary since both stretch and orien-
tation are implicitly contained in the solution &fs,s’) as a result of employing a local
model of CCR from the outset.
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If a constraint release event occurs here
and the chain is locally stretched....

...... the chain can relax stretch
by choosing this configuration.

FIG. 4. Mechanism by which CCR relaxes chain stretch.

D. Suppression of reptation due to stretch

The termR(s,t+At) = R[s+A&(t),t] in Eqg. (1) models reptation by stating that in
a time intervalAt the monomer that was at positisrat timet shifts to the position that
was previously occupied by monomserA£(t). This argument is only valid if the
monomers are at their equilibrium separation. For a stretched chain the above term
artificially accelerates reptation in proportion with the chain length since the physical
distance that a monomer must diffuse to relax is longer in a stretched chain. To ensure
that the chain diffusion occurs at a constant rate in real space rather than monomer space
we reduce the displacement due to reptation by a fact@ af (t), whereZ* (t) is the
number of tube segments occupied by the stretched chain. The new reptation term is

4

R(s,t+At) = R .
Z* (1)

S+

Ag(t),t) . (11

The effective number of entanglements is proportional to the arc length of the primitive
path and Eq.20) gives an expression faZ* (t). It might be argued that Eq11)
suppresses reptation with a global expression for the chain stretch whereas it would be
more accurate to use the local value of the chain stretch at each point along the chain,
[a/R’(s)]. This more detailed procedure was checked and the results were not sensitive
to this alteration and so we use HGl) for simplicity.

E. Microscopic equation of motion

Collecting together the modified expressions for reptation, CCR and retrd&om
(7), (8), and(11)], expanding the reptation term to second ordeA {t), we obtain the
following microscopic stochastic difference equation, which replacesHg.
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R(s,t+At) = R(Svt“Af(t)z*—(t) s 2 0

3v
+At| KR+ — 17—
2 |R'(s)|

Jd
R’Eln(R’-R’))

- 1
R"(s)+g(s,t) + ——
2T

(12)
The second and third terms on the right-hand side describe reptation, the fourth is the
effect of convection, the fifth and sixth correspond to the action of constraint release, and
the final term accounts for chain retraction. The local time scale of the model is fixed by

Te, the Rouse time of an entanglement segment. A knowledge ahd the number of
entanglements, is sufficient to define the reptation timey, and the chain Rouse time,

TR -
74 = 32314, 1R = Z27,. (13

Neither of these time scales is explicitly fed into the model but they are the natural
characteristic time scales of the solutions of Ep).

F. Equation for the tangent correlation function

Following the approach of Milneet al. (2001 a time evolution equation fdi(s,s’)
= (R'(s)R’(s’)) can be found from Eq(12):

Hagss) P [ (Ry(StHADRLS 1+ AD) ~(R,(SHR4(S' 1))

= | lim
ot 989S \ At 0 At

14

An expression for the terniR,(s,t+At)Rg(s’,t+At)) is found by taking suitable
averages of Eq12) using the known moments of the two noise terms, the fact that the
reptative noise is not correlated with the chain configuration and the Ito—Stratonovich
relation:

~ ’ _ 1 2 a A ’
(Ba(SHRg(S' 1) = v w (5=8")8up- (15

In order to obtain a closed expression f¢s,s’), the following closure approximations
are necessary. In the retraction term, we approximate

J J
<R;(S)Rﬁ(s’)(9—sln[R’(s)-R’(s)]> ~ RS<R;(S)RB(S,)>£|n[<R,(S)-R’(S))],
(16)

whereRg is, to a first approximation, an order unity geometric prefactor that optimizes
the decoupling approximation. For narrow distributionsR3f(s), we would anticipate

Rs = 1, but for broad distributions around a zero mean, rounding permutations of pos-
sible decouplings suggesk;, > 1. For a discussion of the optimal value see Sec. VII C.
In the CCR term we use

<Fi;<s>Rﬁ<s’>> ~ (RL(S)Rg(s")) a7
R'(s)] VIR (9)3)
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This leads to a PDE foi(s,s’), which is suitable for direct solution,

of . 1 Z \%[a a\?
-— = K'f+f'K +2— o~ —+—, f
ot 3mZre\ Z7 (1) Js  Js
3val d a J d a Jd
— | =| —==(- Y |+ | ——= (%9
2 | ds\ \Trf(s,s) 7S ds” \ \[Trf(s’,s") 9s
Rs L inpres O L nrTeecs s 18
—| f—In[Trf(s,s)] | + —| f—In[Trf(s’,s .
27275 | a5\ 78 [Tri(s,s)] POl [Trf( )] (18

We also use the identity/9sf®d = — g/9s’ f¢%in deriving Eq.(18). The spatial argu-
ments off are (5,s’) unless shown otherwise. The equilibrium valuef i determined
by the CCR noise term and is given by

2
a
€4 = ?A(s—s’)l. (19

As discussed above, the boundary conditions are more easily expressed in térms of
than R and so can be introduced at this stage. The conditions must be applied on the
perimeter of the square region given bys’ = 0-Z. The correlationf(s,s’) is zero
everywhere on the perimeter except at the two diagonally opposite cosr&rss 0 and
s,s’ = Z, wheref = a?l/3. Essentially, the two end vectors must be isotropic, uncorre-
lated with any other point on the chain and of lengttirhe configuration of®Y describes
a chain distribution for which this is true at every point along the chain. Héftepeys
the given boundary conditions.

