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Synopsis

A refined version of the Doi and Edwards tube model for entangled polymer liquids is prese
The model is intended to cover linear chains in the full range of deformation rates from linea
strongly nonlinear flows. The effects of reptation, chain stretch, and convective constraint re
are derived from a microscopic stochastic partial differential equation that describes the dyna
of the chain contour down to the length scale of the tube diameter. Contour length fluctuation
also included in an approximate manner. Predictions of mechanical stresses as well as the
chain structure factor under flow are shown. A comparison with experimental data is made in w
all model parameters are fixed at universal values or are obtained from linear oscillatory s
measurements. With no parameter modification the model produces good agreement over a
range of rheological data for entangled polymer solutions, including both nonlinear shear
extension. ©1993 The Society of Rheology.@DOI: 10.1122/1.1595099#

I. INTRODUCTION

The tube theory of Doi and Edwards~1986! is remarkably successful in describing a
wide range of qualitative features of the rheology of entangled polymer fluids. A rec
detailed formulation of the rheological properties of linear polymers, including numer
refinements has produced excellent agreement between theory and experiment
linear regime@Likhtman and McLeish~2002!#. There have also been attempts to unify th
model parameters used for linear polymers with those for chemically identical polym
with different molecular topologies@Pattamapromet al. ~2000!#. Despite the ongoing
progress a definitive theory for nonlinear flows remains elusive. In particular, it
proven difficult to find consistency in the model parameters used to fit linear and n
linear data when the assumptions of the Doi–Edwards approach suggest that this ou
be possible. These problems are notoriously manifest in a qualitative failing of the D
Edwards~DE! theory in steady state of shear. When steady-state shear stress,sxy

SS, is
plotted as a function of shear rate,ġ, the model predicts a shear stress maximum wh

a!Author to whom correspondence should be addressed; electronic mail: rsgraham@umich.edu
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1172 GRAHAM ET AL.
the shear rate exceeds the inverse reptation time (ġ * 1/td). However, experimental
data in this regime indicate that shear stress is a monotonically increasing functio
shear rate. Worse still, a consequence of the shear stress maximum is that the DE
predicts a striking shear banding instability occurring in moderately nonlinear flo
Such a feature is not observed in experiments.

Two possible mechanisms to rectify this problem are chain stretch and cons
release. Both processes were discussed by Doi and Edwards but omitted from
constitutive model. Chain stretch refers to configurations in which the length of occu
tube exceeds its equilibrium value. In the DE model chain orientation relaxes on
time-scale of the reptation time, while chain retraction, which is unhindered by
constraints, occurs at a rate determined by the Rouse time. In entangled systems
two times scales are reasonably well separated,td /tR 5 3Z whereZ is the number of
chain entanglements. Consequently, it is, in principle, possible to model moderately
linear flows, in whichġtd * 1 and ġtR ! 1, by assuming retraction occurs instant
neously. However, the effect of chain stretch becomes significant whenġtR * 1, a
regime which is accessible in well controlled experiments on entangled polymers,
ticularly in shear. A refinement to the DE model known as the Doi–Edwards–Marru
Grizzuti ~DEMG! theory@Marrucci and Grizzuti~1988!; Pearsonet al. ~1991!; Mead and
Leal ~1995!# adds stretch to the basic DE model. The inclusion of stretch impro
transient predictions in startup of shear in several ways. The DEMG model pre
transient overshoots in shear stress and normal stress that grow in size with shear r
addition, the strain at peak stress of these overshoots grows with shear rate. All of
features are observed experimentally. The DEMG theory is less successful in stead
of shear. In many circumstances the theory still predicts a shear stress maximum. In
any approach that merely adds chain stretch, relaxing via Rouse retraction, to th
theory is doomed to suffer a similar fate. The reasons for this are twofold. In rapid s
flows the DE orientation tensor predicts strong steady-state chain alignment alon
shear direction. As a consequence, the highly aligned chains present a very slim pro
the velocity gradient and so predicted steady-state stretch values are modest even
stretch Weissenberg numbers (Ws 5 ġtR). A more fundamental problem is that th
separation of orientation time,td , and stretch time,tR , is fixed at 3Z. Hence, ifZ is set
to a large enough value the onset of chain stretch is delayed to shear rates well in e
of 1/td and the bare DE behavior, including the stress maximum, is recovered at
rates around 1/td . The degree of entanglement necessary to see this effect is within
range of existing experiments.

A second possible solution is constraint release. This is an additional relax
mechanism that recognises that whenever a chain end passes through a tube segm
constraint that was imposed by this chain on a neighboring chain is lost. Hence
neighboring chain is free to explore a wider region via lateral motion~see Fig. 1!.
Constraint release is a self consistent closure of the mean field approximation of the
model. In the linear regime constraint release events are caused by reptation o
surrounding chains. This is known as reptative or thermal constraint release. Since
tive constraint release occurs on the time-scale of the reptation time of the whole
and one event only relaxes a small part of the chain Doi and Edwards argued that
negligible effect on relaxation. However, Likhtman and McLeish~2002! demonstrated
that constraint release has significant effects near the terminal time. In addition, cons
release becomes increasingly important in the nonlinear regime. In a crucial ins
Marrucci ~1996! demonstrated that in nonlinear flows, chain retraction also contribute
the constraint release rate. The effect of chain retraction greatly increases the influe
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FIG. 1. Schematic representation of a constraint release event.
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constraint release. The release rate grows with the convection rate, becoming of ord
the shear rate at high rates. This process is known as convective constraint release~CCR!
since tube constraints are swept away by the convection. The mechanism become
nificant asġ approaches 1/td , precisely the rate as which the Doi Edwards model begi
to fail.

There have been various attempts to incorporate CCR into a constitutive model
without chain stretch@Ianniruberto and Marrucci~1996!; Ianniruberto and Marrucci
~2000!# and more recently with stretch@Ianniruberto and Marrucci~2001!; Mead et al.
~1998!#. However, all of these theories model the effect of CCR by directly modifying t
overall chain relaxation time. Effectively, the relaxation time becomes dependent on
molecular response to the deformation. While the arguments for this modification
molecularly motivated, the connection between constraint release and the global r
ation time is, in the end, heuristic. Additionally, the assumption that CCR acts in a glo
manner destroys any molecular detail on length scales of less than the overall
length. Thus, only rudimentary predictions for quantities that are sensitive to finer
lecular structure such as the single chain structure factor can be made. New experim
techniques, in addition to mechanical stress measurements, are proving to be usefu
of molecular based theories@McLeishet al. ~1999!; McLeish ~2002!; Wischnewskiet al.
~2002!; Müller et al. ~1993!; Watanabeet al. ~2002!#. A consideration of the local influ-
ence of constraint release is essential in this context. The idea of the tube itself ex
encing constraint release being modeled as a Rouse object was postulated by de G
~1975!. It utilizes the fact that the Rouse model generically describes the global beha
of the local jump model for a connected object. The approach allows a descriptio
constraint release down to the length-scale of the tube diameter. Viovyet al. ~1991!
formulated these ideas to model the linear rheology of bimodal blends. With a car
choice of blend composition Rouse tube motion can be directly observed in experim
data in the linear regime@Rubinstein and Colby~1988!#. Recently Milneret al. ~2001!
and Likhtmanet al. ~2000! derived a nonlinear constitutive model by treating CCR
local Rouse-like tube motion. Their model is intended to cover only nonstretching flo
in order to consider the CCR mechanism in isolation. The approach successfully e
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1174 GRAHAM ET AL.
nates the shear stress maximum without relying on chain stretch. In addition, sinc
model is able to make detailed predictions for the single chain structure factor, it offer
explanation for the relatively low anisotropy observed in sheared melts@Müller et al.
~1993!# when compared to the predictions of the DE theory. However, in practice i
very hard to remove the effects of chain stretch as in the best characterized experim
the degree of entanglement is never extreme. The inclusion of chain stretch into a R
tube theory of entangled dynamics is therefore urgent. In this paper we propose a g
alization of the Milneret al. ~2001! theory in which the chain retraction is not instanta
neous. We review the Milner McLeish and Likhtman model in Sec. II and generalize
model to cover stretching flows in Sec. III. An approximate treatment of contour len
fluctuations~CLF! is added in Sec. IV. The inclusion of contour length fluctuations is n
a luxury—it enables a proper quantitative comparison with experimental data an
correct limit in linear response. A numerical method of solution is outlined in Sec. V a
we present the model predictions in Sec. VI, focusing on the difficulties discussed ab
Finally, we compare the theory with published experimental data on nearly monodisp
entangled solutions of linear polymers under shear and extension in Sec. VII.

