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Abstract

In spite of the huge progress in studies of solitary waves in seventies and eighties of the XX
century as well as their practical importance, theory of solitons is far from being complete.
Only in 1989, Longuet-Higgins in his numerical experiments discovered one-dimensional soli-
tons for gravity-capillary waves in deep water. These solitons essentially differed from those
in shallow water when the KDV equation can be used. Being localized, these solitons, unlike
the KDV solitons, contain many oscillations in their shape. The number of oscillations was
found to increase while approaching the maximal phase velocity for linear gravity-capillary
waves and simultaneously the soliton amplitude was demonstrated to vanish. In fact it was
the first time ever that the bifurcation of solitons was observed.

This review discusses bifurcations of solitons, both supercritical and subcritical with ap-
plications to fluids and nonlinear optics as well. The main attention is paid to the universality
of soliton behavior and stability of solitons while approaching supercritical bifurcations. For
all physical models considered in this review solitons are stationary points of the correspond-
ing Hamiltonian for the fixed another integrals of motion, i.e., the total momentum, number
of quasi-particles, etc. For the soliton stability analysis two approaches are used. The first
method is based on the Lyapunov theory and another one is connected with the linear stabil-
ity criterion of the Vakhitov-Kolokolov type. The Lyapunov stability proof is maintained by
means of application of the integral majorized inequalities being sequences of the Sobolev’
embedding theorem. This allows one to demonstrate the boundedness of the Hamiltonians
and show that solitons, as stationary points, which realize the minimum (or maximum) of the
Hamiltonian are stable in the Lyapunov sense. In the case of unstable solitons the nonlinear
stage of their instability near the bifurcation point results in distraction of the solitons due
to the wave collapse.

Keywords: Soliton, supercritial & subcritical bifurcations, Lyapunov stability, integral
majorized inequalities.
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1 Introduction

After their discovery in the nineteenth century on the surface of fluids (see [1]) solitary waves

(or solitons) remained for a long time of interest only to a small number of specialists in hy-

drodynamics and mathematics who tried to prove their existence. In the late 1950s the soliton

concept penetrated into plasma physics. Here, due to the work by Sagdeev [2], Gardner and

Morikawa [3] and others, solitons were successfully used to construct the theory of a fine struc-

ture of shock waves under the conditions of rare collisions. Then solitons started to be used

widely in all branches of physics. In the late sixties the interest to solitons grew tremendously

with the discovery in 1967 of the Inverse Scattering Transform (IST) suggested by Gardner,

Greene, Kruskal and Miura [4]. They applied this method to integrate the Korteweg-de Vries

(KDV) equation. This equation describes the propagation of one-dimensional (1D) acoustic

waves in nonlinear media with weak dispersion; in particular, it can be applied to shallow water

gravity waves. In this paper it was first demonstrated that solitons in the KDV equation occur

to be structurally stable entities: they collide elastically between each other as well as with

the non-soliton part of the spectrum so that the asymptotic states are defined by solitons only.

The next equation of great physical importance to which the IST can be applied turned out

to be the 1D nonlinear Schrödinger (NLS) equation which was integrated in 1971 by Zakharov

and Shabat [5]. Like the KDV equation, the NLS equation is a universal model. It describes

the propagation of wave envelopes in nonlinear media with cubic nonlinearities; in particular,

it can be used for the description of pulse propagation in nonlinear fiber optics when the main

nonlinearity is connected with the Kerr effect. At the beginning of the seventies, when solitons

in the NLS equation were shown to be structurally stable [5] and when, a bit later, Hasegawa

and Tappet [6] suggested to use optical solitons as the information bit in fiber communications,

solitons became a very popular object for study in optical fibers. Interest in optical solitons

increased enormously in the last decades, stimulated by practical applications of the use of soli-

tons in modern communications systems [7, 8] (see the book [9] for recent progress in this area),

coupled with the availability if advanced techniques for characterizing their evolution [10]. Soli-

ton dynamics have also been shown to play a central role in the nonlinear propagation dynamics
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of supercontinuum generation and other phenomena in new generation optical fibers [11].

In spite of the huge progress connected with the development of IST (this is now a whole

branch of mathematical physics, often called “mathematical theory of solitons”, see, e.g., [12],

[13], [14]) as well as the practical importance of solitons, their theory is far from being complete.

For instance, in 1989, Longuet-Higgins [15] in his numerical experiments discovered 1D solitons

for gravity-capillary waves in deep water. These solitons essentially differed from those in shallow

water when the KDV equation can be used. Being localized, these solitons, unlike the KDV

solitons, contain many oscillations in their shape. The number of oscillations was found to

increase while approaching the maximal phase velocity for linear gravity-capillary waves and

simultaneously the soliton amplitude was demonstrated to vanish. In fact it was the first time

ever that the bifurcation of solitons was observed. This bifurcation was first explained by Iooss

and Kirchgässner [16] and independently by Akylas [17].

The physical reason for such a bifurcation can be easily understood. According to the

usual definition, solitons are nonlinear localized objects propagating uniformly with a constant

velocity (see, for example, [12, 13]). Thus, the soliton velocity V represents the main soliton

characteristics which often defines the soliton shape, in particular its amplitude and width.

It is well known that if the velocity V of a moving object is such that the equation

ωk = k ·V, (1.1)

where ω = ωk is the dispersion law for linear waves and k is the wave vector, has a non-trivial

solution, then such an object will lose energy due to Cherenkov radiation. This also pertains,

to a large extent, to solitons as localized stationary entities. They cannot exist if the resonance

condition (1.1) is satisfied. Hence follows the first, and simplest, selection rule for solitons: the

soliton velocity must be either less than the minimum phase velocity of linear waves or greater

than the maximum phase velocity. Mathematically it can be formulated also as the condition

of positiveness for the function Lk = ωk − k ·V > 0 if the touching of the plane ω = k · V
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Figure 1: The solid line corresponds to the dispersion relation ω =
√

gk + σk3 for gravity-
capillary waves. The dashed (straight) line corresponds to the soliton velocity. The arrows show
the direction of increase of the soliton velocity. At the point ω0, k0 , the straight line ω = kV
touches the dispersive curve.

with the dispersive surface ω = ωk happens from below and respectively negativeness for Lk

for the touching from above. The boundary separating the region of existence of solitons from

the resonance region (1.1) determines the critical soliton velocity Vcr .

As it is easily seen (Fig. 1), this velocity coincides with the group velocity of linear waves

at the touching point where the straight line ω = kV (in 1D) is tangent to the dispersion curve

ω = ωk (in the multidimensional case - the point of tangency of the plane ω = k · V to the

dispersion surface). If touching occurs from below, then the critical velocity Vcr determines the

maximum soliton velocity for this parameter range and, conversely, for touching from above Vcr

coincides with the minimum phase velocity. Two regimes are possible in crossing this boundary:

they correspond to supercritical or subcritical bifurcations (soft or rigid excitation regimes).

While approaching the supercritical bifurcation point from below or above, the soliton am-

plitude vanishes smoothly according to the same - Landau - law (∝ |V − Vcr|1/2 ) as for phase

transitions of the second kind (see, for instance, Ref. [18]). The behavior of solitons in this

case is completely universal, both for their amplitudes and their shapes. As V → Vcr solitons
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transform into oscillating wave trains with the carrying frequency corresponding to the extremal

phase velocity of linear waves Vcr . The shape of the wave train envelope coincides with that

for the soliton of the standard – cubic – NLS equation. The soliton width happens to be pro-

portional to |V − Vcr|−1/2 . Thus, the pulse monochromaticity improves as V → Vcr , becoming

complete at the bifurcation point.

As already mentioned above, bifurcations of solitons were first observed for gravity-capillary

waves in numerical simulations by Longuet-Higgins [15] and explained later in [16]-[17]. Then

a bifurcation — a transition from periodic solutions to a soliton solution — was studied in

Refs. [16] and [19] using normal forms (see also the review paper [21]). The stationary NLS

equation for gravity-capillary wave solitons was derived in Ref. [22]. In Ref. [23] it was shown

that this mechanism can be extended to optical solitons. In fact this paper provided the first

demonstration of the universality of soliton behavior near a supercritical bifurcation for waves

of arbitrary nature. It is worth noting that the universal character of solitons allows not only

to find their shapes but also to investigate their stability. This analysis, as shown in Ref.

[24], demonstrates that near supercritical bifurcation solitons are stable only in the 1D case.

This means that in two (2D) and three (3D) dimensions the soliton may be stable for velocities

smaller or larger than the critical velocity depending on whether the touching occurs from below

or above. For instance, such a situation arises for 3D solitons in three-wave systems [25], [26]

where, following the paper by Kanashev & Rubenchik [29], it is possible to estimate the region

of stable solitons using the Lyapunov approach. This region turns out to be separated from the

surface in the soliton parameter space where supercritical bifurcation happens [30].

The question of whether the bifurcation is supercritical or subcritical depends on the charac-

ter of the nonlinear interaction. In the 1D case, the supercritical bifurcation occurs for a focusing

nonlinearity when the product ω′′T < 0, where ω′′ = ∂2ω/∂k2 is the second derivative of the

frequency with respect to the wave number, evaluated at the touching point k = k0 , and T is
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the value of the matrix element T̃k1k2k3k4
of the four-wave interaction for ki = k0, i = 1, 2, 3, 4.

Here the tilde means that the matrix element is renormalized due to three-wave interactions;

in the present case this is the interaction with the zeroth and second harmonics. If ω′′T > 0,

which corresponds to a defocusing nonlinearity, then there are no solitons — localized solutions

— with amplitude vanishing gradually as V → Vcr . In the theory of phase transitions this

corresponds to a first-order phase transition, and in the theory of turbulence, using Landau’s

terminology [31], it corresponds to a rigid regime of excitation. The transition through the crit-

ical velocity is accompanied by a jump in the soliton amplitude. For Hamiltonian systems such

as those considered in the present paper, the magnitude of the jump is determined by the next

higher-order nonlinear terms in the expansion of the Hamiltonian. Like for first-order phase

transitions, the universality of soliton behavior is no longer guaranteed in this situation. When

the amplitude jump at this transition is small, it is enough to keep a finite number of next order

terms in the Hamiltonian expansion to describe such a bifurcation. In phase transitions this

corresponds to a first-order phase transition close to a second-order transition, which occurs, for

example, near a tri-critical point. As shown in Ref. [32], this situation arises for 1D internal-

wave solitons propagating along the interface between two ideal fluids with different densities in

the presence of both gravity and capillarity. According to Ref. [32] the matrix element T in this

case vanishes for a critical value θcr of the density ratio ρ1/ρ2 equal to (21−8
√

5)/11 ≈ 0.2828,

where ρ1,2 are mass densities for upper and lower fluids, respectively. In particular, it follows

that the bifurcation for gravity-capillary waves in the deep water case is supercritical (when

ρ1/ρ2 = 0); this case corresponds to the first numerical experiments by Longuet-Higgins [15],

followed by the numerical experiments of Vanden–Broeck and Dias [20]. Subcritical bifurcations

can also be met for gravity water waves with finite depth when the matrix element T = 0 at

k0h ≈ 1.363. In nonlinear optics, as shown in [24], a decrease of T (Kerr constant) can be

provided by the interaction of light pulses with acoustic waves (Mandelstamm-Brillouin scatter-
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ing). If the jump in soliton amplitude is of order one then we need to keep all the remainder

terms in the Hamiltonian expansion. The situation in nonlinear optics, however, is different

from that for internal waves propagating along the interface between two fluids. First of all, the

difference is connected with the nonlocal character of the Hamiltonian expansion beyond the

classical cubic NLS nonlinearity for the fluid case [33], [34]. In both cases, however, in order

to find the Hamiltonian expansion the most simple way is to use the Hamiltonian formalism

[35]. In this review we will keep mainly the Hamiltonian description as the most adequate for

this problem; the alternative method of normal forms will be used for comparison. It is clear

that the method of normal forms demonstrates its efficiency for the analysis of bifurcations for

ordinary differential equations. The method of normal forms has some advantages and weak

points as well. For instance, unlike the Hamiltonian formalism, the introduction of envelopes

by means of the normal form method is not unique. This is due to the fact that the original

Hamiltonian equations lose their initial Hamiltonian structure after they are averaged. In the

Hamiltonian description, the introduction of the envelope is natural: it is constructed from the

inverse Fourier transform from normal wave amplitudes and can be used for the description of

any nonlinear waves. The difference in such a case will be in different constants, first of all in

the nonlinear coupling coefficients.