Equation(18), along with boundary conditions, describes the dynamics of the tube
tangent correlation functiorf(s,s’). However, it requires expressions for the instanta-
neous number of entanglemer#s,(t), and the constraint release rate poth of which
depend on the instantaneous chain configuration. In the following sections we derive
expressions for these quantities in termd(afs’).

G. Number of entanglements

Since the tube diameter is assumed to be fixed the chain accumulates additional
entanglements as it stretches. The instantaneous number of entangletfiét)sjs the
normalized arc length of the primitive path,

1
Z5(t) = J;Z\/(R’(s)-R’(s)/a2>ds= gfozx/Trf(s,s)ds, (20)

where we have assumed that

(VR'(s)-R’(5)) = (R'(5)-R(s)).

H. Constraint release rate

We require an expression for the constraint release rate due to retractiamich
must be found self consistently from the current chain configuration. Physically, the
retraction rate is the frequency with which one chain end retracts a distance of the tube
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diameter. The frequency of constraint release events per chain is rate of change of length
of the chain due to retraction divided lay The rate per constraink, is 1/Z* (t) times
this value,

>
I

fz VT £(S,9)] retractiof! S

z* (t) ot

(Trf(s S )—In[Trf(s s)])

2aZ*(t)77 Tej 1/Trf(s S) Js

s’ =s
(21

where the rate of change of fi{ts,s) due to retraction is found using just the retraction
term from Eq.(18). Finally, the total constraint release rate,can be found from

v =2C,

4
At m) (22

IV. CONTOUR LENGTH FLUCTUATIONS

In real polymers the primitive chain path length continually fluctuates about its mean
value due to thermal noise. This process allows\/z tube segments at each end to relax
faster than by reptation. Thus, if the number of entanglements is relatively small, as is
usually the case with real polymers, contour length fluctuations can relax a significant
proportion of the chain far faster than reptation. CLF can, in principle, be accounted for
by replacing the reptation noise terlv£(t), with a term in which each point on the
chain contour has an independent thermal force. However, a rigorous solution of this
system for a general nonlinear flow is a formidable problem. A more tractable approach
is to embed an account of CLF within our formulation, guided by more detailed theories
of linear rheology. In this work we incorporate CLF in an approximate way that is
consistent with the linear theory of Likhtman and McLe{&®02 in the limit of small
deformation rates. We account for the rapid relaxation of the chain ends by replacing the
fixed diffusion constant in the reptation term of E48) by a function,D¢g(s,s’),
which depends upon position along the chain contour. We choose a folb-fe(s,s’)
by drawing upon the more rigorous linear treatments of CLF by Likhtman and McLeish
(2002. This suggests that close to the chain end the relaxation rate should \sa_rﬁ 36
produce the correct early time behaviof(t) ~ 1—ct and that far from the chain
ends CLF should be suppressed, making reptation the dominant mechanism. From this
argument we obtain the following form of an effective one-dimensional diffusion con-
stant, which covers the relaxation of local correlations« s’) of the tangent correlation
function.

ra2
?d s < ad\/z
2
Digs) = § ag : (23
— Z-s <
(Z—S)2 ad\/_
1/ otherwise

\

However, our formalism requires a two-dimensional functDg, (s,s’), that describes
the relaxation of tangent correlations of two separate points on the chain. We obtain this
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function by assuming that, due to the strong dependence of relaxation rate on contour
position, the relaxation rate of two separate points on the chain is dominated by the
relaxation of the faster of the points. This leads to

DcLr(s:s") = Dig(Smin)s (24)

wheresmin = Min(s,s’,Z—s,Z—s’). Using this approach it is also possible to include
the suppression of CLF by the local stretch through a similar argument to Sec($&®.
Appendix B for a derivation of this temThe new term in thé equation is finally

of 1 a d a\| aDgLe(s,s’) (a9
KA |2 [ —+ L] (29
ot 3T Te \Trf(Smin Smin) \9 98 /| NTrf(Smin Smin) \ 7S 5

We fix the constanixg by insisting that the predictions of the model for the complex
modulus,G’ (w) andG”(w), under linear oscillatory shear should agree with the exact
treatment of Likhtman and McLeist2002. The comparison was performed with con-
straint release removed { = 0) and values o¥ ranging from 6 to 40. Choosinggy

= 1.15 was found to provide agreement to within typical experimental error between the
two theories for frequencies up tere ~ 1 for all of the tested values &, indicating

that the chosen implementation of CLF accurately approximates the first passage time of
a Rouse chain in a tube. The small moderation of the linear spectrum in the f@ﬁge

< w < 7;1 arising from longitudinal Rouse modélsikhtman and McLeish2002]

is also accounted for by this parametrization.