II. MILNER, MCLEISH, AND LIKHTMAN MODEL

In this section we present a brief review of the model of Milner, McLeish, and Lik
man~2001! ~MML ! for convective constraint release. The model describes the dynam
of a monodisperse melt of entangled, linear polymer molecules under a strong defo
tion. The chain is confined to a tube of diametera due to constraints formed by surround
ing chains and the aim of the model is to derive dynamic equations for the entire
figuration of a single chain down to the length-scale of the tube diameter.
configuration is described by the space curveR(s,t), which denotes the position vector
of tube segments at timet. The tube comprises ofZ 5 M /Me segments ands spans the
chain length, running from 0 to Z. From a knowledge of the chain shape various ma
scopic quantities can be deduced.

The model accounts for a range of sources of motion and each process has a
sponding term in the stochastic partial differential equation that models the dynamic
the entire chain. The simplest of these is convection due to the applied deformation
deformation is described by the velocity gradient tensork 5 “v and all points on the
chain move affinely with the flow. Relaxation is then relative to this affine motion. Th
relaxation mechanisms act on each tube segment. The first of these is reptation wh
curvilinear diffusion of the entire chain along its own contour. This processes rela
stress since the chain ends escaping the tube are free to choose any new orientatio
expression for reptation is taken directly from the original DE model. The second pro
is CCR, which is assumed to act at an equal rate at all points along the chain.
modeled by Rouse tube hops of lengtha and frequencyn. Finally, retraction acts along
the tube contour, holding the total length fixed at its equilibrium value. The retraction
is proportional to the distance of the segment from the chain center and the consta
proportionality,l, is chosen at each instant to maintain the chain at its equilibrium leng
Figure 2 shows these processes schematically. Collecting all terms together into a
chastic difference equation for a single chain gives

R~s,t1Dt ! 5 R~s1Dj~ t !,t !1DtS k–R1
3n

2

]2R

]s2 1g~s,t !1lS Z

2
2sD ]R

]s D . ~1!

The terms in Eq.~1! represent reptation, convection, CCR and retraction, respectiv
Equation~1! contains two noise terms:Dj(t) describes the displacement of the chain du
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FIG. 2. Three relaxation mechanism available to an unbranched, entangled polymer chain:~a! reptation,~b!
constraint release, and~c! retraction.
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to Brownian diffusion along the tube~reptation! and g(s,t) describes motion due to
random constraint release events. Both terms are mean zero Gaussian and ha
following second moments:

^Dj~t!Dj~t8!& 5
2

3p2Zte
d~t2t8!,

~2!
^ga~s,t!gb~s8,t8!& 5 na2d~s2s8!d~t2t8!dab .

The angular brackets denote averages over an ensemble of chains and the indicesa and
b denote Cartesian components. The local time scale for the model is set byte which is
the Rouse time of a single entanglement segment. This leaves the constraint releas
n, as the only remaining unknown quantity. It can be determined self-consistently f
the retraction rate,l, via the equation

n 5 cnSl1
4

p2Z3te
D. ~3!

Equation~3! counts the constraint release from retraction and the preaveraged cont
tion from reptation, respectively, with the parametercn determining the number of re-
traction events necessary to result in one tube hop of a tube diameter. Milneret al. ~2001!
argue that entanglements result from ‘‘the mutual, delocalized topological interactio
many structures’’ and so several retraction events are required to produce a tube h
lengtha. Consequently, a value ofcn < 1 is expected.

The stress and single chain structure factor both follow from a knowledge of the ch
configuration,R(s,t). The stress tensor,s, is given by

sab 5
c

N

3kBT

a2 E
0

ZK]Ra~s!

]s

]Rb~s!

]s Lds. ~4!

Here, c/N is the polymer chain concentration. The single chain structure factor is
tained from

S~q! 5 E
0

ZE
0

Z
expS2(

a,b

qaqb

2
E

s

s8E
s

s8K]Ra~s1!

]s

]Rb~s2!

]s8 Lds1ds2Ddsds8. ~5!

Equations 4 and 5 show that a knowledge of the function

fab~s,s8! 5 K]Ra~s!

]s

]Rb~s8!

]s8 L
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1176 GRAHAM ET AL.
is sufficient to evaluate both the stress and the single chain structure factor. By ta
suitable averages of Eq.~1! a deterministic partial differential equation~PDE! for f(s,s8)
can be obtained. In deriving an expression forf ab(s,s8) the following closure approxi-
mation is necessary.

^Ra~s,t!Rb~s8,t!l~t!& ' l~t!^Ra~s,t!Rb~s8,t!&. ~6!

Milner et al. ~2001! verified this approximation by direct stochastic simulation of equ
tion 1 and found it to be valid whenever CCR is the dominant relaxation mechan
namely whenever 1/td ! ġ ! 1/tR . The resulting PDE forf(s,s8) is then solved by
converting to a Fourier sine series.

III. TUBE MODEL FOR LINEAR POLYMERS WITH CCR AND STRETCH

Steady-state shear stress measurements on nearly monodisperse entangled p
liquids typically show three regimes of behavior with increasing shear rate@Berceaet al.
~1993!; Menezes and Graessley~1982!; Menezes ~1980!#. At low shear rates
(ġtd , 1) the stress increases linearly with shear rate, at intermediate r
(1/td , ġ , 1/tR) there is a region of nearly constant shear stress and at high r
(ġtR . 1) the stress shows a steeper gradient. Thus, the overall steady flow curve
monotonically increasing function of shear rate. The MML theory accounts for the fi
two of these regimes. Reptation is the dominant relaxation in the linear regime and
controls the plateau region. The third regime has been widely attributed to the influ
of chain stretch. We aim to generalize the MML theory to cover stretching flows, t
extending its region of validity in the steady flow curve and testing our understandin
transient shear flows. The approach of our generalisation is to introduce any new ph
necessary to model stretching flows directly into Eq.~1!, produce a deterministic PDE for
the tube tangent correlation function by taking suitable averages and to solve this e
tion using an appropriate numerical scheme.

A. Rouse retraction term

To model the effect of finite rate retraction we replace the instantaneous retrac
term in equation 1 with a term that arises from Rouse motion of the chain inside its t
The force-extension law for the chain is the usual linear spring relationship. Hen
microscopic force balance for this term at tube segments gives Nez0 (]R/]t)
5 (3kBT/Neb2) R9(s) where the primes denote derivatives with respect tos, z0 is the

monomer friction constant andb is the Kuhn step length. Retraction acts only along th
tube direction so we project the retraction force along the unit tangent vector to the
R8(s)/uR8(s)u. By introducingte 5 (z0b2Ne

2/3p2kBT) the new retraction terms reads

]R~s!

]t
5 ¯1

1

p2te

~R9~s!•R8~s!!

uR8~s!u2
R8~s!

5 ¯1
1

2p2te
S ]

]s
ln@R8~s!•R8~s!# D R8~s!. ~7!