The above approach based on the Hamiltonian perturbation technique assumes renormaliza-

tion of the four-wave matrix element due to three-wave interactions. As mentioned above, for

the case of a wave train with carrying frequency ω0 and carrying wavevector k0 , it accounts

for the non-resonant interaction of a wave packet with its zeroth and second harmonics. If the

interaction between the fundamental harmonics and the second harmonics becomes resonant,

2ω(k0) ≈ ω(2k0),

the renormalization of the 4-wave matrix element breaks down. As a result the one-envelope

approximation can no longer be applied. In this situation one needs to consider two equations
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for the two independent envelope amplitudes related to the first and second harmonics. In the

simplest case, the corresponding system can be obtained as the reduction of the three-wave

system [25] when two amplitudes are identified. It is well-known that three wave packets with

carrier frequencies satisfying the triad resonant condition can form bound states - solitons - due

to their mutual nonlinear interaction [26]. In nonlinear optics the three-wave system describes

spatial solitons as well as spatial-temporal solitons in χ2 media [26], [28]. This system couples

amplitudes of three quasi-monochromatic waves due to quadratic nonlinearity. The familiar

results about the existence of bound states - solitons - due to their mutual nonlinear interac-

tion is also valid for the interaction of the first and second harmonics. The soliton family is

characterized by two independent parameters, a soliton potential and a soliton velocity. It can

be shown that this system, in the general situation, is not Galilean invariant. As a result, the

family of movable solitons cannot be obtained from the rest soliton solution by applying the

corresponding Galilean transformation. In Ref. [30] the region of soliton parameters was found

analytically and confirmed by numerical integration of the steady equations. On the bound-

ary of the region the solitons bifurcate. For this system there exist two kinds of bifurcations:

supercritical and subcritical. In the first case the soliton amplitudes vanish smoothly as the

boundary is approached. Near the bifurcation point the soliton form is universal, determined

from the NLS equation. For the second type of bifurcations the wave amplitudes remain finite

at the boundary. In this case the Manley-Rowe integral increases indefinitely as the boundary

is approached, and therefore according to the Vakhitov-Kolokolov-type stability criterion, the

solitons are unstable [30].

In this review we will discuss all the above problems dealing with the bifurcations of solitons

and their stability. All systems which are considered in this review belong to the Hamiltonian

type and soliton solutions are stationary points of the Hamiltonian, for fixed other integrals

of motion, such as the momentum, the number of particles, the Manley-Rowe integrals. In all
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the systems under consideration solitons are possible as a result of a balance between nonlinear

interaction and dispersive effects. In this review we follow two approaches for the analysis of

soliton stability. The first approach to soliton stability is based on the Lyapunov theorem.

In the conservative case, if some integral, say the Hamiltonian, is bounded from below (or

above), the soliton realizing this extremum will be stable in the Lyapunov sense. Because

soliton solutions represent stationary points of the Hamiltonian for certain fixed other integrals

of motion, they correspond to a conditional variational problem, and so to prove stability one

needs to demonstrate the boundedness of the Hamiltonian for these fixed integrals. One should

note, however, that without these fixed integrals, the Hamiltonians of such systems are usually

unbounded due to the nonlinear contribution; in other words, one can say that the Hamiltonians

of these systems do not possess a vacuum. This is an essential part of Derrick’s arguments [36].

But fixing other integrals of motion causes significant changes. It provides the Hamiltonian

boundedness that establishes stability for solitons realizing the corresponding extremum. First,

this approach was applied to KDV solitons in 1972 by Benjamin [37] and two years later to

three-dimensional solitons for ion-acoustic waves in magnetized plasma with low pressure [38].

Then this method was applied to the NLS equation and its generalizations (for more details see

the review [39]). Now it is one of the most powerful tools in soliton stability analysis. In this

paper we would like to pay a special attention to the use of the embedding theorems, and to

demonstrate how with their help it is possible to construct an estimate for the Hamiltonian for

a lot of models considered here.

Another method used in this paper is the linear stability analysis which for the NLS equation

gives the so-called Vakhitov-Kolokolov (VK) criterion [40]. This criterion says that if ∂Ns/∂λ2 >

0 then the soliton is stable and respectively unstable if this derivative is negative, where Ns is

the total number of waves for the soliton. This criterion has a simple physical meaning. The

value −λ2 for the NLS soliton can be interpreted as the energy of the bound state. If we add
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one particle to the system and the energy of this bound state decreases then one has a stable

situation. If by adding one particle the level −λ2 is pushed towards the continuous spectrum,

then such a soliton is unstable.

It is important to point out that establishing the Lyapunov stability for solitons is often a

problem which is solved more easily than that for linear stability. The linear stability analysis

assumes linearization of the equations of motion on the background of the soliton solution

and leads to an eigenvalue problem for some differential operators. The proof of linear stability

includes the establishment of completeness of the eigenfunctions. This in itself is a hard problem,

let alone determining the linear stability as a whole. However, while being effective for the

stability study of ground-state solitons, the Lyapunov method is hardly applicable to the stability

study of local stationary points. In this case linear analysis should be used to draw a conclusion

about their stability.

The main attention in this review will be paid to the universality of behavior of solitons while

approaching the supercritical bifurcation point. The first three sections are devoted to this topic.

We consider first the simplest model where all effects concerning supercritical bifurcation can be

analyzed easily. This is the KDV equation with fifth-order dispersion, i.e. it also has, besides the

third-order spatial derivative, a fifth-order derivative relative to x . This model can be derived

for shallow water waves in the presence of surface tension when the Bond number σ/(ρgh2) is

close to 1/3. Here σ is the surface tension coefficient, ρ the water density, g the acceleration

due to gravity and h the water depth. When the Bond number is close to 1/3, the coefficient of

the third order dispersion term is small, and one needs to keep the next (fifth) order dispersion

term. In section 2, we demonstrate how soliton solutions transform into NLS envelope solitons

while approaching the critical velocity for solitons. We show also that for the fifth-order KDV

equation the Hamiltonian is bounded from below for fixed momentum. If there exists a solitary

wave solution which realizes this minimum, then the soliton is stable with respect to not only
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small perturbations but also finite ones. The proof is based on both the Lyapunov theorem and

an integral estimate of the Sobolev-Gagliardo-Nirenberg inequalities [44], [45]. These inequalities

follow from the general embedding theorems first proved by Sobolev. In this section we also

demonstrate that the supercritical bifurcation takes place for movable solitons for the 1D NLS

equation.

In section 3, following Ref. [23], optical solitons and quasisolitons are examined relative to

the Cherenkov radiation. Both solitons and quasisolitons are shown to exist if the linear operator

defining their asymptotics at infinity is sign definite. In particular, applying this criterion to

the stationary optical solitons yields the soliton carrying frequency where the first derivative

of the dielectric permittivity vanishes. At this point the phase and group velocities coincide.

Both solitons and quasisolitons are absent if the third order dispersion is taken into account. By

means of the sign definiteness of the operator and by use of integral estimates of Sobolev type

the soliton stability is established for the fourth-order dispersion for all dimensions. This proof

again is based on the boundedness of the Hamiltonian in the case of fixed pulse power. Besides,

in this section we develop the Hamiltonian expansion for nonlinear optics beyond the classical

cubic NLS equation. As is well known in optics (see, e.g. [46]), the spatial dispersion effects are

small in comparison with the temporal dispersion ones (their ratio is a small relativistic factor,

∼ v/c where v is the characteristic electron velocity in atoms and c the light velocity, thus, this

ratio is of order α = 1/137). Therefore the expansion of the electric induction D(t, r) in terms

of the electric field E(t, r) represents an infinite set with respect to powers of the electric field,

evaluated at the same point as the electric induction. Each term of this set contains only time

convolutions. This is why in nonlinear optics the NLS equation, for example, is usually written

for the electric field envelope, where the spatial coordinate z plays the role of time in the usual

NLS equation and t represents the analog of coordinate (see, e.g., [9]). Note that the nonlinear

optics NLS equation is also used in hydrodynamics for the wavemaker problem [42, 43].
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Section 4 is devoted to stationary solitons for arbitrary nonlinear wave media and their

properties near the supercritical bifurcation. The stability of solitons is based on the Lyapunov

theorem and the Hamiltonian approach. It is shown by means of integral estimates of Sobolev

type in their multiplicative variant (Gagliardo–Nirenberg inequalities [44]) that only 1D solitons

are Lyapunov stable. It is worth noting that, in contrast to the method of normal forms, which is

extensively used in Refs. [16], [20], [32] and [48] to study bifurcations of solitons, the Hamiltonian

approach is fundamental for investigating soliton stability. It is necessary to add also that in

the method of normal forms, the introduction of envelopes is not unique. Consequently the

Hamiltonian equations of motion lose their initial Hamiltonian structure after averaging. In

the 3D geometry solitons near the supercritical bifurcation undergo modulation instability that

follows directly from the VK criterion [40]. In 3D, the derivative ∂Ns/∂λ2 is negative (here

the subscript s means that N is evaluated on the soliton solution) and therefore such solitons

are unstable. From the Hamiltonian point of view such soliton solutions viewed as stationary

points of the Hamiltonian for fixed N represent saddle points and this is why they are unstable.

Moreover, it is possible to establish that the Hamiltonian in this case will be unbounded from

below and therefore the nonlinear stage of this instability will be collapse of the soliton when

the field intensity blows up and and its size shrinks. This compression will happen at least up to

the scale of the wavelength of order k−1
0 . The final stage of this instability depends on whether

the primitive Hamiltonian is bounded from below (or above).

In section 5, we consider which nonlinear effects must be taken into account near the tran-

sition from supercritical to subcritical bifurcations and how they change the shape of solitons

and their stability. As examples of such transition we consider internal waves, surface gravity

waves at finite depth near k0h ≈ 1.363 and short optical pulses when the Kerr constant becomes

small enough. In order to describe the behavior of solitons and their bifurcations, a generalized

NLS equation describing the behavior of solitons and their bifurcations is derived. In compari-
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son with the classical NLS equation this equation takes into account three additional nonlinear

terms: the so-called Lifshitz term responsible for pulse steepening, a nonlocal term analogous

to that first found by Dysthe [49] for gravity waves and the six-wave interaction term. Near the

transition point, the soliton family from the supercritical branch, which is defined from the solu-

tion of the generalized NLS equation, changes noticeably, but at V = Vcr these solitons vanish

smoothly. All 1D solitons corresponding to the family of supercritical bifurcations are shown

to be stable in the Lyapunov sense. Above the transition point, solitons from the subcritical

branch undergo a jump at V = Vcr (for interfacial waves, this jump is proportional to
√

θ − θcr

where θ = ρ1/ρ2 ). At large distances their amplitude decays algebraically. Secondly, the soliton

family of this branch turns out to be unstable. The development of this instability results in

the collapse of solitons. Near the time of collapse, the pulse amplitude and its width exhibit a

self-similar behavior with a small asymmetry in the pulse tails due to self-steepening.

Section 6 deals with solitons involving the interaction between the fundamental and second

harmonics. The soliton family for this system is characterized by two independent parameters,

a soliton chemical potential and a soliton velocity. It is shown that this system, in the general

situation, is not Galilean invariant. As a result, the family of movable solitons cannot be obtained

from the rest soliton solution by applying the corresponding Galilean transformation. The region

of soliton parameters is found analytically and confirmed by numerical integration of the steady

equations. On the boundary of the region the solitons bifurcate. For this system there exist

two kinds of bifurcations: supercritical and subcritical. In the first case the soliton amplitudes

vanish smoothly as the boundary is approached. Near the bifurcation point the soliton form

is universal. It is determined from the NLS equation. For the second type of bifurcations the

wave amplitudes remain finite at the boundary. In this case the Manley-Rowe integral increases

indefinitely as the boundary is approached, and therefore according to the VK-type stability

criterion, the solitons are unstable.
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In the last section, section 7, we obtain the VK-type criterion for NLS-type models. The

crucial point in its derivation for the scalar NLS equation is based on the oscillation theorem for

the stationary Schrödinger operator. This theorem establishes the one-to-one correspondence

between a level number and a number of nodes of the eigenfunction. As is well known, this

theorem is valid only for scalar (one-component) Schrödinger operators and cannot be extended,

for example, to the analogous matrix operators. This means that the Vakhitov-Kolokolov type of

criteria, as a rule, defines only sufficient conditions for soliton instability and cannot necessarily

determine the stability of solitons. The three-wave system can be used as such an example.