A. Thermal constraint release from contour length fluctuations

The additional mobility of the chain end due to CLF, above that from reptation, must
also be accounted for in the constraint release rate. For moderately entangled materials,
constraint release from CLF can be significant in a linear flow. We account for this by
adjusting the reptative constraint release term in(Bp.In reality, the chain experiences
a broad spectrum of constraint rele#6®) rates due to both reptation and CLF, however,
we approximate this process with a single linear constraint release rate. This produces a
weak dependence of the prefactor in the term for reptation constraint réiegsen both
Z andc, . In contrast, a full theory for CR faithful to the whole spectrum of CR, such as
Likhtman and McLeish(2002, would not require such a prefactor. Thus,

1
v = C,,()\-i- —3ﬁrcr(Z,C,,)ZzTe) . (26)

We fix Byc(Z) by taking a power series in q[Z the appropriate expansion parameter for
CLF, and fitting the theory at low shear rates to the full theoretical treatment of this
problem in the linear regime by Likhtman and McLei&002. We obtain

8.91 12.29
) (27)

Bre(Z,c,) = [1+0.46 |oglo(cy)](2.13——+— .

Jz z

The above form has been verified against the linear theory in the rahge$—40 and
c, = 0.1-1.
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B. Rouse motion on subtube diameter length scales

To capture the correct chain dynamics for times shorter thahe motion of the chain
on length scales less than the tube diameter must be taken into account. We model this
using the dynamics of a free Rouse chain. Since the model is applicable only to defor-
mation rates that are small in comparison withlthese motions are always in linear
response. From this we evaluate the stress contribution as

t
ORousét) = f G(t—t")[s(t) +x(t") T ]dt’. (28)
The contribution toG(t) from these Rouse modes is given by Doi and Edwat@86
N
G 2p%t
Gt = — > exp(——). (29
Zp=z R

Generally, this term adds a background viscosity that has a non-negligible contribution
whent < 7, or when the number of entanglements is small.

V. REAL-SPACE SOLUTION

Collecting together the results from the previous sections we obtain a closed system of
equations, which is summarized in Table I. The system includes the effects of CLF,
retraction, thermal and convective constraint release, and variable number of entangle-
ments. The equations in Table | can be solved numerically and, in a departure from the
method of Milneret al. (2001), we compute the solution fd¢s,s’) via a finite difference
scheme in real space rather than using a Fourier series. The computation time for the real
space version iZ times faster than the Fourier approach and the forrffbtliscussed
above is more conveniently expressed in terms of real variables. We also note that the
approach of Milneret al. (2001), in which €9 contains a true delta function and the
Fourier series is truncated at the tube diameter length scale, leads to some erroneous
results. For example when convection and retraction are considered in isolation the so-
lutions fail to produce some known analytic results. If the chain retracts rapidly enough
to remain at its equilibrium length then the retraction rate should be exa&|ywvhereS
is the average orientation of the tube segments. Under shear, this condition becomes

5v0.
N= 2 (30
12G,

since, for an unstretched chai,= 12/5G,S. The Fourier solution of the MML model
overpredicts the retraction rate in this regime by approximately a factor of 2. Addition-
ally, under these flow condition and in the absence of constraint release, tube segments
should become completely aligned in the flow direction at large strains and thus tangent
correlations between all points along the chain should saturate. Hence, the function
fyx(s,s’) should tend to a fixed value for adl’s ast — «. Again, the MML model

does not produce this behavior. This indicates that the retraction term produces some
motion that acts perpendicularly to the chain contour and so produces some artificial
misalignment of the chain. Both of these artifacts tend to produce steady-state shear
predictions that are unrealistically high. The problems are due to the sensitivity of the
system to the precise implementation of the truncation of the delta functions used by
Milner et al. (200). The real space finite difference method outlined above has the
correct behavior in both of the above situations and the convergence of the results indi-
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TABLE |. Closed system of equation including describing the dynamics of an ensemble of entangled linear
polymers including: contour length fluctuations, retraction, constraint release, and variable number of entangle-
ments.

Evolution of tangent correlation function

ﬂ = wef+fs (convention
at
1 a J 9 aDe (s,s’) [0 0
+ - (—+—, R —+—|f (reptation + CLF)
37°7e \/Trf(sminr%in) 75 35 J\\Tr f(Smin Smin) \S 98
3va| d a d (f— o) d a ( 0 CR
_— —_— —_— JF —_— — -
2 | ds\ \[Trf(s,s) 9s as’ \ Tri(s’,s') os'
L PR i PR i
—— | — | f=In[Trf(s,8)] | + — | f—In[Trf(s’,s . retractio
2nr| 7\ o8 [Tri(s,s)] paliPw [Tri( )] ( n
Equilibrium configuration Degree of entanglement
1 (2
1 Z*(t) = —f Trf(s,s)ds
—| for|s—s'| < 1/2 alo
qs,s’) = 3
0 otherwise
CLF diffusion Smin and ag
Smin = Min(s,s’,Z—s,Z—s')
2 =115
ag agd
, 2 Smin < ag\Z
DcLe(s,s') = § Smin
1/z otherwise
Brel(Z,Cy) Constraint release rate
( 1
8.91 12.29 V=G M o e 2
Brer = (1+0.46log(c,))| 2.13- —=+ —— BredZ,¢,)Z7 (1) 277
Jz z
Retraction rate
K f ’ Trf( ) | [Tri(s,s)] d
N=—r——— | —— s,s') —In[Trf(s,s s
 2aZ* ()ynPre Tri(s.s) 95 o -5

Stress

G, Ge 2
ff(ss)ds-k? E p( pz(t t))[lc(t )+ st T1dt!