This term necessitates a stricter application of the boundary conditions at the chain
than in the approach of Milneret al. ~2001!. The end tangent vectors should be isotrop
vectors of lengtha at all times so ensuring a totally relaxed condition for both orientati
and stretch at all times. The length condition fixes the tube equilibrium length to
correct value and the isotropic condition ensures that as a chain end escapes the
takes on a random orientation. These boundary conditions are not straightforwa
express in terms ofR and are more readily expressed for the tangent vector correla
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FIG. 3. Two possibilities for the effect of a step deformation on the entanglement network.~a! Number of
entanglements points is fixed, and so the tube persistence length grows.~b! Tube persistence length remains
fixed, soZ grows in proportion with the primitive path length.
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function, f(s,s8) 5 ^R8(s)R8(s8)&, and so further discussion of the boundary condi
tions is delayed until a full formulation in terms off(s,s8) is introduced.

B. Tube diameter and persistence length under deformation

The retraction term in Eq.~7! allows the accumulation of chain stretch in a sufficiently
rapid deformation. Consequently, further modifications of equation 1 are needed to m
the influence of chain stretch on the other relaxation processes. Before these mod
tions can be made the question summarized in Fig. 3 must be answered. Unde
influence of a strong deformation how does the entanglement network deform with
test chain? We note that it is possible that both the tube diameter and tube persist
length change under deformation. If we assume a constant tube diameter the two sim
possibilities are that the number of entanglements experienced by the chain remains
equilibrium value and, effectively, the tube persistence length grows~a! or the number of
entanglements increases in proportion with the primitive path length of the chain~b!. This
corresponds to a tube persistence length which is fixed under deformation. The argum
for scenario~b!, the constant tube persistence length, appear to be stronger for a var
of reasons. Our theory is explicitly applicable only to volume conserving deformatio
hence, the monomer density surrounding the test chain is not strain dependent. Whil
theory covers rapid deformations these deformations are still slow with respect to
local relaxation time on the scale of the tube diameter,te . Since entanglements should be
considered as mutual, delocalized topological interactions acting on a length scale o
tube diameter, the melt structure on this scale is not strongly perturbed from that o
equilibrium melt. We will assume scenario~b! from now on, but will be mindful that this
choice directly affects how the local chain stretch influences the other relaxation mec
nisms. It should be noted that other scenarios are plausible, including nonaffine cha
to the tube diameter. For such effects in networks see Rubinstein and Panyukov~1997!.

As a direct consequence of choosing a fixed tube persistence length the CCR ter
Eq. ~1! has to be modified. The physical reason for this modification is shown in Fig.
For an unstretched chain~a! the number of tube segments between beads and beads
11 is one. However, for a stretched chain~b! the number of segments is increased. Th



tor of
ingle
in

num-
atio.

ation
not
ber

chain

use

short
be

oice
local
ases.
enta-

tch.
tube
h.

terms
n-

1178 GRAHAM ET AL.
value is now proportional to the local stretch ratio (uR8(s)u/a). Therefore, (uR8(s)u/a)2

times as many tube hops are necessary to relax the chain segment betweens ands11.
However, the spring constant of each entanglement segment is increased by a fac
the local stretch. The net result is that the local influence of CCR is reduced by a s
factor of uR8(s)u/a. A more detailed derivation based on this argument is given
Appendix A. The renormalized CCR term is

]R~s!

]t
5 ¯1

3n

2

a

uR8~s!u
R9~s!1g̃~s,t !. ~8!

Similarly, the corresponding noise term is also renormalized because of the greater
ber of constraint release sites per local contour, in proportion with the local stretch r

^g̃a~s,t!g̃b~s8,t!& 5 na2
a

u^R8~s!&u
D~s2s8!dab . ~9!

We note that these two renormalisations are consistent with the fluctuation–dissip
theorem, which itself applies to the CCR Rouse relaxation system, even though it is
thermal, because it does drive the melt towards equilibrium. It is important to remem
that although we are using a continuous description, the model only describes the
correlation function on length scales greater than the tube diameter,a. The function
D(s2s8) is not infinitely high and thin, as in Milneret al. ~2001!, where a true delta
function was used, but it persists over a tube diameter with a height of one. Thus, we
the form

D~s2s8! 5 H1 for us2s8u ,
1

2

0 otherwise

. ~10!

This distinction is necessary since the solutions of the model are sensitive to the
length scale cut off of this function and so this cut off must explicitly be the tu
diameter.

C. CCR stretch relaxation

Chain stretch can also be relaxed by CCR. This was demonstrated by Meadet al.
~1998! who discussed this at length. The mechanism is summarized in Fig. 4. The ch
of Rouse tube hops is influenced by the local stretch since tube hops that relax
stretch will become increasingly energetically favorable as the chain stretch incre
Hence, the distribution of CCR events between relaxing chain stretch and chain ori
tion depends upon the local chain stretch. Meadet al. ~1998! introduced anad hoc
function of chain stretch to switch the relaxation of CCR between orientation and stre
An advantage of our more detailed local consideration of CCR is that the Rouse
hopping term in Eq.~1! is already weighted by the local potential due to chain stretc
This term already contains the above mechanism in the balance between the
(3n/2) R9(s) andg(s). No ‘‘switch function’’ is necessary since both stretch and orie
tation are implicitly contained in the solution off(s,s8) as a result of employing a local
model of CCR from the outset.
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FIG. 4. Mechanism by which CCR relaxes chain stretch.
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D. Suppression of reptation due to stretch

The termR(s,t1Dt) 5 R@s1Dj(t),t# in Eq. ~1! models reptation by stating that in
a time intervalDt the monomer that was at positions at timet shifts to the position that
was previously occupied by monomers1Dj(t). This argument is only valid if the
monomers are at their equilibrium separation. For a stretched chain the above
artificially accelerates reptation in proportion with the chain length since the physi
distance that a monomer must diffuse to relax is longer in a stretched chain. To en
that the chain diffusion occurs at a constant rate in real space rather than monomer s
we reduce the displacement due to reptation by a factor ofZ/Z* (t), whereZ* (t) is the
number of tube segments occupied by the stretched chain. The new reptation term

R~s,t1Dt ! 5 RS s1
Z

Z* ~ t !
Dj~ t !,t D . ~11!

The effective number of entanglements is proportional to the arc length of the primit
path and Eq.~20! gives an expression forZ* (t). It might be argued that Eq.~11!
suppresses reptation with a global expression for the chain stretch whereas it woul
more accurate to use the local value of the chain stretch at each point along the c
@a/R8(s)# . This more detailed procedure was checked and the results were not sens
to this alteration and so we use Eq.~11! for simplicity.

E. Microscopic equation of motion

Collecting together the modified expressions for reptation, CCR and retraction@Eqs.
~7!, ~8!, and~11!#, expanding the reptation term to second order inDj(t), we obtain the
following microscopic stochastic difference equation, which replaces Eq.~1!:
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1180 GRAHAM ET AL.
R~s,t1Dt ! 5 R~s,t !1Dj~ t !
Z

Z* ~ t !

]R

]s
1

Dj~ t !2

2

Z2

Z* ~ t !2

]2R

]s2

1DtFk–R1
3n

2

a

uR8~s!u
R9~s!1g̃~s,t !1

1

2p2te
S R8

]

]s
ln~R8•R8!D G .

~12!

The second and third terms on the right-hand side describe reptation, the fourth is
effect of convection, the fifth and sixth correspond to the action of constraint release, a
the final term accounts for chain retraction. The local time scale of the model is fixed b
te , the Rouse time of an entanglement segment. A knowledge ofte and the number of
entanglements,Z, is sufficient to define the reptation time,td , and the chain Rouse time,
tR :

td 5 3Z3te, tR 5 Z2te. ~13!

Neither of these time scales is explicitly fed into the model but they are the natur
characteristic time scales of the solutions of Eq.~12!.

F. Equation for the tangent correlation function

Following the approach of Milneret al. ~2001! a time evolution equation forf(s,s8)
5 ^R8(s)R8(s8)& can be found from Eq.~12!:

]fab~s,s8!