For this system the linearized operator represents a product of two (3× 3)−matrix Schrödinger

operators for which the oscillation theorem cannot be applied. We discuss this situation in detail

for solitons describing a bound state of the fundamental frequency and its second harmonics [47].
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2 Bifurcations of gravity-capillary solitary waves in shallow wa-

ter

We start from the 2D capillary-gravity waves for shallow water. For arbitrary water depth h

the linear dispersion for gravity-capillary waves is given by the expression

ω =

√(
gk +

σ

ρ
k3

)
tanh kh,

where σ is the surface tension coefficient, ρ is the water density, and g is the acceleration due

to gravity. In the long-wave limit the expansion of this dispersion has the form

ω = kcs

[

1 +
1

2
(kh)2

(
B −

1

3

)
− (kh)4

(
1

6
B −

1

15
+

1

8

(
B −

1

3

)2
)

+ ...

]

,

where cs =
√

gh is the velocity of long gravity waves and B = σ/(ρgh2) is the Bond number.

The cubic dispersion vanishes at B ≡ Bcr = 1/3. In a small vicinity of the critical Bond number

this expansion is simplified:

ω = kcs

[
1 +

∆B

2
(kh)2 +

1

90
(kh)4

]

where ∆B = B − Bcr . Hence one can see that the sign of the cubic dispersion coincides with

the sign of ∆B . If ∆B < 0 this dispersion curve has a saddle point, it is similar to that for the

deep water case (compare with Fig. 1). At ∆B > 0 both third and fifth dispersions are positive

definite.

To describe weakly nonlinear waves for the shallow water case with small |∆B| ) Bcr we

can use the KDV equation with both third and fifth order dispersions. In dimensionless variables

this equation can be written in the form

ut + suxxx + uxxxxx + 6uux = 0 , (2.1)

where s = −sign(∆B). Recall that the KDV equation is written in the system of reference

moving with the “sound” velocity cs . In this equation both the nonlinear and dispersive terms
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are assumed to be much smaller in comparison with the rapid propagation at the “sound”

velocity (see, e.g. [12, 13, 14]). However, these terms may be comparable to each other.

The dispersion relation for linear waves in (2.1),

ω(k) = −sk3 + k5 , (2.2)

looks quite similar to the classical KDV dispersion relation close to k = 0, depending strongly

on s . For negative s , their phase velocity

c(k) =
ω(k)

k
= −sk2 + k4, (2.3)

has the minimum value cmin = 0 at k = 0. Therefore the soliton velocity V must be negative

in order to exclude the Cherenkov resonance between soliton and linear waves 1.

For s < 0 and V < 0 the function

L(k) = c(k) − V

is positive and the corresponding linear operator

L̂(−i∂x) = c(−i∂x) − V

is positive definite. Not surprisingly, it was shown that classical solitary waves with speed V < 0

bifurcate from the trivial solution u = 0 (see for example [50]). At small V (V → 0− ) the

fifth-order dispersion in (2.2) can be neglected. As a result, we arrive at the classical KDV

soliton:

u = −
κ2

2 cosh2(x + 4κ2t)

where V = −4κ2 < 0. This is an asymptotic soliton solution of Eq. (2.1) for s = −1. According

to [50] these solitary waves are orbitally stable, at least when the speed V is between −1/4 and

1It is worth noting that Eq. (1.1) in the present case always has one root k = 0, but as it will be shown later
this root represents the removable singularity for the KDV-type equations.
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0. When the speed crosses −1/4, the real eigenvalues V of

−uxx + uxxxx = V u

become complex. It was shown in [51] that this transition leads to a plethora of multi-modal

homoclinic orbits.

For s = +1 (∆B < 0) the dispersion curve (2.2) has a minimum cmin = −1/4, which is

attained at k0 = ±1/
√

2. The corresponding linear operator

L̂(−i∂x) = ∂2
x + ∂4

x − V ≡ (∂2
x + k2

0)
2 + cmin − V (2.4)

is positive definite if the soliton velocity V is less than the minimal phase velocity cmin = Vcr

(see, e.g. [72, 19, 23]). Above this critical value, the horizontal line V = const always intersects

the dispersion curve (2.2) and therefore solitons are impossible for V > Vcr , due to Cherenkov

resonance (1.1). Thus, in the present case the touching V = const occurs from below, which

corresponds to the bifurcation point for solitons.

2.1 Behavior of solitons near bifurcation point

Before finding soliton solutions to Eq. (2.1) at s = +1, we first recall some general features of

the fifth-order KDV equation. This equation, like the classical KDV equation, belongs to the

Hamiltonian equations:

ut = J
δH

δu
, J =

∂

∂x
, (2.5)

where the Hamiltonian H is given by the expression

H =

∫ +∞

−∞

[
1

2
u2

xx −
1

2
u2

x − u3

]
dx , (2.6)

or in the equivalent form

ut + uxxx + uxxxxx + 6uux = 0 . (2.7)
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Besides the Hamiltonian H , this equation has another integral of motion, the momentum

P =
1

2

∫
u2dx.

Consider now solitary wave solutions u = us(x − V t) with condition u → 0 as |x| → ∞ ,

assuming velocities V < cmin . After one integration the equation for the soliton shape is written

by means of the positive definite operator L̂ (2.4):

L̂u ≡ −V u + uxx + uxxxx = −3u2 . (2.8)

Sign positiveness of the operator L plays an essential role, not only for the existence of solitary

waves but also for their stability [23].

First of all, we demonstrate how the soliton shape can be found near the critical velocity Vcr

assuming that the difference between the solitary wave velocity and Vcr is small enough:

Vcr − V

|Vcr|
= ε2 ) 1 . (2.9)

Taking the Fourier transform of equation (2.8) yields

uk =
1

L(k)
(u2)k ,

where

L(k) = (k2 − k2
0)

2 + (Vcr − V ) (2.10)

is the expression for the operator L in k -space. Hence one can see that when V approaches Vcr

the Fourier spectrum of uk is concentrated near k = k0 with the characteristic width δk ∼ ε .

On the other hand, the quadratic nonlinearity in (2.7) produces all combined harmonics with

k = ±nk0 where n is an integer. If one assumes now that the amplitude of the main harmonics

vanishes (this assumption is later verified), then one should seek for a solitary wave solution of

the equation (2.7) in the form of the sum of harmonics nk0 :

u = u0 +
∞∑

n=1

(
ψn(X)eink0x + c.c.

)
. (2.11)
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In this expression we introduced the slow coordinate X = εx and assumed that ψn ∼ εn and

u0 ∼ ε2 . Applying the standard procedure of multi-scale expansion (see, for instance, [81], [74]),

one arrives at the equation

|Vcr|ε2ψ1 − 2ε2ψ1XX = −6(u0ψ1 + ψ2ψ
∗
1). (2.12)

The amplitudes of the zeroth and second harmonics are given by

u0 = −24|ψ1|2, ψ2 = −
4

3
ψ2

1 . (2.13)

Substitution of (2.13) into (2.12) yields for the fundamental harmonic amplitude the stationary

nonlinear Schrödinger (SNLS) equation

|Vcr|ε2ψ1 − 2ψ1xx − 152|ψ1|2ψ1 = 0 . (2.14)

Hence one can see that the nonlinearity as well as the dispersion provide the existence of localized

solutions in the form of solitary waves of the focusing NLS equation. After rescaling, this

equation is written as

−ε2ψ + ψxx + 2|ψ|2ψ = 0. (2.15)

Its solution is given by the classical NLS soliton

ψ =
εeiϕ

cosh(εx)
, (2.16)

which depends on one free parameter, i.e. the phase ϕ .

Thus, as V → Vcr solitons undergo the supercritical bifurcation: the soliton amplitude is

proportional to ε ∼ (Vcr − V )1/2 and its width increases like ε−1 ∼ (Vcr − V )−1/2 , and while

approaching the critical velocity the soliton solution transforms into the wave train: the train

envelope coincides with the NLS soliton. As shown later (Section 4), the behavior of solitons
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near the supercritical point found here indeed is universal: it happens not only for shallow

gravity-capillary solitary waves but for all solitary waves in conservative media.

In order to investigate the stability of the envelope solitary waves described by the SNLS

equation (2.14), one needs to introduce the time dependence. It is easy to see that the expansion

of the dispersion relation in the coordinate system moving with the solitary wave

Ω = k(c(k) − V ) ≡ kL(k)

near k = k0 has the form

Ω ≈ k0[2(k − k0)
2 + (Vcr − V )] . (2.17)

Assuming further that the amplitudes of the harmonics in the expansion (2.11) depend on the

slow time T = ε2t and taking into account the approximation (2.17) for frequency, one can

easily obtain the time-dependent nonlinear Schrödinger equation for the fundamental harmonic

i

k0
Ψ 1T − |Vcr|Ψ1 + 2Ψ1XX + 152|Ψ1|2Ψ1 = 0 . (2.18)

After rescaling this equation can be written in the canonical form

i
∂ψ

∂t
− ε2ψ + ψxx + 2|ψ|2ψ = 0 . (2.19)

It should be noted that, unlike the fifth-order KDV equation (2.5), the NLS equation (2.19)

has one additional symmetry, namely, the gradient symmetry: ψ → ψeiφ , that appears as a

result of the averaging applied over rapid oscillations. Therefore the envelope solitary wave

solutions form a broader class than the solitary wave solutions of the equation (2.5). As shown

in [75] and discussed above, this has nontrivial consequences on the solutions of (2.7) and on

their stability. Just as an illustration of the method that will be used in the next subsection, we

proceed with looking at the stability of envelope solitary waves described by the SNLS equation.
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2.2 Stability of envelope solitons

It is not difficult to see that the solitary wave solution (2.16) represents a stationary point of

the Hamiltonian

H =

∫ +∞

−∞

(
|ψx|2 − |ψ|4

)
dx ≡ I1 − I2 , (2.20)

for fixed number of particles N =
∫
|ψ|2 dx . In other words,

δFNLS = 0 , where FNLS = H + ε2N . (2.21)

According to the Lyapunov theorem, a stationary point will be stable if it realizes a minimum

(or a maximum) of the Hamiltonian.

In order to prove the stability of the soliton (2.16), it is enough to show that this solution

realizes a minimum of the Hamiltonian according to the Lyapunov theorem.

Consider first the scaling transformations that preserve the number of particles:

ψ(x) → a−1/2ψ(x/a). (2.22)

Under this transform the Hamiltonian takes a dependence on the scaling parameter a ,

H =
I1

a2
−

I2

a
. (2.23)

The function H(a) has a minimum at a = 1, which corresponds to the soliton solution (2.16):

Hs = −
2ε3

3
and 2I1s = I2s =

4ε3

3
. (2.24)

The soliton also realizes a minimum of H with respect to another simple transformation, i.e.,

the gauge one,

ψ0(x) → ψ0(x) exp[iχ(x)], (2.25)

which also preserves N ,

H = Hs +

∫
(χx)2ψ2

0dx.
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Thus, both simple transformations yield a minimum for the Hamiltonian, thus indicating soliton

stability.

Now we give an exact proof of this fact, following [39, 23]. The crucial point of this proof

is based on integral estimates of the Sobolev type. These inequalities arise as sequences of the

general embedding theorem first proved by Sobolev.

The Sobolev theorem states that the space Lp can be embedded into the Sobolev space W 1
2

if the dimension of RD ,

D <
2

p
(p + 4).

This means that between norms

‖u‖p =

[∫
|u|pdDx

]1/p

, (p > 0), ‖u‖W 1
2

=

[∫
(µ2|u|2 + |∇u|2)dDx

]1/2

, (µ2 > 0),

there exists the following inequality (see, e.g., [45]):

‖u‖p ≤ M‖u‖W 1
2

(2.26)

where M is some constant >0. For the particular case D = 1 and p = 4 the inequality (2.26)

can be rewritten in the form

∫ ∞

−∞
|ψ|4dx ≤ M1

[∫ ∞

−∞
(µ2|ψ|2 + |ψx|2)dx

]2

. (2.27)

Hence one can easily obtain a multiplicative variant of the Sobolev inequality, the so-called

Sobolev-Gagliardo-Nirenberg inequality [44] (see also [45, 54, 39]).

Let us apply in Eq. (2.26) the scaling transform x→αx . Then instead of (2.27) we have

∫ ∞

−∞
|ψ|4dx ≤ M1

[
µ2

∫ ∞

−∞
|ψ|2dx · α +

∫ ∞

−∞
|ψx|2dx ·

1

α

]2

.