7ocp_Z

cates their independence from the length-scale truncation of this method of solution.
Details of the finite difference scheme are given in Appendix C.

We note that many rheologists are interested only in rheological predictions. For this
reason we have developed a single mode equation for the stress tensor based in this
model. Details of this work can be found in Likhtman and GraHae03.
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FIG. 5. Theory predictions of steady state shear stf@ssad line$ and first normal stress differencthin
lineg) as a function of shear rate{ = 0.1, Rg = 1).

VI. RESULTS

The equations in Table | comprise a closed system to deteriiféng ), which can be
solved numerically. From the chain configuration the stress can be obtained id) Eq.
and with an additional contribution from the unentangled Rouse modes of the[&ugin
(28)]. A time step of ~ 0.87¢(Z/N)? was found to give convergent results to within an
error of 1% for the parameter ranges we investigated. As discussed above, the results are
also independent of the number of poiris, for largeN. All presented results are from
converged calculations.

A. Steady state in shear

Figure 5 shows the steady-state shear stress predictions against shear rate, normalized
by 7, for a range of values d. If the curves are plotted with the shear rates expressed
in terms ofy7r, where the Rouse time is given by E3), then the results superimpose
at high rates {74 > 1) where CCR and retraction are the dominant relaxation mecha-
nisms. This holds untily7e = 1, where at these very high rates the assumption that the
chains are at equilibrium on length scales less than the tube diameter begins to break
down. Note the absence of a shear stress maximum even for a large number of entangle-
ments. The results show a plateau region for shear rates for whigh<lfy < 1/7Rr,
where CCR is the dominant relaxation mechanism and the model solutions are self
similar. For a comparison with experimental steady-state shear stress data seddFig. 13

B. Transient startup of simple shear

Figure 6 shows the transient theory predictions from startup of simple shear for a
range of shear rates. The transient predictions display a variety of important features. For
vrq < 1 the shear stress is in linear response and normal s’treé;&z, neither have
overshoots. Folyrq ~ 1 the shear stress has a weak overshoot, while the normal stress
remains monotonic. At shear rates around the inverse Rouse time both stresses show
overshoots and both the strain at peak stress and the overshoot size increase with shear
rate. These features are indicative of chain stretch. At very high rates the stresses exhibit
small undershoots before attaining steady state. Similar undershoots have been reported
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FIG. 6. Transient predictions for shear stress and normal stress against siréon startup of simple shear.
Model parametersZ = 20, ¢, = 0.1, Rg = 1 with shear rates fronyrg = 21 to linear response.

in experimental studielDsakiet al. (2000]. The transient curves converge rapidly with
increasingN, with the steady-state value having the slowest convergence.

The assumption of constant tube diameter and persistence length has an interesting
effect on the size of the overshoot in the shear stress. Constraint release hastens stretch
relaxation and so tends to lower the peak stretch value. It also raises the steady state value
through its influence on orientation. The net effect is to reduce the size of the stress
overshoot, measured by the ratio of the maximum shear stress to the steady state value.
However, the renormalisation of the influence of CCR, resulting from the assumption of
a constant tube persistence length, acts to weaken the action of CCR on an extended
chain. Thus, for the calculations in Fig. 6 the overshoot size grows with increasing shear
rate in agreement with trends seen experimentally. Alternatively, if the assumption that
the number of entanglement segments remains fixed even in a stretched chain is made,
the modification of Eq(8) must be omitted. In this case, the theory predicts that the
overshoot size remains relatively modest, even at very high shear rates, resulting in
predicted overshoots that are too weak to explain the widely observed experimental
values. A similar difficulty was reported for the model of Meadal. (1998 by Pat-
tamaprom and Larsof2001) and this may be attributed to the lack of CCR-stretch
renormalization in their model.

Due to the decoupling approximation in E4.6) our model predicts a zero value for
the second normal stress difference. This is a clear disadvantage when compared to the
Doi—Edwards model. However, the experimental values of the second normal stress
difference are, typically, very small relative to other components of the stress tensor and
are exceptionally difficult to measure. We believe that in order to make reliable predic-
tions of the second normal stress difference, one needs to solvElBqwithout any
decoupling approximations.

C. Damping function

The model’s predictions of the relaxation function after a large step st@&(it,y)
= oyylvy, are time-strain separable in the following way

G(t,y) = h(G(), (31)
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FIG. 7. Comparison of our model predictions for the damping function with those of the Doi—Edwards model
with and without the independent alignment approximatié ).

at long times. Consequently, a comparison with the predictions of Doi—Edwards model
for the damping functionh(y), can be made. Figure 7 shows that the predictions of the
two models are very close and, since the Doi—Edwards model is known to be in good
agreement with experimental data for this measurement, we conclude that the our model
will also successfully capture such data.