]t
5

]2

]s]s8 S lim
Dt → 0

^Ra~s,t1Dt !Rb~s8,t1Dt !&2^Ra~s,t !Rb~s8,t !&

Dt D .

~14!

An expression for the term̂Ra(s,t1Dt)Rb(s8,t1Dt)& is found by taking suitable
averages of Eq.~12! using the known moments of the two noise terms, the fact that th
reptative noise is not correlated with the chain configuration and the Ito–Stratonovi
relation:

^g̃a~s,t!Rb~s8,t!& 5
1

2
na2

a

^uR8~s!u&
D~s2s8!dab . ~15!

In order to obtain a closed expression forf(s,s8), the following closure approximations
are necessary. In the retraction term, we approximate

KRa8~s!Rb~s8!
]

]s
ln@R8~s!•R8~s!#L ' Rs^Ra8 ~s!Rb~s8!&

]

]s
ln@^R8~s!•R8~s!&#,

~16!

whereRs is, to a first approximation, an order unity geometric prefactor that optimize
the decoupling approximation. For narrow distributions ofR8(s), we would anticipate
Rs 5 1, but for broad distributions around a zero mean, rounding permutations of po
sible decouplings suggestsRs . 1. For a discussion of the optimal value see Sec. VII C.
In the CCR term we use

KRa9~s!Rb~s8!

uR8~s!u L '
^Ra9 ~s!Rb~s8!&

A^uR8~s!u2&
. ~17!
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This leads to a PDE forf(s,s8), which is suitable for direct solution,

]f

]t
5 k–f1f–kT1

1

3p2Zte
S Z

Z* ~ t !
D 2S ]

]s
1

]

]s8D
2

f

1
3na

2 F ]

]s S a

ATr f~s,s!

]

]s
~ f2feq!D 1

]

]s8 S a

ATr f~s8,s8!

]

]s8
~ f2feq!D G

1
Rs

2p2te
F ]

]s S f
]

]s
ln@Tr f~s,s!# D 1

]

]s8 S f
]

]s8
ln@Tr f~s8,s8!# D G . ~18!

We also use the identity]/]s feq 5 2 ]/]s8 feq in deriving Eq.~18!. The spatial argu-
ments off are (s,s8) unless shown otherwise. The equilibrium value off is determined
by the CCR noise term and is given by

feq 5
a2

3
D~s2s8!I . ~19!

As discussed above, the boundary conditions are more easily expressed in termsf
than R and so can be introduced at this stage. The conditions must be applied on
perimeter of the square region given bys,s8 5 0–Z. The correlationf(s,s8) is zero
everywhere on the perimeter except at the two diagonally opposite corners,s,s8 5 0 and
s,s8 5 Z, wheref 5 a2I /3. Essentially, the two end vectors must be isotropic, uncorre
lated with any other point on the chain and of lengtha. The configuration offeqdescribes
a chain distribution for which this is true at every point along the chain. Hence,feq obeys
the given boundary conditions.

Equation~18!, along with boundary conditions, describes the dynamics of the tub
tangent correlation function,f(s,s8). However, it requires expressions for the instanta-
neous number of entanglements,Z* (t), and the constraint release rate,n, both of which
depend on the instantaneous chain configuration. In the following sections we der
expressions for these quantities in terms off(s,s8).

G. Number of entanglements

Since the tube diameter is assumed to be fixed the chain accumulates additio
entanglements as it stretches. The instantaneous number of entanglements,Z* (t), is the
normalized arc length of the primitive path,

Z* ~t! 5 E
0

Z
A^R8~s!•R8~s!/a2&ds 5

1

a
E

0

Z
ATr f~s,s!ds, ~20!

where we have assumed that

^AR8~s!•R8~s!& ' A^R8~s!•R8~s!&.

H. Constraint release rate

We require an expression for the constraint release rate due to retraction,l, which
must be found self consistently from the current chain configuration. Physically, t
retraction rate is the frequency with which one chain end retracts a distance of the t
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diameter. The frequency of constraint release events per chain is rate of change of l
of the chain due to retraction divided bya. The rate per constraint,l, is 1/Z* (t) times
this value,

l 5 2
1

Z* ~t!

]

]t
E

0

Z1

a
ATr f~s,s!uretractionds

5 2
Rs

2aZ* ~ t !p2te
E

0

Z 1

ATr f~s,s!

]

]s S Tr f~s,s8!
]

]s
ln@Tr f~s,s!# D U

s8 5 s

ds,

~21!

where the rate of change of Trf(s,s) due to retraction is found using just the retractio
term from Eq.~18!. Finally, the total constraint release rate,n, can be found from

n 5 cnSl1
4

p2Z2Z* ~t!te
D. ~22!

IV. CONTOUR LENGTH FLUCTUATIONS

In real polymers the primitive chain path length continually fluctuates about its m
value due to thermal noise. This process allows; AZ tube segments at each end to rela
faster than by reptation. Thus, if the number of entanglements is relatively small, a
usually the case with real polymers, contour length fluctuations can relax a signifi
proportion of the chain far faster than reptation. CLF can, in principle, be accounted
by replacing the reptation noise term,Dj(t), with a term in which each point on the
chain contour has an independent thermal force. However, a rigorous solution of
system for a general nonlinear flow is a formidable problem. A more tractable appro
is to embed an account of CLF within our formulation, guided by more detailed theo
of linear rheology. In this work we incorporate CLF in an approximate way that
consistent with the linear theory of Likhtman and McLeish~2002! in the limit of small
deformation rates. We account for the rapid relaxation of the chain ends by replacing
fixed diffusion constant in the reptation term of Eq.~18! by a function,DCLF(s,s8),
which depends upon position along the chain contour. We choose a form forDCLF(s,s8)
by drawing upon the more rigorous linear treatments of CLF by Likhtman and McLe
~2002!. This suggests that close to the chain end the relaxation rate should vary ass22 to
produce the correct early time behavior,s(t) ; 12ct1/4, and that far from the chain
ends CLF should be suppressed, making reptation the dominant mechanism. From
argument we obtain the following form of an effective one-dimensional diffusion co
stant, which covers the relaxation of local correlations (s 5 s8) of the tangent correlation
function.

D1d~s! 5 5
ad

2

s2 s , adAZ

ad
2

~Z2s!2 Z2s , adAZ

1/Z otherwise

. ~23!

However, our formalism requires a two-dimensional function,DCLF(s,s8), that describes
the relaxation of tangent correlations of two separate points on the chain. We obtain



tour
the

x
ct

the

e of

ust
rials,
by

r,
ces a

as

r
his

1183THEORY OF LINEAR, ENTANGLED POLYMER CHAINS
function by assuming that, due to the strong dependence of relaxation rate on con
position, the relaxation rate of two separate points on the chain is dominated by
relaxation of the faster of the points. This leads to

DCLF~s,s8! 5 D1d~smin!, ~24!

wheresmin 5 Min(s,s8,Z2s,Z2s8). Using this approach it is also possible to include
the suppression of CLF by the local stretch through a similar argument to Sec. III D.~see
Appendix B for a derivation of this term!. The new term in thef equation is finally

]f

]t
5 ¯1

1

3p2te

a

ATr f~smin,smin!
S ]

]s
1

]

]s8DF aDCLF~s,s8!

ATr f~smin,smin!
S ]

]s
1

]

]s8DfG . ~25!

We fix the constantad by insisting that the predictions of the model for the comple
modulus,G8(v) andG9(v), under linear oscillatory shear should agree with the exa
treatment of Likhtman and McLeish~2002!. The comparison was performed with con-
straint release removed (cn 5 0) and values ofZ ranging from 6 to 40. Choosingad
5 1.15 was found to provide agreement to within typical experimental error between

two theories for frequencies up tovte ; 1 for all of the tested values ofZ, indicating
that the chosen implementation of CLF accurately approximates the first passage tim
a Rouse chain in a tube. The small moderation of the linear spectrum in the rangetR

21

, v , te
21 arising from longitudinal Rouse modes@Likhtman and McLeish~2002!#

is also accounted for by this parametrization.