This inequality holds for any (positive) α including a minimal value for the r.h.s. Calculating

its minimum yields the desired inequality:

∫ ∞

−∞
|ψ|4 dx ≤ CN3/2

[∫ ∞

−∞
|ψx|2 dx

]1/2

, (2.28)
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where C is a new positive constant. One can arrive at the same inequality by considering the

following set of inequalities [45]:

∫ ∞

−∞
|ψ|4dx ≤ max

x
|ψ|2

∫ ∞

−∞
|ψ|2dx =

∫ xmax

−∞

d|ψ|2

dx
dx

∫ ∞

−∞
|ψ|2dx

≤ 2N

∫ xmax

−∞
|ψ||ψx|dx ≤ 2N

∫ ∞

−∞
|ψ||ψx|dt ≤ 2N3/2

[∫ ∞

−∞
|ψx|2dt

]1/2

(2.29)

where C = 2. This inequality can be improved by finding the best constant C in (2.28).

Evidently, the maximum value of the functional

G[ψ] =
I2

N3/2I1/2
1

yields the best constant. In order to find the maximum of G[ψ] it is sufficient to consider all

stationary points of this functional and among all of them we must choose the one which realizes

the needed maximum. It is easy to check that all stationary points of G[ψ] are defined by the

equation which coincides with that for the solitary wave solution (2.16):

−λ2ψ + ψxx + 2|ψ|2ψ = 0.

Hence one can see that the maximum of G[ψ] is attained on the real solitary wave solution

(2.16) which, moreover, is unique up to a constant phase multiplier:

ψs =
λ

cosh(λx)
.

Then all integrals contained in G[ψ] are easily calculated:

N = 2λ , I1s =
2

3
λ3 , I2s =

4

3
λ3 ,

and the inequality (2.28) finally reads:

∫ ∞

−∞
|ψ|4dx ≤

1√
3
N3/2

[∫ ∞

−∞
|ψx|2dx

]1/2

. (2.30)
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Substituting now this inequality into (2.20) we obtain the following estimate:

H ≥ Hs + (
√

I1 −
√

I1s)
2 , (2.31)

where Hs = − 2
3ε

3 < 0 is the value of the Hamiltonian on the solitary wave solution. This esti-

mate becomes precise on the solitary wave solution. That, according to the Lyapunov theorem,

proves the solitary wave stability. It is necessary to remind that the 1D NLS equation can be

integrated by means of the inverse scattering transform (IST) [5]. For many models integrable

by the IST such as the 1D NLS equation, solitons are structurally stable entities which retain

their shape after scattering with another solitons or with waves from continuous spectra.

Thus, we have demonstrated that the envelope solitary wave (2.16) is stable with respect

to partial - modulation type perturbations described by the NLS equation (2.19). However we

have no answer about the stability for the original model (2.5). We repeat here that the purpose

of this Section is to illustrate the method based on Lyapunov’s theory to obtain some stability

results on the solitary wave solutions of (2.1).

2.3 Solitary wave stability

Let us now come back to the stationary KDV equation (2.8) for the solitary wave shape. It

is easy to see that this equation is nothing more than the Euler-Lagrange equation for the

functional

F = H + V P ,

where H is given by the formula (2.6) and P is the momentum for (2.5). In other words, any

solitary wave solution is a stationary point of the Hamiltonian H for fixed momentum P . The

soliton velocity V in this case plays the role of Lagrange multiplier. So if we now show that the

Hamiltonian (2.6) is bounded from below (its unboundedness from above is obvious) then the

stationary point (solitary wave) corresponding to its minimum value will be stable according to
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the Lyapunov theorem. It is interesting to note that in the NLS limit the functional F reduces

to the corresponding functional FNLS (2.21).

First note that the functional F can be written through the mean value of the operator L

and the integral of u3 :

F =
1

2

〈
L̂(−i∂x)

〉
−

∫ +∞

−∞
u3 dx .

In the region V < Vcr the mean value of the operator L is always positive. This is a key point

to demonstrate that the functional F is bounded from below.

Consider the mean value of the operator L̂

〈
L̂(−i∂x)

〉
=

∫ +∞

−∞
u(∂2

x + k2
0)

2u dx + (Vcr − V )

∫ +∞

−∞
u2 dx .

Our aim now will be to estimate the integral
∫

u3dx through two other integrals in the functional

F , namely through

I =

∫ +∞

−∞
u(∂2

x + k2
0)

2u dx and N =

∫ +∞

−∞
u2 dx = 2P .

We first estimate the integral I through I1 =
∫

u2
x dx and N . The needed estimate is given

by the Sobolev-Gagliardo-Nirenberg inequality (see, for instance, [39]):

∫ +∞

−∞
u3dx ≤ CI1/4

1 N5/4 , (2.32)

where the best constant C can be found similarly to that for (2.30). Simple calculations give

Cbest =
√

6 · 5−3/4.

The integral I1 can be expressed through the integral I if one integrates by parts the integral

∫ +∞
−∞ u2

x dx , and uses the Schwartz inequality (see [23]):

∫ +∞

−∞
u2

x dx = −
∫ +∞

−∞
u(uxx + k2

0u) dx +

∫ +∞

−∞
k2
0u

2 dx (2.33)
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≤ N1/2

[∫ +∞

−∞
u(∂2

x + k2
0)

2u dx

]1/2

+ k2
0N,

and then substitutes this result into (2.32):

∫ +∞

−∞
u3dx ≤ Cbest(N

1/2I1/2 + k2
0N)1/4N5/4. (2.34)

By means of this inequality the functional F can be estimated as follows:

F ≥ f(I) =
1

2
[(Vcr − V )N + I] − Cbest(N

1/2I1/2 + k2
0N)1/4N5/4. (2.35)

As can been seen easily, the function f(I) is bounded from below so that the final answer for

F takes the form:

F ≥ min f(I).

This estimate completes the proof.

Thus, we have demonstrated that the Hamiltonian for (2.5) is bounded from below for

fixed momentum P = 1/2N . If the solitary wave solution yielding the minimum of H is

not a separate stationary point, then this minimum can be achieved by means of continuous

deformations of some initial distribution with finite norms N and I , as was established in [76]

in a small vicinity of solitary wave solutions. As was shown in [72] two branches of symmetric

solitary waves with exponentially decaying oscillatory tails bifurcate from infinitesimal periodic

waves at the minimum phase speed. At this point, unfortunately, we cannot conclude which one

of the two branches of solitary wave solutions found in [72] realizes the minimum of H . Probably,

the branch which was found to be linearly stable in [80] realizes the minimum of the Hamiltonian.

It remains to be justified numerically. As seen above, in the small-amplitude limit, the solitary

waves can be viewed as modulated wavepackets. Using a two-scale perturbation expansion near

the maximum of the phase speed, one sees that in a frame moving with the wave, the envelope

is governed to leading order by a steady version of the nonlinear Schrödinger (SNLS) equation
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[74]. But here arises an apparent contradiction: while in [72] only two branches were found, a

one-parameter family of (generally asymmetric) solutions arises from the SNLS equation since

the envelope of a solitary wave can be shifted relative to its carrier oscillations by an arbitrary

amount. In trying to understand this apparent contradiction, Yang & Akylas [75] discovered

that the actual structure of solitary-wave solution branches near the maximum phase speed is

quite complex. They carried out the two-scale expansion underlying the NLS equation beyond

all orders using techniques of exponential asymptotics. Out of the one-parameter family of

solitary waves solutions of the SNLS equation, only the symmetric branches arising when the

phase-shift parameter is such that the maximum of the envelope coincides with either a crest

or a trough of the carrier are true solutions of the fifth-order KDV equation (2.1). For all other

values of the phase shift, there are in fact growing oscillations of exponentially small amplitude

in the tails and the resulting wave is not locally confined. Nevertheless, two or more of these

non-local wavepackets can be pieced together if a certain selection criterion is satisfied [75]. The

asymptotic results are in agreement with the numerical results in [77], where it was shown that

a plethora of multi-pulse solitary wave solutions, including symmetric as well as asymmetric

waves, exist.

At the end of this Section it is necessary to underline once more that the Lyapunov stability

of the solitary wave solution reaching the minimal value of H for fixed P implies the stability

of this solitary wave not only with respect to small perturbations but also relative to finite ones.

This stability criterion can in fact be considered as an energy principle. For continuous media

as considered here, the solitary wave state corresponding to the minimum of the Lyapunov

functional can be achieved by means of radiation of small amplitude waves which provide the

relaxation process to the ground solitary wave. This is quite different from the behavior for

Hamiltonian systems with a finite number of degrees of freedom.
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3 Optical solitons and their bifurcations

3.1 Introducing remarks

In this Section we consider how the mechanism of soliton bifurcations discussed in the previous

Section for gravity-capillary waves is modified in nonlinear optics, mainly following the paper

by Zakharov and Kuznetsov [23].

Solitons propagating in nonlinear optical media, especially in optical fibers, have been a very

popular research topic since the beginning of the seventies when solitons in the KDV equation [4]

and in the NLS equation [5] were shown to be structural stable and when, a bit later, Hasegawa

and Tappet [6] suggested to use optical solitons as the information bit in fiber communications

(for a recent review of this field see, e.g. [9]). For optical fibers these solitons are considered as

1D pulses which can be described by the 1D Maxwell equations. This Section mainly deals with

1D optical solitons. The multi-dimensional solitons and their stability will be considered in the

next sections.

As is well known in optics (see, e.g. [46]), the spatial dispersion effects are small in comparison

with the temporal dispersion ones (their ratio is a small relativistic factor, ∼ v/c where v is

the characteristic electron velocity in atoms and c the light velocity, thus, this ratio is of order

α = 1/137). Therefore the expansion of the electric induction D(t, r) in terms of the electric

field E(t, r) represents an infinite set with respect to powers of the electric field, evaluated at the

same point as the electric induction. Each term of this set contains only time convolutions. This

is why in nonlinear optics the NLS equation, for example, is usually written for the electric field

envelope, where the spatial coordinate z plays the role of time in the usual NLS equation and

t represents the analog of coordinate (see, e.g., [9]). As shown in this Section, this peculiarity

also changes the Hamiltonian formulation of the equations of motion, and introduces some pure

optical features for solitons, their bifurcations and stability.

When one talks about optical solitons, the soliton spectrum is assumed to be concentrated
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inside some transparency window where linear damping is small enough and dispersion effects are

prevalent. Typically, the soliton spectrum width δω is supposed to be small enough compared

to the frequency band ∆ω of this window: δω ) ∆ω . In real systems, however, the frequency

band ∆ω is narrow relative to the mean window frequency ω, ∆ω ) ω . Thus, we have the

following hierarchy of the characteristic inverse times:

δω ) ∆ω ) ω. (3.1)

Each of these criteria allows one to consider a slow (τ−1 ∼ δω ) dynamics of soliton propagation

in terms of the amplitude envelope as well as more rapid but still slow pulse dynamics with

times ∼ 1/∆ω . In particular, to derive the NLS equation, a basic model for the description of

optical envelope solitons, one has to approximate the wave number by a quadratic polynomial

δk =
1

vgr
δω −

1

2

ω′′

v3
gr

(δω)2. (3.2)

Here δk = k − k0 and δω = ω − ω0, vgr = ∂ω
∂k is the group velocity, k0 and ω0 are the wave

number and the frequency of the soliton carrier wave. On the frequency interval ∆ω , however,

the wave dispersion can differ significantly from the quadratic approximation (3.2) remaining

still small in the sense of the criterion (3.1). It should also be noted that the current experimental

situation (see, for instance, [89], [9]) makes it possible to generate very short optical pulses such

that δω
ω0

) 1. On the other hand, the efficiency of optical fibers as a transmission medium for

information is inversely proportional to soliton length. Hence, the needs of practice dictate using

solitons that are as short as possible. The properties of “short” and “long” solitons of course

will be quite different. For “short” solitons the expansion (3.2) is no longer valid and it has to

be replaced by a more general formula

δk −
1

vgr
δω = −F (δω). (3.3)

Here the function F must be taken from the microscopic consideration or extracted from exper-

imental data. In spite of the fact that the function F may be far from the parabolic dependence
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(3.2), averaging over the rapid time 1/ω0 can be performed nevertheless, leading to the de-

scription of a slow soliton dynamics by means of the generalized nonlinear Schrödinger (GNLS)

equation. This average results in the appearance of a new integral of motion, i.e., the adia-

batic invariant, which is related to the pulse energy. Due to this invariant, the GNLS equation

admits a soliton solution for the envelope of the electromagnetic field E(x, t) in the form of a

propagating pulse with an additional phase multiplier eiλx :

E(x, t − x/vgr) = eiλxψ(t − x/vgr + βx), v−1
gr / β.