D. Single chain structure factor

The single chain structure fact®(q), for an entangled liquid under strong flow can
be obtained from the chain configuration through & Figure 8 shows contour plots of
a melt under steady shear for a range of shear rates The plots are for a moderately
nonlinear flow rate, a rate on the plateau, and a stretching flow both with and without
contour length fluctuations. The angle made by the major axis of each elliptical contour
gives an indication of the degree of chain alignment. For the slowestS(@y is only
weakly perturbed from an isotropic distribution. The plots correspondingrp= 25
show most clearly the variation in degree of chain alignment with length scale. Contour
length fluctuations reduce the degree of alignment in each case and distorts the isointen-
sity curves away from an elliptic shape. These plots indicate the usefulness of resolving
the chain contour down to the length scale of the tube diameter and the additional
information that is provided by this approach. Future small angle neutron scattering
(SANS) data on sheared, well-entangled polymer melts will constrain theory is ways that
measurements of stress alone are unable to do.

VIl. COMPARISON WITH EXPERIMENTAL DATA

In this section we compare our theoretical predictions with a range of experimental
data sets for entangled solutions of nearly monodisperse linear polymers from the litera-
ture [Menezes and Graessldy982; Menezes(1980; Kahvand (1995; Hua et al.

(1999; Osakiet al. (2000; Pattamaprom and Larsq@001); Ye et al. (2003]. For each

set both linear oscillatory shear and nonlinear shear measurements, including viscosity
and first normal stress difference, both to steady state, are available. In some cases
measurements were made for a range of molecular weights at fixed monomer concentra-
tion. This enables a direct test of the hypothesis that the model parameters should be
independent of molecular weight. In all cases the polymer concentration was carefully
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FIG. 8. S(q) in steady shear for a range of shear rates. Model param&ters20,c, = 0.1, andRg = 1.
Contours lines map the same value on each plot.

chosen to minimize elastic instabilities while maximising the degree of entanglement.
The material details are summarized in Tables Il and IlI.

A. Determination of model parameters

The model requires five paramet&g, 7o, M¢, C,, andRg. The first three of these
are specified by the linear rheology of the material and each is expected to vary with
chemistry and monomer concentration but not with molecular weight. The remaining two
parametersRg and c,, are dimensionless prefactors for the retraction and constraint
release terms, respectively. We set these parameters to universal values since entangled

TABLE Il. Parameters for two polybutadiene solutions used by Menezes and Grag@&88ayat fixed mono-
mer concentration. Material parameters are as quoted in the original papers, linear parameters are obtained from
linear oscillatory shear and calculated parameters are computed from the other parameters.

Calculated
Material values Linear parameters params.
My My /Mp Ge Te Me R
Material kgmol™!  Conc. Pa x103s kg mol~ 1 c, z s
PBB 350 7% < 1.05 51779 4.156 42.7 0.1 8 0.266

PBD 813 7% < 1.05 51779 4.156 42.7 0.1 19 1.50
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TABLE Ill. Material parameters for a range of polystyrene solutions: PS[KaRvand (1995], f128-10
[Osaki et al. (2000], 2.89 and 8.42 M Pattamaprom and Larsot2001)]. Parameters are obtained by the
algorithm described in the text.

Calculated

Material values Linear parameters params.

My Ge Te Me R
Material kgmol™?  Conc. M /M, Pa x103%s kgmol ! ¢, z s
PS/TCP 1900 13% 1.2 23711 7.755 158 0.1 12 1.117
f128-10 1090 10% sharp 1302 51.42 136 0.1 8 3.29
2.89 M 2890 7% 1.09 8075 1911 270 0.1 11 0.23
8.42 M 8420 7% 1.14 8075 1.911 270 0.1 31 1.836

polymers are believed to be governed by universal underlying dynamics. Thus, these two
parameters cannot be tuned to individual data sets. Arguments leading to numerical
values for these two dimensionless parameters are presented below.

The three linear parameteiGg, 7¢ andMg, are found by fitting the linear theory of
Likhtman and McLeisi2002 to linear oscillatory shear measurements. We suggest that
simultaneously fitting several molecular weights leads to more accurate values. The pa-
rameters obtained for two polybutadiene solutions, PBB and PBD, are shown in Table II.
In principle, it is possible to compute the valueMf, for a solution from its melt value
using a relationship for the scaling with concentration,

Me(c) = MTelee, (32

However, the scaling exponent, has yet to be decisively determined. The two most
commonly used values for this exponent are 1 and 4/3. We verified that each of our
diluted values oM, throughout this paper, are consistent with<l « < 4/3 by using
the melt values oM for polybutadiene and polystyrene from Likhtman and McLeish
(2002.