A. Thermal constraint release from contour length fluctuations

The additional mobility of the chain end due to CLF, above that from reptation, m
also be accounted for in the constraint release rate. For moderately entangled mate
constraint release from CLF can be significant in a linear flow. We account for this
adjusting the reptative constraint release term in Eq.~3!. In reality, the chain experiences
a broad spectrum of constraint release~CR! rates due to both reptation and CLF, howeve
we approximate this process with a single linear constraint release rate. This produ
weak dependence of the prefactor in the term for reptation constraint release~rcr! on both
Z andcn . In contrast, a full theory for CR faithful to the whole spectrum of CR, such
Likhtman and McLeish~2002!, would not require such a prefactor. Thus,

n 5 cnSl1
1

3brcr~Z,cn!Z2te
D . ~26!

We fix b rcr(Z) by taking a power series in 1/AZ, the appropriate expansion parameter fo
CLF, and fitting the theory at low shear rates to the full theoretical treatment of t
problem in the linear regime by Likhtman and McLeish~2002!. We obtain

brcr~Z,cn! 5 @110.46 log10~cn!#S 2.132
8.91

AZ
1

12.29

Z D . ~27!

The above form has been verified against the linear theory in the rangesZ 5 6–40 and
cn 5 0.1– 1.
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1184 GRAHAM ET AL.
B. Rouse motion on subtube diameter length scales

To capture the correct chain dynamics for times shorter thante the motion of the chain
on length scales less than the tube diameter must be taken into account. We mod
using the dynamics of a free Rouse chain. Since the model is applicable only to d
mation rates that are small in comparison with 1/te these motions are always in linea
response. From this we evaluate the stress contribution as

sRouse~ t ! 5 È t
G~ t2t8!@k~ t8!1k~ t8!T#dt8. ~28!

The contribution toG(t) from these Rouse modes is given by Doi and Edwards~1986!

G~t! 5
Ge

Z
(

p 5 Z

N

expS2
2p2t

tR
D. ~29!

Generally, this term adds a background viscosity that has a non-negligible contrib
when t & te or when the number of entanglements is small.

V. REAL-SPACE SOLUTION

Collecting together the results from the previous sections we obtain a closed syst
equations, which is summarized in Table I. The system includes the effects of
retraction, thermal and convective constraint release, and variable number of enta
ments. The equations in Table I can be solved numerically and, in a departure from
method of Milneret al. ~2001!, we compute the solution forf(s,s8) via a finite difference
scheme in real space rather than using a Fourier series. The computation time for th
space version isZ times faster than the Fourier approach and the form offeq discussed
above is more conveniently expressed in terms of real variables. We also note th
approach of Milneret al. ~2001!, in which feq contains a true delta function and th
Fourier series is truncated at the tube diameter length scale, leads to some erro
results. For example when convection and retraction are considered in isolation th
lutions fail to produce some known analytic results. If the chain retracts rapidly eno
to remain at its equilibrium length then the retraction rate should be exactlyk:S, whereS
is the average orientation of the tube segments. Under shear, this condition becom

l 5
5ġsxy

12Ge
, ~30!

since, for an unstretched chain,s 5 12/5GeS. The Fourier solution of the MML model
overpredicts the retraction rate in this regime by approximately a factor of 2. Addit
ally, under these flow condition and in the absence of constraint release, tube seg
should become completely aligned in the flow direction at large strains and thus ta
correlations between all points along the chain should saturate. Hence, the fun
f xx(s,s8) should tend to a fixed value for alls,8s as t → `. Again, the MML model
does not produce this behavior. This indicates that the retraction term produces
motion that acts perpendicularly to the chain contour and so produces some art
misalignment of the chain. Both of these artifacts tend to produce steady-state
predictions that are unrealistically high. The problems are due to the sensitivity o
system to the precise implementation of the truncation of the delta functions use
Milner et al. ~2001!. The real space finite difference method outlined above has
correct behavior in both of the above situations and the convergence of the results
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cates their independence from the length-scale truncation of this method of solut
Details of the finite difference scheme are given in Appendix C.

We note that many rheologists are interested only in rheological predictions. For
reason we have developed a single mode equation for the stress tensor based i
model. Details of this work can be found in Likhtman and Graham~2003!.

TABLE I. Closed system of equation including describing the dynamics of an ensemble of entangled li
polymers including: contour length fluctuations, retraction, constraint release, and variable number of enta
ments.

Evolution of tangent correlation function

]f

]t
5 k–f1f–kT ~convention!

1
1

3p2te

a

ATr f~smin ,smin!
S ]

]s
1

]

]s8DS aDCLF~s,s8!

ATr f~smin ,smin!
S ]

]s
1

]

]s8DfD ~reptation 1 CLF!

1
3na

2 F ]

]s S a

ATr f~s,s!

]

]s
~ f2feq!D 1

]

]s8 S a

ATr f~s8,s8!

]

]s8
~ f2feq!D G ~CR!

1
Rs

2p2te
F ]

]s
S f

]

]s
ln@Tr f~s,s!# D 1

]

]s8 S f
]

]s8
ln@Tr f~s8,s8!# D G . ~retraction!

Equilibrium configuration Degree of entanglement

feq~s,s8! 5 H 1

3
I for us2s8u , 1/2

0 otherwise

Z* ~ t ! 5
1

a E0

Z
ATr f~s,s!ds

CLF diffusion smin andad

DCLF~s,s8! 5 H ad
2

smin
2 smin , adAZ

1/Z otherwise

smin 5 Min(s,s8,Z2s,Z2s8)
ad 5 1.15

brcr(Z,cn) Constraint release rate

brcr 5 ~110.46 log10~cn!!S 2.132
8.91

AZ
1

12.29

Z D n 5 cnS l1
1

3brcr~Z,cn!Z* ~ t !Z2te
D

Retraction rate

l 5 2
Rs

2aZ* ~ t !p2te
E

0

Z 1

ATr f~s,s!

]

]s H Tr f~s,s8!
]

]s
ln@Tr f~s,s!#J U

s8 5 s

ds

Stress

s 5
12Ge

5Z E
0

Z

f~s,s!ds1
Ge

Z E
2`

t

(
p 5 Z

N

expS2
2p2~t2t8!

Z2te
D@k~ t8!1k~ t8!T#dt8
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FIG. 5. Theory predictions of steady state shear stress~broad lines! and first normal stress difference~thin
lines! as a function of shear rate (cn 5 0.1, Rs 5 1).
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VI. RESULTS

The equations in Table I comprise a closed system to determinef(s,s8), which can be
solved numerically. From the chain configuration the stress can be obtained via Eq.~4!
and with an additional contribution from the unentangled Rouse modes of the chain@Eq.
~28!#. A time step of ; 0.8te(Z/N)2 was found to give convergent results to within an
error of 1% for the parameter ranges we investigated. As discussed above, the result
also independent of the number of points,N, for largeN. All presented results are from
converged calculations.

A. Steady state in shear

Figure 5 shows the steady-state shear stress predictions against shear rate, norm
by te , for a range of values ofZ. If the curves are plotted with the shear rates expresse
in terms ofġtR , where the Rouse time is given by Eq.~13!, then the results superimpose
at high rates (ġtd @ 1) where CCR and retraction are the dominant relaxation mech
nisms. This holds untilġte * 1, where at these very high rates the assumption that th
chains are at equilibrium on length scales less than the tube diameter begins to b
down. Note the absence of a shear stress maximum even for a large number of enta
ments. The results show a plateau region for shear rates for which 1/td ! ġ ! 1/tR ,
where CCR is the dominant relaxation mechanism and the model solutions are
similar. For a comparison with experimental steady-state shear stress data see Fig. 1~a!.