As seen in the previous Section, solitons can exist if the function L(ζ) = λ−βζ+F (ζ) is positive

(or negative) definite for all ζ . This criterion coincides with the familiar one for the gravity-

capillary solitons in shallow water: it is the main selection rule for optical solitons also. If these

criteria are not satisfied, the soliton radiates its energy due to the Cherenkov effect and ceases

to exist after a certain time. This phenomenon takes place, in particular, if F (ζ) is a third-order

polynomial. Even if L(ζ) > 0 and solitons exist, the question about their stability is far from

being trivial. In this section we establish that the soliton is stable if L(ζ) is a positive definite

fourth order polynomial when the main nonlinearity is connected with the Kerr effect. The

stability proof is based on the boundedness of the Hamiltonian for the fixed adiabatic invariant.

This proof is valid for all physical dimensions including d = 3.

One more point that we would like to emphasize is that the objects traditionally called

“solitons” in nonlinear optics are not solitons in the rigorous meaning of this word. These are

“quasisolitons” - approximate solutions of the Maxwell equations, depending on four arbitrary

parameters. Real “stationary” solitons which propagate at a constant velocity without change of

their shapes are exact solutions of the Maxwell equations depending at most on two parameters.

The latter exist if the dielectric permittivity ε(ω) has a maximum in a considered frequency range

for focusing nonlinearities and a minimum if the medium is defocusing. In pure conservative
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media quasisolitons exist only for a finite amount of time and radiate due to multi-photon

processes. In practice, however, this time happens to be much larger than the life-time due to

the linear damping, and a difference between solitons and quasisolitons is not significant.

3.2 Stationary solitons

Now we demonstrate how soliton solutions can be found directly from the Maxwell equations.

We consider the simplest model for one-dimensional pulse propagation assuming that the polar-

ization is linear and perpendicular to the propagation axis. In this case the Maxwell equations,

which read (c denotes the speed of light)

∂E

∂x
= −

1

c

∂B

∂t
,

∂B

∂x
= −

1

c

∂D

∂t
(3.4)

can be reduced to the wave equation for the electric field E(x, t):

∂2D

∂t2
− c2 ∂

2E

∂x2
= 0 (3.5)

where the electric induction D is assumed to be connected with the electric field through the

relation

D(x, t) = ε̂(t)E(x, t) + χE3(x, t). (3.6)

In this expression ε̂ is the integral operator; the Fourier transform of its kernel, ε(ω), is the

dielectric permittivity. The second term in (3.6) corresponds to the Kerr effect; χ is the Kerr

constant.

The function ε(ω) is extended analytically to the upper half-plane of ω (see, for instance,

[46]). For real values of ω, ε(ω) obeys the Kramers-Kronig relations. In particular, it follows

from these relations that on the real axis the imaginary part of ε , ε′′ , responsible for the

dissipation of electromagnetic waves, cannot be equal to zero for all frequencies. Moreover

we will suppose that there exists some frequency band, ∆ω , where the imaginary part of the

permittivity is small enough and inside this band ε′′ will be neglected.

32



Consider the propagation of the wave packet with spectra within this transparency window,

assuming that the frequency width of the pulse spectrum is small compared with ∆ω . Only un-

der such conditions can one expect a soliton solution. As mentioned above, two kinds of solitons

are possible. The first type of solitons is a stationary soliton which propagates at a constant

velocity without change of its shape. Another kind of soliton is the quasisoliton. Quasisolitons

have some internal dynamics and only on average do they propagate with a constant velocity.

The classical examples of quasisolitons are breathers in the sine-Gordon equation (for details

see, e.g., [12], [14], [13]).

Stationary solitons are exact solutions of the equation (3.5) of the form

E = E(x − V t), (3.7)

where V is a constant velocity and E is assumed to vanish at infinity. Substituting (3.7) into

Eq. (3.5) allows the equation to be integrated twice:

L̂E(x) = αE3(x), α = χ
V 2

c2
(3.8)

where the operator L̂ is equal to

L̂ = 1 −
V 2

c2
ε̂. (3.9)

In the Fourier representation the operator L̂ can be written in the form:

L(ω) = 1 −
V 2ε(ω)

c2
(3.10)

where the frequency ω and the wave number k are linked through the relation ω = kV .

The second term in (3.10) is the square of the ratio between V and the phase velocity for an

electromagnetic monochromatic wave of small amplitude,

Vph =
c√
ε(ω)

. (3.11)

33



Hence it is easy to see that the operator L̂ becomes positive-definite if and only if for all ω

V 2
ph(ω) > V 2 (3.12)

and, respectively, negative-definite in the opposite case:

V 2
ph(ω) < V 2. (3.13)

Only in the case when conditions (3.12) or (3.13) are fulfilled a soliton solution is possible.

Suppose that the conditions (3.12) and (3.13) are not satisfied, i.e., the equation

V 2ε(ω)

c2
= 1 (3.14)

has a solution (for simplicity suppose that this solution is unique: ω = ω0 ). Then the equation

(3.7) can be rewritten as follows

E(x − V t) = E0(x − V t) + L̂−1(1 − P̂ )αE3(x − V t). (3.15)

Here

E0(x − V t) = Re (A exp[−iω0(t − x/V )])

is a solution of the homogeneous linear equation

L̂E0 = 0 (3.16)

and P̂ is the projector to the state E0(x − V t) so that (1 − P̂ )χE3(x − V t) is orthogonal to

E0 and therefore on this class of functions the operator L̂ is invertible. To find an explicit

solution of the equation (3.15) one can apply, for instance, the iteration scheme by taking E0 as

a zeroth approximation. As a result of such an iteration the solution will be a nonlinear periodic

wave with period corresponding to the frequency ω0 . Its Fourier spectrum will be a set of delta

functions δ(ω − nω0) with integer n . Of importance is that by so doing we will necessarily
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come to a nonlocalized solution which will depend on two parameters, i.e. the imaginary and

real parts of the complex amplitude A . Hence one can make the following conclusion: The

stationary equation (3.7) can have a soliton solution if the operator L̂ is sign-definite. If Eq.

(3.16) has a nontrivial (real) solution, which is equivalent to stating that the phase velocity Vph

and the velocity V coincide,

Vph = V, (3.17)

a stationary soliton solution is absent. Note that this conclusion is based on the fact that the

singularity in the right hand side of equation (3.15) (E3)ω/L(ω) cannot be removed. As shown

below, such singularities can be removed if the matrix element of the four-wave interaction (in

the given case - χ) has some dependence on frequencies.

Equation (3.17) is nothing more than the condition (1.1) for the Cherenkov radiation for a

moving object. And it does not matter what is the nature of this object. It may be a charged

particle, a ship, or, for instance, a soliton. In any case this object will lose its energy. In the given

case this means that an electromagnetic soliton (or better to say - a pulse) which moves with

the velocity V satisfying the condition (3.13) will necessarily radiate waves and, consequently,

such a pulse cannot exist as a stationary object. Thus, we arrive at the following criterion for

the soliton existence: a soliton solution in some model can exist when the equation

ω(k) = kV (3.18)

has no (real) solution. Here ω = ω(k) is the dispersion relation. For electromagnetic waves

ω(k) is determined from the equation

ω2 =
k2c2

ε(ω)
. (3.19)

The relation (3.18) has a simple interpretation in the ω − k plane (see Fig. 1). The r.h.s.

of (3.18) corresponds to the straight line going through the origin and, respectively, the velocity
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V in this plane is equal to the tangent of the slope angle φ ,

V = tan φ.

The existence of a solution to Eq.(3.18) means an intersection of the curve ω = ω(k) with the

straight lines that define the whole cone of angles Ω where the stationary soliton solutions are

impossible. Possible soliton solutions correspond to the cone complementary to Ω , Ω̃ . In this

case, ∂Ω , straight lines ω = kV touch the dispersive curve ω = ω(k) on the boundaries of the

cones. At the touching points ki , the group and phase velocities coincide:

ω(k)

k

∣∣∣∣
ki

=
∂ω(k)

∂k

∣∣∣∣
ki

. (3.20)

For the dispersion law (3.19) this relation yields

dε(ω)

dω

∣∣∣∣
ωi

= 0. (3.21)

At these critical points solitons undergo bifurcation, since outside the cone Ω̃ stationary

soliton solutions are absent. For supercritical bifurcations, it is shown below that the behavior

of the optical soliton solutions near these critical points is universal, like for the capillary-gravity

solitons in shallow water considered in the previous Section. We demonstrate this fact by using

the example of the stationary equation (3.7) but it is important to emphasize that the proof is

quite general and can be extended to many other models. It is necessary to repeat that this

fact was first investigated for capillary-gravity solitons in deep water [82, 16, 19]. For capillary-

gravity waves the dispersion law has a minimum phase velocity in the region connecting the

gravity and capillary spectrum ranges (see Fig. 1).

Suppose for simplicity that Eq. (3.21) has only one solution ω = ω0 and the cone of angles

Ω̃ lies below the critical velocity,

V < Vcr =
c√

ε(ω0)
,
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namely, the function ε(ω) has two equal maxima at two symmetric points so that

d2ε(±ω0)

dω2
< 0.

In this case the operator L̂ is invertible and equation (3.8) can be written as

Eω =
1

L(ω)
α(E3)ω. (3.22)

Near the critical velocity, Vcr − V ) Vcr , L(ω), which is an even function of ω , is close to zero

near two symmetrical points ω = ±ω0 . Therefore, according to Eq. (3.22), the distribution

of E(ω) will follow, to a large extent, that for the function 1/L(ω). This means that in the

t -representation a solution should be closed to the monochromatic wave. The wave monochro-

maticity increases as V approaches Vcr . Secondly, we will assume that the soliton amplitude

vanishes smoothly while approaching the critical velocity Vcr . In fact this assumption means

that the bifurcation we expect is supercritical. Therefore, E(t′) (t′ = t − x/V ) can be sought

as an expansion over the harmonics nω0 (compare with (2.11)):

E(t) =
∞∑

n=0

[E2n+1(τ)e−i(2n+1)ω0t′ + c.c.]. (3.23)

Here we formally introduced the small parameter

ε =

√
1 −

V

Vcr
(3.24)

and the slow time τ = εt′ so that the coefficients E2n+1(τ) are the amplitude envelopes for each

harmonics. Such representation means also that the frequency width of each harmonics, δω ∼ ε,

is small in comparison with the frequency ω0 , i.e., the Fourier spectrum of (3.23) represents a

set of narrow peaks. Two main peaks correspond to the first harmonics. Therefore the action

of the operator L̂ on (3.23) can be also expanded into a series with respect to ε . Assuming the

amplitude E2n+1 to be of order ε2n+1 and substituting (3.23) into the stationary equation (3.8)

together with (3.21), leads to the stationary NLS equation at leading order:

ε2E1 − S
∂2E1

∂t′2
−

3

2
α|E1|2E1 = 0 (3.25)
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where

S = −
V 2

cr

4c2

d2ε(ω0)

dω2
> 0. (3.26)

Equation (3.25) has a soliton solution only if α > 0:

E1(t
′) =

2ε√
3α

sech

[
ε(t − x/V − t0)√

S

]
. (3.27)

This solution is unique up to a constant phase multiplier. It follows the universal asymptotics for

stationary solitons: its amplitude vanishes like
√

Vcr − V as V approaches Vcr and the soliton

duration ∆t grows inversely to the factor ∆t =
√

S/ε . Thus, near the bifurcation point, optical

solitons have the same behavior as the capillary-gravity solitons in the shallow water case.

For times larger than ∆t it is necessary to take into account the next terms in the expansion,

in particular the third-order dispersion and corrections to the cubic nonlinearity. Already the

soliton behavior becomes non-universal in this temporal region,

It is important to note that for ε2 = 1 − V/Vcr < 0 equation (3.25) has no soliton type

solutions. When the touching of the dispersive curve occurs from above and the parameter S

becomes negative, solitons exist only for defocusing media (χ < 0).