We continue with arguments leading to universal values for the parantgtarg R .
The value ofc, determines the number of retraction events necessary to produce one tube
hop of lengtha. The quality of agreement with the linear data is not strongly dependent
on ¢, and provided it is in the range 0.1-1 good agreement with the complex modulus
data is foundsee Fig. 9. Thus,c, cannot be cleanly specified by linear rheology and so

(a) fsec] (b) w[sec’]

FIG. 9. Comparison with the Menezes and Graess[E382 linear oscillatory shear data for three polybuta-

diene solutions: PBB, PBCM,, = 517 k) and PBD, wittc,, = 1.0(a) andc,, = 0.1 (b). Model parameters,
listed in Table Il, are the same for each molecular weight.
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FIG. 10. Comparison with Menezes and Graess(@982 PBB shear viscositya) and first normal stress
difference(b) data using parameters obtained only from linear rheology/ager 1.

we fix its value by the following argument. Milneat al. (2001 indicated thatc, < 1
and they demonstrated that a value greater than 0.06 was sufficient to remove the shear
stress maximum. Thus, to choose from inside this range, we,set 0.1 since values
closer to order 1 produce smaller shear stress overshoots than are seen experimentally.
The final parameterRs, accounts for the decoupling approximation in the retraction
term. To proceed we initially set this value to unity.

In table Il the calculated parameters are not free. The valléfixes the number of
entanglements, for a particular molecular weight via = M,,/M¢ and the Rouse time
is given by g = ere. The Rouse time in not directly inserted into the model and is
shown merely to allow a convenient calculation of the stretching Weissenberg number,
YR

B. Parameter free comparison with nonlinear data

In the algorithm described above all model parameters are either set to universal
values or are obtained from linear oscillatory shear measurements. Thus, a parameter free
comparison with the nonlinear data can be made. The results for transient shear and
normal stresses of PBB are shown in Fig. 10. The agreement with the moderately non-
linear rates § = 0.34—3.40 51) is good. However, the model overpredicts the peak
stress value at the higher shear rates. Similar results are obtained for both transient
viscosity and first normal stress difference for PBD. In both cases the agreement is good
for the nonlinear rates 2§ < y < 1/7r but the predicted peak stress value is too large
for shear rates in excess of the inverse Rouse time.

In Fig. 10 the early time predictions (< 1) have a slope that is less than one. This
is a direct manifestation of the entangled Rouse modes which are described in Sec. IV B.
These modes are more prominent for the PBB predictions than the other materials since
the number of entanglements is relatively low.

C. Improvement of high rate predictions

The results of the previous section suggest that the model is effective for nonlinear
flows that do not stretch the chain. However, the overprediction of the peak stress value
indicates that, wittRs = 1, the model accumulates too much chain stretch at the highest
shear rates. To remedy this discrepancy we revise the value of the order one prefactor,
Rs. This parameter accounts for the decoupled retraction term if1Bgand increasing
its value enhances the retraction ra®g.is chosen by fitting the highest experimental rate
of the PBB shear viscosity data. A value By = 2.0 gives best fit to they = 21.4
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FIG. 11. Comparison with Menezes and Graess(@982 PBB shear viscositfa) and first normal stress
difference(b) data using parameters obtained from linear rheology7age- 2.0.

transient curve. The results for all rates are shown in Fig. 11 along with the normal stress
comparison. Adjusting this single universal parameter produces good agreement across
all of the measured rates for both shear and normal stresses. Weguse2.0 for all
subsequent calculations in this paper.

The generality of this universal value &g is demonstrated by Fig. 12, in which data
and theory for PBD are compared. The universal values are now fixed and the molecular
weight independent parameters from Table Il are used. Even though the algorithm allows
no variation of the model parameters the agreement between data and theory is good.

Below we will discuss the areas of slight disagreement in the context of a wider data
comparison.

D. Further entangled solutions

At this point our algorithm for parameter determination is fixed. We always set

= 0.1 andRg = 2.0 and the remaining three linear parameters are obtained by fitting to
linear oscillatory shear measurements, subject the constraint that they should be indepen-
dent of molecular weight. There is no freedom to vary the approach for each data set. We
are now in a position to test the robustness of this method by comparing with a broad
range of literature data. We compare with non-linear shear data from a further three
publications: Kahvand1995; Osakiet al. (2000; Pattamaprom and Larsd2001). The

linear parameters for these materials are contained in Table IlI; as before these parameters
were obtained by fitting the linear theory of Likhtman and McLe{€002 to linear

oscillatory shear data. The resulting nonlinear data comparisons are shown in Figs. 13—
15.
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FIG. 12. Comparison with Menezes and Graess(@982 PBD shear viscositfa) and first normal stress
difference(b) data using parameters obtained from linear rheology7age= 2.0.
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All plots show good agreement between theory and experiment over a wide range of
shear rates, particularly considering the complete absence of non-linear parameter fitting
for these plots. For most rates the peak stress value, the time of peak stress and the
steady-state value are successfully predicted for both shear stress and first normal stress
difference. Especially encouraging is that the model appears to capture the rheological
behavior of a wide range of polymer fluids through an underlying theory for universal
nonlinear dynamics of these entangled polymers. If the linear rheology of a material is
known the model is able to make quantitative predictions for nonlinear flow. Further-
more, since the linear parameters are molecular weight independent, the model can ac-
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FIG. 14. Comparison with Osaleét al. (2000 f128-10 shear viscosit{g) and first normal stress differen¢ie)
data.
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FIG. 15. Comparison with shear rheology data by Pattamaprom and L&266&d) and uniaxial extension data

by Ye et al. (2003 for 2.89 M (1) and 8.42 M(2) both with shear and extension viscosig) and first normal

stress difference under shel). The extensional data have been shifted to the same temperature as the shear
data.

curately predict variations due to molecular weight. The algorithm is successful despite
variations in the degree of entanglement, monomer concentration, and chemical compo-
sition in the experimental data.