B. Transient startup of simple shear

Figure 6 shows the transient theory predictions from startup of simple shear fo
range of shear rates. The transient predictions display a variety of important features.
ġtd , 1 the shear stress is in linear response and normal stress; ġ2, neither have
overshoots. Forġtd ; 1 the shear stress has a weak overshoot, while the normal str
remains monotonic. At shear rates around the inverse Rouse time both stresses
overshoots and both the strain at peak stress and the overshoot size increase with
rate. These features are indicative of chain stretch. At very high rates the stresses ex
small undershoots before attaining steady state. Similar undershoots have been rep
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FIG. 6. Transient predictions for shear stress and normal stress against strain,g, for startup of simple shear.
Model parameters:Z 5 20, cn 5 0.1, Rs 5 1 with shear rates fromġtR 5 21 to linear response.
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in experimental studies@Osakiet al. ~2000!#. The transient curves converge rapidly with
increasingN, with the steady-state value having the slowest convergence.

The assumption of constant tube diameter and persistence length has an intere
effect on the size of the overshoot in the shear stress. Constraint release hastens s
relaxation and so tends to lower the peak stretch value. It also raises the steady state
through its influence on orientation. The net effect is to reduce the size of the st
overshoot, measured by the ratio of the maximum shear stress to the steady state
However, the renormalisation of the influence of CCR, resulting from the assumption
a constant tube persistence length, acts to weaken the action of CCR on an exte
chain. Thus, for the calculations in Fig. 6 the overshoot size grows with increasing sh
rate in agreement with trends seen experimentally. Alternatively, if the assumption
the number of entanglement segments remains fixed even in a stretched chain is m
the modification of Eq.~8! must be omitted. In this case, the theory predicts that th
overshoot size remains relatively modest, even at very high shear rates, resultin
predicted overshoots that are too weak to explain the widely observed experime
values. A similar difficulty was reported for the model of Meadet al. ~1998! by Pat-
tamaprom and Larson~2001! and this may be attributed to the lack of CCR-stretc
renormalization in their model.

Due to the decoupling approximation in Eq.~16! our model predicts a zero value for
the second normal stress difference. This is a clear disadvantage when compared
Doi–Edwards model. However, the experimental values of the second normal st
difference are, typically, very small relative to other components of the stress tensor
are exceptionally difficult to measure. We believe that in order to make reliable pred
tions of the second normal stress difference, one needs to solve Eq.~12! without any
decoupling approximations.

C. Damping function

The model’s predictions of the relaxation function after a large step strain,G(t,g)
5 sxy /g, are time-strain separable in the following way

G~t,g! 5 h~g!G~t!, ~31!
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FIG. 7. Comparison of our model predictions for the damping function with those of the Doi–Edwards m
with and without the independent alignment approximation~IAA !.
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at long times. Consequently, a comparison with the predictions of Doi–Edwards m
for the damping function,h(g), can be made. Figure 7 shows that the predictions of
two models are very close and, since the Doi–Edwards model is known to be in g
agreement with experimental data for this measurement, we conclude that the our m
will also successfully capture such data.

D. Single chain structure factor

The single chain structure factor,S(q), for an entangled liquid under strong flow ca
be obtained from the chain configuration through Eq.~5!. Figure 8 shows contour plots of
a melt under steady shear for a range of shear rates The plots are for a mode
nonlinear flow rate, a rate on the plateau, and a stretching flow both with and wit
contour length fluctuations. The angle made by the major axis of each elliptical con
gives an indication of the degree of chain alignment. For the slowest flowS(q) is only
weakly perturbed from an isotropic distribution. The plots corresponding toġtd 5 25
show most clearly the variation in degree of chain alignment with length scale. Con
length fluctuations reduce the degree of alignment in each case and distorts the iso
sity curves away from an elliptic shape. These plots indicate the usefulness of reso
the chain contour down to the length scale of the tube diameter and the addit
information that is provided by this approach. Future small angle neutron scatte
~SANS! data on sheared, well-entangled polymer melts will constrain theory is ways
measurements of stress alone are unable to do.

VII. COMPARISON WITH EXPERIMENTAL DATA

In this section we compare our theoretical predictions with a range of experime
data sets for entangled solutions of nearly monodisperse linear polymers from the l
ture @Menezes and Graessley~1982!; Menezes~1980!; Kahvand ~1995!; Hua et al.
~1999!; Osakiet al. ~2000!; Pattamaprom and Larson~2001!; Ye et al. ~2003!#. For each
set both linear oscillatory shear and nonlinear shear measurements, including vis
and first normal stress difference, both to steady state, are available. In some
measurements were made for a range of molecular weights at fixed monomer conc
tion. This enables a direct test of the hypothesis that the model parameters shou
independent of molecular weight. In all cases the polymer concentration was care
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FIG. 8. S(q) in steady shear for a range of shear rates. Model parameters:Z 5 20, cn 5 0.1, andRs 5 1.
Contours lines map the same value on each plot.
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chosen to minimize elastic instabilities while maximising the degree of entangleme
The material details are summarized in Tables II and III.

A. Determination of model parameters

The model requires five parametersGe , te , Me , cn , andRs . The first three of these
are specified by the linear rheology of the material and each is expected to vary w
chemistry and monomer concentration but not with molecular weight. The remaining t
parameters,Rs and cn , are dimensionless prefactors for the retraction and constrai
release terms, respectively. We set these parameters to universal values since enta

TABLE II. Parameters for two polybutadiene solutions used by Menezes and Graessley~1982! at fixed mono-
mer concentration. Material parameters are as quoted in the original papers, linear parameters are obtained
linear oscillatory shear and calculated parameters are computed from the other parameters.

Material values Linear parameters
Calculated

params.

Material
Mw

kg mol21 Conc.
Mw /Mn Ge

Pa
te

31023 s
Me

kg mol21 cn Z
tR
s

PBB 350 7% , 1.05 51779 4.156 42.7 0.1 8 0.266
PBD 813 7% , 1.05 51779 4.156 42.7 0.1 19 1.50
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TABLE III. Material parameters for a range of polystyrene solutions: PS/TCP@Kahvand~1995!#, f128-10
@Osaki et al. ~2000!#, 2.89 and 8.42 M@Pattamaprom and Larson~2001!#. Parameters are obtained by the
algorithm described in the text.

Material values Linear parameters
Calculated

params.

Material
Mw

kg mol21 Conc. Mw /Mn

Ge
Pa

te
31023 s

Me
kg mol21 cn Z

tR
s

PS/TCP 1900 13% 1.2 23711 7.755 158 0.1 12 1.117
f128-10 1090 10% sharp 1302 51.42 136 0.1 8 3.29
2.89 M 2890 7% 1.09 8075 1.911 270 0.1 11 0.23
8.42 M 8420 7% 1.14 8075 1.911 270 0.1 31 1.836
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polymers are believed to be governed by universal underlying dynamics. Thus, these
parameters cannot be tuned to individual data sets. Arguments leading to numer
values for these two dimensionless parameters are presented below.

The three linear parameters:Ge , te andMe , are found by fitting the linear theory of
Likhtman and McLeish~2002! to linear oscillatory shear measurements. We suggest tha
simultaneously fitting several molecular weights leads to more accurate values. The
rameters obtained for two polybutadiene solutions, PBB and PBD, are shown in Table
In principle, it is possible to compute the value ofMe for a solution from its melt value
using a relationship for the scaling with concentration,c,

Me~c! 5 Me
meltca. ~32!

However, the scaling exponent,a, has yet to be decisively determined. The two most
commonly used values for this exponent are 1 and 4/3. We verified that each of o
diluted values ofMe , throughout this paper, are consistent with 1, a , 4/3 by using
the melt values ofMe for polybutadiene and polystyrene from Likhtman and McLeish
~2002!.