3.3 Quasisolitons and higher-order dispersion

In this subsection which deals with the example of the generalized nonlinear Schrödinger (GNLS)

equation we discuss what is the difference between the solitons considered in the above subsection

and quasisolitons. The GNLS equation has a wider class of soliton solutions than the original

Maxwell equations. Unlike stationary solitons (3.27), these solutions are approximate, and

depend on four parameters. However, as shown below, the selection rule for quasisoliton solutions

remains the same as for the stationary solitons considered previously. Let the transparency

window ∆ω be small compared with the mean value of frequency ω0 : ω0 / ∆ω . In this case

one can introduce the envelope E1(x, t) for the whole region. In order to derive the equation

for envelopes the most convenient approach is the one based on the Hamiltonian formalism [35].
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Consider equation (3.5) which can be conveniently represented as a system of two equations:

∂ρ

∂x
+

∂2φ

∂t2
= 0,

∂φ

∂x
+

1

c2

(
ε̂ρ +

4πχ

c2
ρ3

)
= 0 . (3.28)

The potential φ and the “density” ρ are related to the electric (E) and magnetic (B) fields as

follows:

E =

√
4π

c
ρ, B =

√
4π

∂φ

∂t
. (3.29)

The equations (3.28) can be written in the Hamiltonian form:

∂ρ

∂x
=

δH

δφ
;

∂φ

∂x
= −

δH

δρ
, (3.30)

where x plays the role of time and the Hamiltonian is the integral over time

H =

∫ [
1

2

(
∂φ

∂t

)2

+
1

2c2
ρε̂ρ +

πχ

c4
ρ4

]

dt ≡
1

8π

∫ (
B2 + Eε̂E +

1

2
χE4

)
dt. (3.31)

The quadratic part of H yields the linear dispersion law k = k(ω), which coincides with (3.19).

The transition to the normal variables aω(x) is obtained through the change

ρω =

√
ω2

2k(ω)
(a∗ω + a−ω); φω = −i

√
k(ω)

2ω2
(a∗ω − a−ω), (3.32)

where ρω and φω are the Fourier-images of the “density” ρ and the potential φ . In these

formula k(ω) is understood as a positive root of the dispersive relation (3.19). Substituting

these relations into equations (3.30) gives the equations of motion in terms of aω :

∂aω
∂x

= i
δH

δa∗ω
, (3.33)

where the Hamiltonian H takes the standard form (compare with [35]):

H =

∫
k(ω)|aω|2dω +

1

2

∫
Tω1ω2ω3ω4

a∗ω1
a∗ω2

aω3
aω4

δω1+ω2−ω3−ω4

∏

i

dωi. (3.34)
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The matrix element T is given by the formula

Tω1ω2ω3ω4
=

3χ

4c4

[
ω2

1ω
2
2ω

2
3ω

2
4

k(ω1)k(ω2)k(ω3)k(ω4)

]1/2

. (3.35)

If the susceptibility χ depends on frequencies then the constant χ in the matrix element (3.35)

must be changed into χ(ω1,ω2,ω3,ω4) with the necessary symmetry properties (see, for instance,

[46, 25]). Consequently the matrix element T has the following symmetry relations:

Tω1ω2ω3ω4
= Tω2ω1ω3ω4

= Tω1ω2ω4ω3
= T ∗

ω3ω4ω1ω2
. (3.36)

In the Hamiltonian (3.34) we kept only the terms responsible for wave scattering and neglected

all other processes which contribute at next (sixth) order in the wave amplitude.

The Hamiltonian formulation of the equations of motion (3.33) guarantees “conservation”

(independence on x) of the Hamiltonian H and also of the “momentum”

P =

∫
ω|aω|2dω, (3.37)

which exactly coincides with the integration over time of the Pointing vector

P =
c

4π

∞∫

−∞

EBdt ≡
∞∫

−∞

ρ
∂φ

∂t
dt.

Let us now derive the equations for the envelopes by introducing the envelope amplitude for

the wave packet

ψ(t, x) =
1√
2π

∫
aωe−i(ω−ω0)t−ik0(ω0)xdω.

Here we assume that the spectrum of aω is concentrated in the narrow interval δω near the

frequency ω0, ω0 / δω . The amplitude ψ(t, x) is a slowly varying function of coordinate and

time.

Next one expands k(ω) and Tω1ω2ω3ω4
in series with respect to Ω = ω − ω0 near the point

ω0 ,

κ(Ω) = k(ω) − k(ω0) =
1

Vgr
Ω − k0SΩ2 − γΩ3 + δΩ4 + ... , (3.38)
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Tω1ω2ω3ω4
= T0 +

∂T

∂ω1
(Ω1 + Ω2 + Ω3 + Ω4) +

1

2

∂2T

∂ω2
1

(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)+ (3.39)

∂2T

∂ω1∂ω2
(Ω1Ω2 + Ω3Ω4) +

∂T

∂ω1∂ω3
(Ω1Ω3 + Ω1Ω4 + Ω2Ω3 + Ω2Ω4) + ...

We kept all terms up to fourth order in Ω in the expression for k(ω) and all terms up to second

order in Ω in the matrix element T . For the expansion of the matrix element we assumed T

to be real for the sake of simplicity and used its symmetry properties (3.36). In this case the

coefficients are equal to

T0 = Tω0ω0ω0ω0
=

3χ

4c4

ω4
1

k2(ω1)
;

∂T

∂ω1
=

∂Tω1ω2ω3ω4

∂ω1

∣∣∣∣∣
ωk=ω0

=
∂Tω1ω2ω3ω4

∂ω1
=

3χ

4c4

∂

∂ω1

[
ω2

1ω
2
2ω

2
3ω

2
4

k(ω1)k(ω2)k(ω3)k(ω4)

]1/2

∂2T

∂ωi∂ωj
=

∂2Tω1ω2ω3ω4

∂ωi∂ωj

∣∣∣∣∣
ωk=ω0

∂

∂ω1

ω1

k(ω1)1/2
=

1

k(ω1)1/2

[
1 −

Vph

2Vgr

]

Taking the Fourier transform with respect to Ω yields the generalized NLS equation for ψ :

i

(
∂ψ

∂x
+

1

Vgr

∂ψ

∂t

)
+ k0Sψtt + β1|ψ|2ψ = −iγψttt − 4iβ2|ψ|2ψt (3.40)

−δψtttt + (β3 − β4)
[
(ψ2ψ∗

t )t − (ψt)
2ψ∗] + (β3 + β5)ψ

∗(ψ2)tt − β6|ψ|4ψ.

The left hand side of this equation corresponds to the classical NLS equation: the second term in

this part describes the propagation of the wave packet as a whole and therefore can be excluded

when going to the moving system of coordinates. The next term (∼ S) is responsible for the

quadratic dispersion. In the case dε(ω0)/dω0 = 0 the coefficient S coincides with the expression

(3.26). The last term in this group defines the nonlinear frequency shift for a monochromatic

wave. The first two terms in the right hand side are proportional to (δω/ω0)3 . It is important

that there are only two such terms and that the coefficient β2 = 2π ∂T
∂ω is not equal to zero, even

for a constant susceptibility χ . At χ = const the coefficient β2 can vanish only if k ∼ ω2 . All
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the other terms are proportional to (δω/ω)4 . Among them there is the term ∼ |ψ|4ψ which

possesses the same order of magnitude.

The coefficients βi in equation (3.40) have a simple form for the matrix element (3.35):

β1 =
3

2
πk2

0χ

(
Vph

c

)4

; β2 =
β1

ω0

(
1 −

Vph

2Vgr

)
; (3.41)

β3 = β1
k1/2

ω0

∂2

∂ω2
0

( ω0

k1/2

)
; β4 = β5 =

β1

ω2
0

(
1 −

Vph

2Vgr

)2

.

Equation (3.40) has an Hamiltonian formulation:

i
∂ψ

∂x
= −

δH

δψ∗ . (3.42)

Here the Hamiltonian H is represented as a sum of Hamiltonians Hi :

H = H1 + H2 + H3 + H4 + ... ,

where

H1 =
i

Vgr

∫
ψ∗ψtdt, (3.43)

H2 = −
∫ (

k0S|ψt|2 −
β1

2
|ψ|4

)
dt, (3.44)

H3 =

∫
[iγψ∗ψttt + iβ2(ψ

∗ψt − ψψ∗
t )|ψ|2]dt , (3.45)

H4 =

∫ [
δ|ψtt|2 −

β3

2
|ψ|2(ψψ∗

tt + c.c.) −
β4

2
(ψ2

t ψ
∗2 + c.c.) −

β5

2
ψ∗2∂2

t ψ
2 +

β6

3
|ψ|6

]
dt . (3.46)

H2 corresponds to the classical NLS equation, and the next ones to the complex MKDV equa-

tion. It is important that each Hamiltonian is small compared to the previous one. However,
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such a situation can change if, for some reason, some coefficients have an additional smallness.

As seen from (3.27), the soliton width decreases with the coefficient of quadratic dispersion S .

So, at small S (such situation occurs near the so called zero dispersion point) it is necessary

to take into account only the cubic dispersion (∼ γ) and to neglect all higher-order terms, and

also the term proportional to β2 . On the opposite, if the coefficient β1 is small, one needs to

take into account the nonlinear dispersion ∼ β2 and to neglect the cubic linear dispersion. As

shown in the next sections, one also needs to keep the last term in (3.46) in the latter case.

Let us now analyse the solutions for the generalized NLS equation. We start from the NLS

equation with quadratic dispersion (corresponding to the Hamiltonian (3.44))

i
∂ψ

∂x
+ ψtt + 2|ψ|2ψ = 0 (3.47)

to illustrate how the mechanism (3.27) presented above works. Here the dimensionless variables

are used and the nonlinearity is assumed to be focusing: Sχ > 0.

It should be noted that, unlike the wave equation (3.5), the general NLSE (3.40) and, in

particular, the NLSE with quadratic dispersion has one additional symmetry, namely, the gauge

symmetry: ψ → ψeiφ , that appears as a result of the averaging over rapid oscillations. Therefore

the envelope soliton solutions form a broader class than solutions to the wave equation (3.5) and,

according to our definition, they must be related to quasisolitons. To find the corresponding

solution one should put ψ(x, t) = eiλxψs(t + βx) where ψs obeys the equation:

L(i∂t)ψ ≡ −iβψt + λψ − ψtt = 2|ψ|2ψ, (3.48)

where the subscript s is omitted. Here the parameter β , which corresponds to an inverse

velocity for the equation (3.40) in dimensional variables, is equal to the difference between the

soliton and the group velocities divided by v2
gr .

According to (3.18), the condition for Cherenkov radiation will be written as follows:

βΩ = k(Ω) or L(Ω) = 0 , (3.49)
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−|λ|

Ω
−|λ|

Figure 2: The dispersive curve (3.50) for negative λ . Any straight lines leaving the origin always
intersect the curve.

where the dispersion law for the equation (3.48) takes the form:

k(Ω) = λ + Ω2. (3.50)

Hence one can see that for λ < 0 the resonance condition (3.49) is satisfied for all values

of the “velocity” β ! (see Fig. 2) and consequently solitons do not exist in this case. This

can be checked directly by solving the equation (3.48): for λ < 0 all solutions are periodic

or quasi-periodic. Soliton solutions are possible for λ > 0 . Their velocities lie in the range

−2
√

λ ≥ β ≥ 2
√

λ (see Fig. 3). At the points Ω = ±
√

λ the dispersive curve k = k(Ω) touches

the straight line k = βcrΩ . At these points the solution must vanish in agreement with the

general theory. It directly follows from the exact solution of (3.48):

ψ = eiλx eiβt′∆Ω

cosh(∆Ωt′)
, ∆Ω =

√
λ− β2/4. (3.51)

Solitons exist only for λ > β2/4. The upper boundary in this inequality defines the critical

velocity:

βcr = ±2
√

λ.
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k

Figure 3: The dispersive curve (3.50) for positive λ . Dashed lines tangent to the curve corre-
spond to the critical velocities β = ±2

√
λ . The soliton velocity cone is limited by these two

dashed lines.

Note also that at λ > β2/4 the operator L in equation (3.48) is positive definite.

Now let us consider the case of third-order dispersion. Suppose as before that the desired

solution depends on x exponentially:

ψ(x, t) = eiλxψs(t
′), t′ = t + βx. (3.52)

The corresponding operator L(i∂t) has the form

L(Ω) = −βΩ + λ + SΩ2 + γΩ3. (3.53)

This operator for any values λ, β, S and γ 0= 0 is not sign definite. This means that the

equation L(Ω) = 0 or its equivalent form

βΩ = λ + SΩ2 + γΩ3

has at least one real solution: any straight line going through the origin always intersects the

dispersive curve k(Ω) = λ + SΩ2 + γΩ3 . For example, at λ = 0 and β ≥ β0 = −S2/(4γ) all

straight lines k = βΩ intersect twice the curve k = k(Ω). At β < β0 straight lines have one
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Figure 4: The third order dispersion k = DΩ2 + γΩ3 . The straight line dispersive curve (3.50)
for positive λ . The straight line (dashed) touches the dispersive curve at the point Ω = Ω0 but
intersects the curve at Ω = 0.

intersection, and touching takes place at β = β0 (see Fig. 4). However, one intersection is

enough to exclude solitons. From a different point of view, the example of the KDV equation,

which simultaneously has cubic linear dispersion and solitons, would seem to be in contradiction

with what we just said. But there are no contradictions. The reason is the dependence of the

matrix element on wave vectors that provides the cancellation of singularities in the equation of

type (3.22).