There are, however, some areas of systematic disagreement. At the highest available
deformation rates there is an overprediction of the steady state stress and, to a lesser
extent, the peak stress values. This is particularly true of the normal stress at these very
large rates. This effect occurs at deformation rateynf = 15~ 20 for all sets that
achieve these high Weissenberg numbers. The steady-state normal stress comparison in
Fig. 13a) demonstrates this onset most clearly and indicates that the model predicts too
much stretching in this regime. However fptrg < 15 the universality of our choice for
Rsis clearly evident. The disagreement for times 0.1 s with the data of Pattamaprom
and Larson(200)) is due to a communication delay between the motor and transducer as
acknowledged in the original paper.

We have already advanced one explanation for the need for the pardfetérat it
results from the closure approximation used in the retraction term. It is known that this
type of closure can lead to errors of order one, which would account for the necessary
prefactor. This could be resolved by comparing the solutions of the closed equations with
stochastic simulations of Eq12). An alternative explanation is that the method of de-
termination of the Rouse time from the linear rheology is relatively indirect. This time
scale dominates the nonlinear regime, yet it must be inferred from a knowledge of the
terminal behavior of the material in linear shear. This region of the complex modulus is
controlled by a combination of CLF, reptation and constraint release, and the reliability of
this method for obtaining the Rouse time depends on the implementation of these pro-
cesses in the relevant linear theory. Finally, it is possible that the model omits a physical
process that acts to accelerate chain retraction inside a tube. One possibility would be to
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FIG. 16. Comparison with Yeet al. (2003 steady state uniaxial extension data for 2.89 and 8.42 M. The model
has no steady state value ferg = 1 since it omits chain finite extensibility effects. Experimental data are

shifted to 40 °C.

change our assumptions about deformation of the tube under flow, as discussed in Sec.
Il B. However, it is not obvious how this would lead to faster chain retraction. This issue
may also explain the overprediction of the peak stress values at very large shear rates as
seen in the data comparison.

E. Extensional flow

The two solutions used by Pattamaprom and Lar&fi0]) have also been recently
characterized in nonlinear uniaxial extension by éfeal. (2003. We used the time-—
temperature superposition shift factors from linear rheology to reduce the extensional
data to the same temperature as the shear rheology and a comparison with the transient
data is shown in Fig. 15. For these calculations the model parameters are identical to
those used for the shear calculations; only the deformation tensor has been changed.
Significantly, the model also shows reasonable agreement with the transient extension
curves. It certainly does not systematically under or overpredict of the degree of chain
stretching and the agreement between the 8.42 M data and theory fole the

= 1.875 s ! transient is particularly close. This suggests that our chosen vali, of

= 2.0 is also applicable to extensional flows. A comparison with the steady-state data is
shown in Fig. 16 and the model is in reasonable agreement at rates for which

= 1. In particular, the model correctly predicts the degree of strain softening at weakly
non-linear rates. The model fails in steady state at high extension rates since our assump-
tion that the chain spring constant is linear in invalid in this region. At large strains in
rapid extension deformations finite extensibility of the chain contour becomes significant
and this effect controls the experimental steady state value.

VIIl. CONCLUSIONS

The model presented in this paper contains a series of refinements to the Doi—Edwards
model of reptation in entangled linear polymers that extend it into the strongly nonlinear
regime of chain stretch. In addition to reptation, the effects of finite rate retraction and
convective constraint release are included. All of these processes are accounted for in a
microscopic stochastic partial differential equation for the motion of the chain contour
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FIG. 17. Derivation of CCR term for a stretched chain.

from which the model is derived. In particular, CCR is treated &scal relaxation and
excitation of the tube. Real-space solutions of the model in strong shear indicate the
absence of a steady-state maximum in the shear stress. Through this detailed local treat-
ment of relaxation it is possible to predict not only mechanical stresses but also single
chain structure factor under flow. Also, included is chain stretch which considerably
improves the transient predictions for rapid deformations. In addition, we have consid-
ered the tube diameter to be fixed even under strong flow as opposed to an assumption of
a constant number of entanglements per chain. Our assumption leads to a weakening of
the influence of CCR when the chain is stretched, improving the size of the predicted
stress overshoot in shear compared to the model of Meatl (1998, which omits this
mechanism. The experimental observation of large overshoots supports the assumption
that the tube diameter is not strongly perturbed from its equilibrium value by deformation
rates up to several times the inverse Rouse time of the chain.