We continue with arguments leading to universal values for the parameterscn andRs .
The value ofcn determines the number of retraction events necessary to produce one tu
hop of lengtha. The quality of agreement with the linear data is not strongly depende
on cn and provided it is in the range 0.1–1 good agreement with the complex modul
data is found~see Fig. 9!. Thus,cn cannot be cleanly specified by linear rheology and so

FIG. 9. Comparison with the Menezes and Graessley~1982! linear oscillatory shear data for three polybuta-
diene solutions: PBB, PBC (Mw 5 517 k) and PBD, withcn 5 1.0 ~a! andcn 5 0.1 ~b!. Model parameters,
listed in Table II, are the same for each molecular weight.
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FIG. 10. Comparison with Menezes and Graessley~1982! PBB shear viscosity~a! and first normal stress
difference~b! data using parameters obtained only from linear rheology andRs 5 1.
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we fix its value by the following argument. Milneret al. ~2001! indicated thatcn & 1
and they demonstrated that a value greater than 0.06 was sufficient to remove the
stress maximum. Thus, to choose from inside this range, we setcn 5 0.1 since values
closer to order 1 produce smaller shear stress overshoots than are seen experime
The final parameter,Rs , accounts for the decoupling approximation in the retractio
term. To proceed we initially set this value to unity.

In table II the calculated parameters are not free. The value ofMe fixes the number of
entanglements,Z, for a particular molecular weight viaZ 5 Mw /Me and the Rouse time
is given bytR 5 Z2te . The Rouse time in not directly inserted into the model and
shown merely to allow a convenient calculation of the stretching Weissenberg num
ġtR .

B. Parameter free comparison with nonlinear data

In the algorithm described above all model parameters are either set to unive
values or are obtained from linear oscillatory shear measurements. Thus, a paramete
comparison with the nonlinear data can be made. The results for transient shear
normal stresses of PBB are shown in Fig. 10. The agreement with the moderately
linear rates (ġ 5 0.34– 3.40 s21) is good. However, the model overpredicts the pea
stress value at the higher shear rates. Similar results are obtained for both tran
viscosity and first normal stress difference for PBD. In both cases the agreement is g
for the nonlinear rates 1/td & ġ , 1/tR but the predicted peak stress value is too larg
for shear rates in excess of the inverse Rouse time.

In Fig. 10 the early time predictions (t , te) have a slope that is less than one. This
is a direct manifestation of the entangled Rouse modes which are described in Sec.
These modes are more prominent for the PBB predictions than the other materials s
the number of entanglements is relatively low.

C. Improvement of high rate predictions

The results of the previous section suggest that the model is effective for nonlin
flows that do not stretch the chain. However, the overprediction of the peak stress v
indicates that, withRs 5 1, the model accumulates too much chain stretch at the high
shear rates. To remedy this discrepancy we revise the value of the order one prefa
Rs . This parameter accounts for the decoupled retraction term in Eq.~18! and increasing
its value enhances the retraction rate.Rs is chosen by fitting the highest experimental rate
of the PBB shear viscosity data. A value ofRs 5 2.0 gives best fit to theġ 5 21.4
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FIG. 11. Comparison with Menezes and Graessley~1982! PBB shear viscosity~a! and first normal stress
difference~b! data using parameters obtained from linear rheology andRs 5 2.0.
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transient curve. The results for all rates are shown in Fig. 11 along with the normal st
comparison. Adjusting this single universal parameter produces good agreement a
all of the measured rates for both shear and normal stresses. We useRs 5 2.0 for all
subsequent calculations in this paper.

The generality of this universal value ofRs is demonstrated by Fig. 12, in which data
and theory for PBD are compared. The universal values are now fixed and the molec
weight independent parameters from Table II are used. Even though the algorithm al
no variation of the model parameters the agreement between data and theory is g
Below we will discuss the areas of slight disagreement in the context of a wider d
comparison.

D. Further entangled solutions

At this point our algorithm for parameter determination is fixed. We always setcn
5 0.1 andRs 5 2.0 and the remaining three linear parameters are obtained by fitting

linear oscillatory shear measurements, subject the constraint that they should be inde
dent of molecular weight. There is no freedom to vary the approach for each data set
are now in a position to test the robustness of this method by comparing with a br
range of literature data. We compare with non-linear shear data from a further th
publications: Kahvand~1995!; Osakiet al. ~2000!; Pattamaprom and Larson~2001!. The
linear parameters for these materials are contained in Table III; as before these param
were obtained by fitting the linear theory of Likhtman and McLeish~2002! to linear
oscillatory shear data. The resulting nonlinear data comparisons are shown in Figs.
15.

FIG. 12. Comparison with Menezes and Graessley~1982! PBD shear viscosity~a! and first normal stress
difference~b! data using parameters obtained from linear rheology andRs 5 2.0.
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FIG. 13. Comparison with Kahvand~1995! PS/TCP shear viscosity and first normal stress difference in stead
state~a! and transient plots~b!, and~c!.
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All plots show good agreement between theory and experiment over a wide range
shear rates, particularly considering the complete absence of non-linear parameter fi
for these plots. For most rates the peak stress value, the time of peak stress and
steady-state value are successfully predicted for both shear stress and first normal s
difference. Especially encouraging is that the model appears to capture the rheolog
behavior of a wide range of polymer fluids through an underlying theory for univers
nonlinear dynamics of these entangled polymers. If the linear rheology of a materia
known the model is able to make quantitative predictions for nonlinear flow. Furthe
more, since the linear parameters are molecular weight independent, the model can
FIG. 14. Comparison with Osakiet al. ~2000! f128-10 shear viscosity~a! and first normal stress difference~b!
data.
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FIG. 15. Comparison with shear rheology data by Pattamaprom and Larson~2001! and uniaxial extension data
by Ye et al. ~2003! for 2.89 M ~1! and 8.42 M~2! both with shear and extension viscosity~a! and first normal
stress difference under shear~b!. The extensional data have been shifted to the same temperature as the sh
data.
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curately predict variations due to molecular weight. The algorithm is successful des
variations in the degree of entanglement, monomer concentration, and chemical com
sition in the experimental data.

There are, however, some areas of systematic disagreement. At the highest ava
deformation rates there is an overprediction of the steady state stress and, to a l
extent, the peak stress values. This is particularly true of the normal stress at these
large rates. This effect occurs at deformation rates ofġtR * 15 ; 20 for all sets that
achieve these high Weissenberg numbers. The steady-state normal stress compari
Fig. 13~a! demonstrates this onset most clearly and indicates that the model predicts
much stretching in this regime. However forġtR & 15 the universality of our choice for
Rs is clearly evident. The disagreement for times, 0.1 s with the data of Pattamaprom
and Larson~2001! is due to a communication delay between the motor and transduce
acknowledged in the original paper.

We have already advanced one explanation for the need for the parameterRs : that it
results from the closure approximation used in the retraction term. It is known that t
type of closure can lead to errors of order one, which would account for the neces
prefactor. This could be resolved by comparing the solutions of the closed equations
stochastic simulations of Eq.~12!. An alternative explanation is that the method of de
termination of the Rouse time from the linear rheology is relatively indirect. This tim
scale dominates the nonlinear regime, yet it must be inferred from a knowledge of
terminal behavior of the material in linear shear. This region of the complex modulus
controlled by a combination of CLF, reptation and constraint release, and the reliability
this method for obtaining the Rouse time depends on the implementation of these
cesses in the relevant linear theory. Finally, it is possible that the model omits a phys
process that acts to accelerate chain retraction inside a tube. One possibility would b
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FIG. 16. Comparison with Yeet al. ~2003! steady state uniaxial extension data for 2.89 and 8.42 M. The mod
has no steady state value forėtR * 1 since it omits chain finite extensibility effects. Experimental data ar
shifted to 40 °C.
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change our assumptions about deformation of the tube under flow, as discussed in
III B. However, it is not obvious how this would lead to faster chain retraction. This issu
may also explain the overprediction of the peak stress values at very large shear rate
seen in the data comparison.