Let us show on the example of the KDV equation

Ut + Uxxx + 6UUx = 0, (3.54)

how such a cancellation of singularities occurs. For solitons moving with velocity v

L(k) = ik(v + k2) .

If v > 0 the equation L(k) = 0 has one real root k = 0. In this case the analog of (3.22) reads

Uk =
3ik(U2)k

L(k)
,
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which, evidently, does not contain a singularity at k = 0. A similar situation occurs for other

equations of the KDV type (see, for instance, [90]). It is necessary to mention the papers [91]

where the soliton type solutions were found for the GNLSE with third order dispersion and

the corresponding nonlinearity ( (3.44), (3.45)). Being formally correct these solutions have a

spectrum concentrated in the frequency range Ω ∼ 1/γ, 1/β2 , comparable with the frequency

ω0 . In other words they have parameters which are not compatible with perturbation theory.

The existence of such solitary waves indicates that the cancellation of singularities also takes

place. The soliton spectrum is shifted by a small value when there is the following relation

between the coefficients S, γ, β1 and β2 :

k0S

β1
=

3γ

4β2
.

This situation is quite special: equation (3.40) (written in dimensionless variables)

iψx + ψtt + 2|ψ|2ψ = iε(ψttt + 6|ψ|2ψt) (3.55)

allows the application of the inverse scattering transform (see, for instance, [12]). In this case

the Hamiltonians (3.44) and (3.45) are conserved separately. Both Hamiltonians are generated

by the same auxiliary operator, namely the Zakharov-Shabat operator [5]. The parameter ε in

this equation is of order δω/ω and ψ takes values of order one. The soliton solution for this

equation was first presented in the papers [92]. The simplest solution among them is

ψ = eiµ2x µ

cosh[µ(t − εµ2x)]
,

which transforms at ε = 0 into the stationary NLS soliton (3.51).

From the above results one can make the following conclusion: the existence of soliton

solutions for the operators L of third order is linked to presence of the derivative in the nonlinear

term or, in another words, to the matrix elements dependence on frequencies. If such dependence

is absent or not essential (as it is, for instance, near a zero dispersion point) then there are no

reasons for the cancellation of singularities in equations of type (3.22).
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In the following we restrict ourselves to the case where the nonlinearity dispersion is absent

or not essential. In such a situation the third order dispersion cannot provide soliton existence

- one needs to take into account the next order terms.

For the fourth order dispersion the corresponding operator L reads

L(Ω) = −βΩ + λ + SΩ2 + γΩ3 + δΩ4. (3.56)

The sign definiteness of L will now be defined by the sign of the parameter δ : at δ > 0 the

function L will be positive for large Ω and, respectively, negative in the opposite case.

By an appropriate frequency shift, Ω → Ω + ν , one can always exclude the cubic term from

the operator L . Secondly, with the help of simple rescaling and sign change, L(Ω) can be

transformed to the two following canonical forms:

L(Ω) = −βΩ + k(Ω) = −βΩ + λ + (Ω2 − ν2
0)2 , (3.57)

L(Ω) = −βΩ + k(Ω) = −βΩ + λ + (Ω2 + ν2
0)2. (3.58)

Applying the criterion (3.49) to the dispersion law (3.57) for λ < 0 yields satisfaction of the

resonance condition (3.49) for all values of β and, thus, in this parameter region solitons are

impossible. For positive λ = µ4 > 0 solitons are possible at the region −βcr ≤ β ≤ βcr where

βcr = 4Ω0(Ω
2
0 − ν2

0) or Ω2
0 =

1

6
(2ν2

0 +
√

16ν4
0 + 12µ4). (3.59)

Near the critical velocity (3.59) the dispersion is positive and therefore localized solitons can

only exist for the focusing (δχ > 0) nonlinearity, which in contrast, would be defocusing in the

case of quadratic dispersion.

The soliton shape is determined from the equation:

L(i∂t)ψ = 2σ|ψ|2ψ , (3.60)
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where L(i∂t) is given by formulas (3.57) and (3.58); σ = sign(δχ) defines the character of the

nonlinear interaction: focusing for σ = 1 and, respectively, defocusing for negative σ . Soliton

solutions are possible only for the focusing case. The simplest solutions of (3.60) are standing

solitons (they have zero speed). Their form for L (3.58) is found by integrating the equation

µ4ψ + (∂2
t + ν2

0)2ψ − 2|ψ|2ψ = 0. (3.61)

It is important that a moving soliton with fourth-order dispersion has a shape which is different

from that of the soliton for the NLSE with quadratic dispersion and cannot be distorted into a

standing soliton through phase transform and simple rescaling.

In order to find solutions, equation (3.61) should be supplemented by the boundary condi-

tions:

ψ,ψt → 0 as t → ±∞.

The symmetry of equation (3.61) with respect to t allows one to look for real symmetric solutions:

ψ(t) = ψ(−t) = ψ∗(t). At infinity (t → ±∞) these solutions must vanish exponentially, ψ ∼

eνt → 0, where the exponents ν are defined from the equation

µ4 + (ν2 − ν2
0)2 = 0.

The roots of this equation are given by the expressions

ν = ±
[
1

2

(√
µ4 + ν4

0 + ν2
0

)]1/2

± i

[
1

2

(√
µ4 + ν4

0 − ν2
0

)]1/2

. (3.62)

Namely, all the roots are complex. In particular, this means that standing soliton solutions must

have an oscillating structure. If µ ∼ ν0 , the ratio between the imaginary and real parts of the

exponents is of the same order. The critical touching takes place at µ = 0. Near this point the

real part ν ′ vanishes, but the imaginary part remains:

ν ≈ ±µ2/ν0 ± iν0. (3.63)
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Figure 5: The soliton shape at µ/ν0 = 1/3. The soliton amplitude and time are measured in
units ν2

0 and ν−1
0 , respectively. The soliton envelope has a form which is close to the sech form.

Only in this limit one can obtain the envelope soliton with the sech form (3.27).

For large µ ( µ / ν0 ) the roots have the asymptotic behavior

ν = µ
±1 ± i√

2
.

Figs 5-7 show solitons for different values of µ and ν0 . In the limit µ → 0 (Fig. 5), the

soliton shape has the form of the envelope soliton (3.27).

As µ increases, the number of oscillations decreases on the soliton size (Fig. 6) and at large

µ ( µ / ν0 ) the soliton has only one oscillation on this scale (Fig. 7). At a large distance

all solitons possess exponentially decreasing oscillating tails. When the ratio µ/ν0 increases,

the soliton amplitude increases and its duration decreases. The solitons obtained here as real

solutions of equation (3.61) are simultaneously solutions in the form of stationary solitons for

the wave equation (3.5) with dielectric permittivity:

ε(ω) = ε0 − a(ω2 − ω2
0)

2 and χa > 0 .

As for the case of second dispersion (3.58), the situation is familiar to the one for solitons
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Figure 7: The soliton shape at µ/ν0 = 10. The oscillating tail is no longer visible.
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with quadratic dispersion (3.50). Solitons here are possible only for λ > −γ4
0 , the only difference

with the quadratic dispersion solitons is connected with a change in the critical velocity value.

Near these points the structure of solitons has the universal form (3.27).

3.4 Stability of solitons

Consider the stability of solitons found in the previous subsection. As already demonstrated in

Section 2 the standing soliton (2.16) for the NLSE with quadratic dispersion is stable. We first

show that the propagating solitons are also stable. The Hamiltonian for this equation is of the

form

H =

∫
(|ψt|2 − |ψ|4)dt ≡ I1 − I2, (3.64)

and soliton solutions (3.52) represent stationary points of the Hamiltonian H for fixed momen-

tum P = −i
∫

ψψ∗
t dt and number of particles (power) N =

∫
|ψ|2dt :

δ(H + βP + λN) = 0. (3.65)

To prove the stability of the soliton let us demonstrate, following [39], that the soliton realizes

the minimum of the Hamiltonian for fixed P and N . In order to do that, it is convenient to

represent the parameter λ as the sum of β2/4 and the positive quantity µ2 and then consider

the functional F = H + βP + (β2/4)N which has the meaning of a Hamiltonian in the moving

system of reference. Through the change of the wave function ψ → ψeitβ/2 , F is transformed

into H (3.64) and respectively the variational problem (3.65) is written as

δ[H + (λ − β2/4)N ] = 0;

it corresponds to the moving soliton solution (3.51). Thus, we reduce the stability of the moving

NLS solitons to the stability of the standing one; that proves their stability.

Let us now consider the fourth-order dispersion. The corresponding functional F = H +

βP + λN can be represented as the sum of the mean value of the positive definite operator
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L(i∂t) (3.56) and the nonlinear term:

F =

∫
ψ∗L(i∂t)ψdt −

∫
|ψ|4dt. (3.66)

In order to obtain the stability proof for solitons one needs to find the analog of the estimate

(2.30) for the mean value of the operator L(i∂t).

Let L(Ω) be a positive definite polynomial of Ω ∈ (−∞,∞) of even degree N = 2l :

L2l(Ω) = C2lΩ
2l + C2l−1Ω

2l−1 + ... + C0.

Then L(Ω) can be expanded as follows

L2l(Ω) =
l∑

p=0

L2l−2p(Ωp)
p−1∏

i=1

(Ω − Ωi)
2 (3.67)

where Ωi and polynomials L2l−2p(Ω) are constructed from L2l(Ω) by the following way.

Let Ω = Ω0 be the minimal point of L2l(Ω): min L2l(Ω) = L2l(Ω0). The latter means that

L2l(Ω) can be written as

L2l(Ω) = L2l(Ω0) + (Ω − Ω0)
2L2l−2(Ω)

where L2l−2(Ω) is the nonnegative polynomial of degree 2l − 2 . Expanding the polynomial

L2l−2(Ω) yields a new nonnegative polynomial with degree 2l− 4. Further recursion leads us to

the formula (3.67). What is important is that all coefficients in this expansion are nonnegative:

L2l−2p(Ωp) ≥ 0. Note that L0(Ωl) = C2l .

The expansion (3.67) generates the following expansion for the mean value of the operator

L2l(i∂t):

〈L2l(i∂t)〉 ≡
∫

ψ∗L2l(i∂t)ψdt (3.68)

= L2l(Ω0)N0 + L2l−2(Ω1)N1 + ... + L0(Ωl)Nl
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where

Np =

∫
|ψp|2dt; ψp =

p−1∏

q=0

(i∂t + Ωq)ψ, p ≥ 1; ψ0 ≡ ψ.

This representation exhibits how the square norm of the positive definite polynomial operator

can be expanded through the norms Np with nonnegative coefficients L2l−2p(Ωp).

The expansion (3.67) to fourth-order positive definite dispersion (3.56)

L(Ω) = λ − βΩ + DΩ2 + γΩ3 + Ω4

reads

L(Ω) = µ4 + η2(Ω − Ω0)
2 + (Ω − Ω0)

2(Ω − Ω1)
2 , (3.69)

where µ4 replaces L4(Ω0) and L2(Ω1) is replaced by η2 . Without loss of generality, in Eq.(3.69)

one can put Ω0 = −Ω1 = ν0 (it corresponds to the change ψ → ψ exp{−i1
2 (Ω0 + Ω1)t}) so that

the formula (3.69) takes the form

L(Ω) = µ4 + η2(Ω − ν0)
2 + (Ω2 − ν2

0)2. (3.70)

The difference between dispersions (3.57) and (3.58) is in the sign of the quantity 2ν2
0 − η2

positive or negative (2ν2
0 > η2 for (3.57) and 2ν2

0 < η2 for (3.58). The integral expansion for

the norm of the operator L corresponding to (3.70) is written as follows

〈L(i∂t)〉 = µ4N + η2J1 + J2 , (3.71)

where

J1 =

∫
|(i∂t + ν0)ψ|2dt, J2 =

∫
|(∂2

t + ν2
0)ψ|2dt.

This representation means that moving solitons can be considered as stationary points of a new

Hamiltonian

H ′ = η2J1 + J2 −
∫

|ψ|4dt (3.72)
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for fixed number of particles N :

δ(H ′ + µ4N) = 0. (3.73)

If the Hamiltonian H ′ is bounded from below for a fixed N and its lower boundary corresponds

to the soliton, then one has soliton stability. In terms of the new Hamiltonian the soliton

solutions obey the equation

µ4ψs + η2(i∂t + ν0)
2ψs + (∂2

t + ν2
0)2ψs − 2|ψs|2ψs = 0. (3.74)

Multiplying this equation by ψ∗
s and integrating over t leads to the following relation between

integrals contained in H ′ :

µ4Ns + η2J1s + J2s − 2

∫
|ψs|4dt ≡ H ′

s + µ4Ns −
∫

|ψs|4dt = 0.