An accurate comparison with a broad range of experimental data in nonlinear shear,
encompassing many different entangled solutions, was made. All model parameters were
either fixed by linear oscillatory shear measurements or were set to universal values with
no non-linear fitting to individual data sets. With no parameter adjustment the model was
shown to be in reasonable agreement with extensional measurements made on one of the
investigated materials.

The physical origin of all the model parameters is clear except for the prefactor to the
retraction term;Rg, which is shown to optimize predictions uniformly across all avail-
able data sets with a value of 2.0. The value of this universal number may attributed to
either the decoupling approximations used to produce a closed equation or missing phys-
ics from the model derivation. Further work and a complimentary investigation of the
decoupling approximations will be necessary to resolve this issue.

APPENDIX A: DERIVATION OF STRETCH-CCR RENORMALIZATION TERM

In this appendix we derive the modification of the constraint release term in the MML
model to include the effect of chain stretch. In the MML model the Rouse-like CCR term
was derived by considering the motion of a Brownian particle moving between a series of
obstacles which disappear and reappear with frequenaypd subject to an effective
potential which depends on the chain spring condtse¢ Grahan2002 for details of
this derivatior). We assume that the tube diameter is fixed under deformation and recom-
pute the effective potential for a stretched chain to obtain a generalized CCRRigrm
17). In equilibrium there aréNe monomers per tube segment and as the chain stretches
this number reduces in proportion with the local stretch. Thus, at any instant in time the
tube segment at positiaawill contain
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a
Ni(st) = ———N
S0 R e
monomers. Treating the tube segment as a Gaussian ch&l@ ofionomers, gives the
spring force acting on that tube segment as
3kgT

= e R Reeng 0 e~ Rz o) @3

which, in the continuous limit, becomes

3kgT IR
F 2
T N* (b2 Ne (1) on?’ 34
e

rescaling in terms of the tube variabkegives

3kgT a #°R .
~a’ |R(s)| 95" 39
In the derivation of Milneret al. (200 the term corresponding to Rouse-like tube mo-
tion is (va®/2kgT) F which leads to the required result.

JR 3v

a
E = '”+?|R’(S)|R (s). (36)

APPENDIX B: MODIFIED CLF TERM FOR A STRETCHED CHAIN
In one dimension the contour variable diffusion equation is
of J J
e = g(D(s)gf(s)). (37

However, when the chain is stretched this form artificially accelerates the relaxation. The
diffusion should occur a fixed rate in real spage,not monomer space. Thus a more
general form is

ﬂ = — D(s)if(s)) = d—si(D(S)d—Sif(S)). (38
at  ox X dx ds dx ds
Usingds/dx = a/|R’(s)|, we obtain
of a 4 a 4
P ma—s(D(S)ma—sf(S)), (39)
which we generalize into two dimensions:
i + 12 2 <£+i,)—aDCLF(S'S/) (i+i,)f (40)
ot 37 Te \Trf(Smin:Smin) \? 98 )\ Trf(Smin Smin) |7 75

The influence of this renormalization of the CLF term with stretch is generally minimal
since the chain stretch is small near the chain ends where the fluctuations are most
significant.
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APPENDIX C: FINITE DIFFERENCE SOLUTION OF THE MODEL

To obtain a real space solution we subdivide the chainlhtdl points and define the
function

1 [pZ qz
(p q ) an

o = 27l ' N
for p,g = 0—N. The boundary conditions afg, q; = fﬁg’q] , on the the perimeter of the
area given byp,q = 0—N, at all times. A coupled system oN(- 1) ordinary differen-
tial equations for the remaininfy,, ) is obtained from Eq(18) using following finite

difference scheme for all derivatives with respectstands’. First and second order
derivatives are defined as follows:

d N
=) = 57 (frp+ 101~ frp-101):

2 2 (42
2 = | 7] (pr1afrp-141 = 2f(p,1):
and the following derivatives are needed for the CLF term:
14 J
(&_SJFQ fipal = 57 (tp+1a+11 = frp-10-11):
g a9\ 2 “3
= o) e = Z) (ftp+19+11 7 f1p-19-1172fp,q))-

Equation(18) can be used to describe the time evolution of all internal poiptsg] (
= 1-N—1) since all finite difference derivatives can be evaluated for these points.
Integrals are evaluated using the trapezium rule. Thus,

(44)

N—1
z p
F(s)ds~ —| HO)+FZ)+2 —1 .
Jj() ZN{() 2) pzl N)
The functionf®dis written in terms of the discrete variables according to @§) and it
is important that the following integral conditions &9 hold:

v4 z
fOTrfe"(s,s’)ds’ =1, jo Trf*Ys,s)ds = Z. (45)

The exact derivatives dD ¢ g can be defined in terms of generalized step functions,
however, it is more convenient, in practise, to use a small finite stegsin to approxi-
mate the derivatives dd¢ . If the step,e, is sufficiently small (~ 10~ 2) the results
are independent of since this definition formally exact in the lim& — 0.
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