E. Extensional flow

The two solutions used by Pattamaprom and Larson~2001! have also been recently
characterized in nonlinear uniaxial extension by Yeet al. ~2003!. We used the time–
temperature superposition shift factors from linear rheology to reduce the extensio
data to the same temperature as the shear rheology and a comparison with the tran
data is shown in Fig. 15. For these calculations the model parameters are identica
those used for the shear calculations; only the deformation tensor has been chan
Significantly, the model also shows reasonable agreement with the transient extens
curves. It certainly does not systematically under or overpredict of the degree of ch
stretching and the agreement between the 8.42 M data and theory for theė
5 1.875 s21 transient is particularly close. This suggests that our chosen value ofRs
5 2.0 is also applicable to extensional flows. A comparison with the steady-state data

shown in Fig. 16 and the model is in reasonable agreement at rates for whichėtR
& 1. In particular, the model correctly predicts the degree of strain softening at weak

non-linear rates. The model fails in steady state at high extension rates since our assu
tion that the chain spring constant is linear in invalid in this region. At large strains i
rapid extension deformations finite extensibility of the chain contour becomes significa
and this effect controls the experimental steady state value.

VIII. CONCLUSIONS

The model presented in this paper contains a series of refinements to the Doi–Edwa
model of reptation in entangled linear polymers that extend it into the strongly nonline
regime of chain stretch. In addition to reptation, the effects of finite rate retraction an
convective constraint release are included. All of these processes are accounted for
microscopic stochastic partial differential equation for the motion of the chain conto
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FIG. 17. Derivation of CCR term for a stretched chain.
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from which the model is derived. In particular, CCR is treated as alocal relaxation and
excitation of the tube. Real-space solutions of the model in strong shear indicate
absence of a steady-state maximum in the shear stress. Through this detailed loca
ment of relaxation it is possible to predict not only mechanical stresses but also s
chain structure factor under flow. Also, included is chain stretch which consider
improves the transient predictions for rapid deformations. In addition, we have con
ered the tube diameter to be fixed even under strong flow as opposed to an assump
a constant number of entanglements per chain. Our assumption leads to a weaken
the influence of CCR when the chain is stretched, improving the size of the pred
stress overshoot in shear compared to the model of Meadet al. ~1998!, which omits this
mechanism. The experimental observation of large overshoots supports the assum
that the tube diameter is not strongly perturbed from its equilibrium value by deforma
rates up to several times the inverse Rouse time of the chain.

An accurate comparison with a broad range of experimental data in nonlinear s
encompassing many different entangled solutions, was made. All model parameters
either fixed by linear oscillatory shear measurements or were set to universal values
no non-linear fitting to individual data sets. With no parameter adjustment the model
shown to be in reasonable agreement with extensional measurements made on one
investigated materials.

The physical origin of all the model parameters is clear except for the prefactor to
retraction term,Rs , which is shown to optimize predictions uniformly across all ava
able data sets with a value of 2.0. The value of this universal number may attribute
either the decoupling approximations used to produce a closed equation or missing
ics from the model derivation. Further work and a complimentary investigation of
decoupling approximations will be necessary to resolve this issue.

APPENDIX A: DERIVATION OF STRETCH-CCR RENORMALIZATION TERM

In this appendix we derive the modification of the constraint release term in the M
model to include the effect of chain stretch. In the MML model the Rouse-like CCR te
was derived by considering the motion of a Brownian particle moving between a seri
obstacles which disappear and reappear with frequencyn and subject to an effective
potential which depends on the chain spring constant@see Graham~2002! for details of
this derivation#. We assume that the tube diameter is fixed under deformation and rec
pute the effective potential for a stretched chain to obtain a generalized CCR term~Fig.
17!. In equilibrium there areNe monomers per tube segment and as the chain stretc
this number reduces in proportion with the local stretch. Thus, at any instant in time
tube segment at positions will contain
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Ne* ~s,t! 5
a

uR8~s!u
Ne

monomers. Treating the tube segment as a Gaussian chain ofNe* monomers, gives the
spring force acting on that tube segment as

F 5 2
3kBT

Ne* ~ t !b2 ~Rn2Rn1Ne* (t)1Rn2Rn2Ne* (t)!, ~33!

which, in the continuous limit, becomes

F 5
3kBT

Ne* ~ t !b2 Ne* ~ t !2
]2R

]n2 , ~34!

rescaling in terms of the tube variable,s gives

F 5
3kBT

a2

a

uR8~s!u

]2R

]s2 . ~35!

In the derivation of Milneret al. ~2001! the term corresponding to Rouse-like tube mo-
tion is (na2/2kBT)F which leads to the required result.

]R

]t
5 ¯1

3n

2

a

uR8~s!u
R9~s!. ~36!

APPENDIX B: MODIFIED CLF TERM FOR A STRETCHED CHAIN

In one dimension the contour variable diffusion equation is

]f

]t
5

]

]s S D~s!
]

]s
f~s!D . ~37!

However, when the chain is stretched this form artificially accelerates the relaxation. T
diffusion should occur a fixed rate in real space,x, not monomer space. Thus a more
general form is

]f

]t
5

]

]x S D~s!
]

]x
f~s!D 5

ds

dx

]

]s S D~s!
ds

dx

]

]s
f~s!D . ~38!

Using ds/dx 5 a/uR8(s)u, we obtain

]f

]t
5

a

uR8~s!u

]

]s S D~s!
a

uR8~s!u

]

]s
f~s!D , ~39!

which we generalize into two dimensions:

]f

]t
5 1

1

3p2te

a

ATr f~smin,smin!
S ]

]s
1

]

]s8D aDCLF~s,s8!

ATr f~smin,smin!
S ]

]s
1

]

]s8Df. ~40!

The influence of this renormalization of the CLF term with stretch is generally minim
since the chain stretch is small near the chain ends where the fluctuations are m
significant.
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APPENDIX C: FINITE DIFFERENCE SOLUTION OF THE MODEL

To obtain a real space solution we subdivide the chain intoN11 points and define the
function

f[ p,q] 5
1

a2 fS pZ

N
,
qZ

N D , ~41!

for p,q 5 0–N. The boundary conditions aref[ p,q] 5 f[ p,q]
eq , on the the perimeter of the

area given byp,q 5 0–N, at all times. A coupled system of (N21)2 ordinary differen-
tial equations for the remainingf[ p,q] is obtained from Eq.~18! using following finite
difference scheme for all derivatives with respect tos and s8. First and second order
derivatives are defined as follows:

]

]s
~f[ p,q] ! 5

N

2Z
~ f[ p11,q]2f[ p21,q] !,

~42!
]2

]s2~f[ p,q] ! 5 S N

Z D 2

~ f[ p11,q]1f[ p21,q]22f[ p,q] !,

and the following derivatives are needed for the CLF term:

S ]

]s
1

]

]s8Df[ p,q] 5
N

2Z
~ f[ p11,q11]2f[ p21,q21]!,

~43!S ]

]s
1

]

]s8D
2

f[ p,q] 5 S N

Z D 2

~ f[ p11,q11]1f[ p21,q21]22f[ p,q] !.

Equation ~18! can be used to describe the time evolution of all internal points (p,q
5 1–N21) since all finite difference derivatives can be evaluated for these poi

Integrals are evaluated using the trapezium rule. Thus,

E
0

Z
F~s!ds '

Z

2N FF~0!1F~Z!12 (
p 5 1

N21

FS pZ

N D G . ~44!

The functionfeq is written in terms of the discrete variables according to Eq.~19! and it
is important that the following integral conditions forfeq hold:

E
0

Z
Tr feq~s,s8!ds8 5 1, E

0

Z
Tr feq~s,s!ds 5 Z. ~45!

The exact derivatives ofDCLF can be defined in terms of generalized step function
however, it is more convenient, in practise, to use a small finite step ins,s8, to approxi-
mate the derivatives ofDCLF. If the step,e, is sufficiently small (; 1022) the results
are independent ofe since this definition formally exact in the limite → 0.
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