Another relation follows after multiplying Eq. (3.74) by t∂tψ∗
s and integrating:

(µ4 + η2ν2
0 + ν4

0)Ns + (2ν2
0 − η2)

∫
|∂tψs|2dt − 3

∫
|∂2

t ψs|2dt −
∫

|ψs|4dt = 0.

Combining both relations yields

H ′
s = (η2ν2

0 + ν4
0)Ns + (2ν2

0 − η2)

∫
|∂tψs|2dt − 3

∫
|∂2

t ψs|2dt.

For both dispersions the Hamiltonian H ′
s on the soliton solution is bounded from above by the

number of particles Ns multiplied by some positive coefficient: for (3.57) we have

H ′
s ≤

[
1

12
(2ν2

0 − η2)2 + η2ν2
0 + ν4

0

]
Ns

and for (3.58)

H ′
s ≤ (η2ν2

0 + ν4
0)Ns.

We now prove the boundedness from below of the Hamiltonian H ′ for fixed N . In order to do

that we first estimate two integrals J1 and J2 through two other integrals N and I2 =
∫
|ψ|4dt.
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It is easy to see that, for the first integral J1, the following estimate (2.30) holds:

∫ ∞

−∞
|ψ|4dt ≤

1√
3
N3/2

[∫ ∞

−∞
|(i∂t + ν0)ψ|2dt

]1/2

. (3.75)

Using again the inequality (2.30) leads to the desirable estimate for J2 : one first integrates by

parts the integral
∫
|ψt|2dt , then uses the Schwartz inequality

∫
|ψt|2dt = −

∫
ψ∗(ψtt + ν2

0ψ)dt +

∫
ν2
0 |ψ|2dt

≤ N1/2

[∫
|(∂2

t + ν2
0)ψ|2dt

]1/2

+ ν2
0N

and finally substitutes this result into (2.30):

J2 ≥
1

N

(
3I2

2

N3
− ν2

0N

)2

. (3.76)

Through the inequalities (3.75) and (3.76), the Hamiltonian H ′ can be estimated as follows:

H ′ ≥ f(I2) =
3I2

2

N3
+

1

N

(
3I2

2

N3
− ν2

0N

)2

− I2. (3.77)

Continuing this inequality, one can write

f(I2) ≥ 2

√
3I2

N2

(
3I2

2

N3
− ν2

0N

)
− I2.

Hence we finally arrive at the desired inequality, i.e., at the boundedness of the Hamiltonian:

H ′ ≥ −
4
√

3N

9

[

1 +

√
3N

6ν2
0

]3/2

. (3.78)

According to the Lyapunov theorem this proves the stability of the stationary point of the

Hamiltonian corresponding to its minimum. This minimum point is some soliton solution of

equation (3.74) which, in principle, is unique. Also important is that according to the estimate

(3.78) the Hamiltonian can take negative values. If initially the Hamiltonian H ′ < 0, one can

use the mean value theorem to obtain an estimate from below for the maximum value of |ψ|2

(compare with [39])

max
t

|E|2 ≥
|H ′|
N

.
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Thus the maximum of intensity which existed initially cannot disappear as distance grows. The

radiation of small amplitude waves must provide, due to the boundedness of the Hamiltonian

from below, relaxation of such initial conditions to the soliton state.

We conclude this section with a few words about the stability of stationary solitons (3.27).

Near the critical velocity this question can be considered in the framework of the parabolic NLS

equation (3.50) for which we already know the answer. In order to investigate the stability of

solitons far from the critical velocity, the next order terms in the dispersion must be included.

As seen above, the fourth-order terms which provided the positiveness of the corresponding

operator L also provide stability for solitons. We guess that the positive definite polynomial

operators of even order must provide the soliton stability. Probably solitons will be unstable

only for operators growing proportionally to
√
|Ω| and slowly at infinity, |Ω| → ∞ .

Note that the analysis for solitons based on the criteria (3.12), (3.13) is valid for any dimen-

sion. It is essential that the requirement for soliton existence remains correct: the corresponding

operator L must be sign definite. Moreover, fourth order dispersion in all physical dimensions

d provides the existence of stable solitons of the GLNS equation with cubic nonlinearity. This

follows by estimating the fourth order dispersive term in the Hamiltonian through the integrals

I2 and N . In this case the inequality (2.30) reads

∫
|ψ|4dDx ≤ C

[∫
|∆ψ|2dDx

]D/4 [∫
|ψ|2dDx

]2−D/4

. (3.79)

Substituting this estimate into the Hamiltonian

H =

∫
|∆ψ|2dDx −

∫
|ψ|4dDx

provides its boundedness from below:

H ≥
∫

|∆ψ|2dDx − C

[∫
|∆ψ|2dDx

]D/4 [∫
|ψ|2dDx

]2−D/4

≥ −(4/D − 1)

(
4

CD

)4/(D−4)

N (8−D)/(4−D).
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Besides soliton stability, this proves also that for media with Kerr nonlinearity wave collapse

is stopped by fourth order dispersion in all physical dimensions.
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4 Supercritical bifurcations: general consideration

In the two previous sections we have examined two types of solitons undergoing supercritical

bifurcations and demonstrated that solitons behave similarly near the bifurcation point. Now

we will show that such behavior of solitons near their supercritical bifurcation point is intrinsic

for any type of solitons.

Let us consider a purely conservative nonlinear wave medium which can be described by the

Hamiltonian

H =

∫
ωk|ak|2dk + Hint, (4.1)

where ωk is the dispersion law of small-amplitude waves, ak are the normal amplitudes of the

waves and the Hamiltonian Hint describes the nonlinear interaction of the waves. The expansion

of the interaction Hamiltonian Hint in powers of ak and a∗k ,

Hint = H1 + ...,

starts from the cubic term

H1 =

∫
(Vkk1k2

a∗kak1
ak2

+c.c.)δk−k1−k2
dkdk1dk2+

1

3

∫
(Ukk1k2

a∗ka
∗
k2

a∗k2
+c.c.)δk+k1+k2

dkdk1dk2

(4.2)

which describes the three-wave interaction. Here the matrix elements Vkk1k2
and Ukk1k2

have

symmetry properties in accordance with the definition of H1 :

Vkk1k2
= Vkk2k1

, Ukk1k2
= Ukk2k1

= Uk1kk2
.

Since the variables ak and their complex conjugates a∗k are classical analogs of the quantum

annihilation and creation operators, one can classify all nonlinear processes corresponding to

each term in the interaction Hamiltonian. For instance, the first term proportional to Vkk1k2
is
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responsible for the process of decay of one wave into two waves and the second term in (4.2)

is responsible for the process 0 → 3 (creation of three waves from a “vacuum”). Among the

fourth order terms the most important one is the Hamiltonian

H2 =
1

2

∫
Tk1k2k3k4

a∗k1
a∗k2

ak3
ak4

δk1+k2−k3−k4
Πdki (4.3)

responsible for the processes of scattering of waves, 2 → 2.

The equations of motion of the medium can be written in terms of the amplitudes ak in the

standard Hamiltonian form [35]

∂ak

∂t
+ iωkak = −i

δHint

δa∗k
, (4.4)

so that in the absence of interactions the system consists of a collection of noninteracting oscil-

lators (waves):

ak(t) = ak(0)e
−iωkt.

Equation (4.4) describes the dynamics in wave number space. To go back to the physical space

one needs to perform the inverse Fourier transform

ψ(x, t) =
1

(2π)d/2

∫
ak(t)e

ik·rdk. (4.5)

Originally, the function ψ(x, t) is related to the characteristics of the medium (fluctuations of

the density and velocity of the medium, electric and magnetic fields, and so on) by a linear

transformation (see, for example, Ref. [35]). It is important that if ψ(x, t) is a periodic function

of the coordinates, then its spectrum ak(t) consists of a sum of δ -functions. For localized

distributions ψ(x, t) → 0 as |x| → ∞ . The Fourier amplitude ak(t) being a localized function

of k , it does not contain δ -function singularities.

Let us now consider the solution of Eq. (4.4) in the form of a soliton propagating with

constant velocity V :

ψ(x, t) = ψ(x − Vt).

60



In this case the whole dependence of ak on time t is contained in the oscillating exponent:

ak(t) = cke
−ik·Vt,

where by virtue of Eq. (4.4) the amplitude ck satisfies the equation

(ωk − k ·V)ck = −
δH

δc∗k
≡ fk. (4.6)

The difference ωk − k ·V appearing in this equation is positive for all k if the soliton velocity

is less than the minimum phase velocity

|V| < min(ωk/k). (4.7)

Conversely, the difference is negative for all k if the soliton velocity is greater than the maximum

phase velocity:

|V| > max(ωk/k). (4.8)

We show that a soliton solution is possible if the condition (4.7) (or (4.8)) is satisfied. Let us

assume the opposite to be true - let both conditions (4.7) and (4.8) be violated, i.e. equation

(1.1) has a solution. For simplicity, we assume that it is unique: k = k0 . Then, since xδ(x) = 0,

the homogeneous linear equation

(ωk − k ·V)Ck = 0

possesses a nontrivial solution in the form of a monochromatic wave

Ck = Aδ(k − k0).

In this case, the Fredholm alternative allows us to write Eq. (4.6) as

ck = Aδ(k − k0) +
fk

ωk − k · V
with fk0

= 0 (4.9)
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(compare with (3.15)). This equation, in contrast to Eq. (4.6), contains a free parameter —

the complex amplitude A . It can be solved iteratively, for example, taking Aδ(k − k0) as the

zeroth term. It is important that because of the nonlinearity one obtains multiple harmonics

with k = nk0 where n is integer as a result of iterations. The solution consists of a sum of

δ -functions. In physical space the solution is a periodic function of the coordinates, i.e., it is

nonlocalized. Hence the first selection rule for solitons follows: the difference ωk − k · V must

be sign-definite, which is equivalent to the requirements (4.7) or (4.8). In other words it means

that Cherenkov radiation is absent.

In this whole scheme, there is however an important exception. Having represented Eq. (4.6)

in the form (4.9), we have in fact assumed that the singularity in the expression

fk

ωk − k ·V
(4.10)

is nonremovable. This may not be the case — the singularity in the denominator of Eq. (4.10)

could be canceled with the numerator, i.e., it could be removable [23]. As seen in the previous

section, this happens for the classical soliton of the KDV equation, for equations which are

generalizations of the KDV equation [90], for the combination of the 1D NLS and MKDV

equations integrated by the same Zakharov–Shabat operator [5] and so on. In all of these cases

cancellation occurs as a result of the k dependence of the matrix elements. However, even in

these cases, the selection rule for solitons remains the same: after the resonance (1.1) is removed

— the part remaining in the denominator must be sign-definite.

In what follows the singularities in Eq. (4.10) are assumed to be nonremovable in the forbid-

den region, and we study the behavior of the soliton solution as the soliton velocity approaches

the critical value. For definiteness, it is assumed that the plane ω = k ·V is tangent to the

dispersion surface ω = ωk from below, i.e., the criterion (4.7) holds. Let touching occur at the
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point k = k0 . Then, instead of Eq. (4.9), in the allowed region

ck =
fk

ωk − k ·V
.

As the velocity V approaches the critical value Vcr , the denominator in this expression becomes

small near the touching point, so that ck exhibits a sharp peak at this point

ck =

[
1

2
ωαβκακβ + k0(Vcr − V)

]−1

fk. (4.11)

Here ωαβ = ∂2ω/∂kα∂kβ is a symmetric, positive-definite tensor of the second derivatives,

evaluated at k = k0 , and κ = k − k0 .

It is evident from Eq. (4.11) that as V approaches the critical velocity the width of the peak

narrows as
√

Vcr − V , and the distribution corresponding to the main peak k = k0 approaches

a monochromatic wave. Accounting for nonlinearity, the spectrum contains harmonics which

are multiples of k = k0 . If it is assumed that the amplitude of the soliton vanishes gradually as

V → Vcr (which would correspond to a second-order phase transition), then the solution ψ(x)

(or, equivalently, ck ) can be sought as an expansion in terms of harmonics:

ψ(x′) =
∞∑

n=−∞
ψn(X)eink0·x′

, x′ = x− Vt. (4.12)

Here the small parameter

λ =
√

1 − V/Vcr (4.13)

and the slow coordinate X = λx′ are formally introduced, so that ψn(X) is the amplitude of the

envelope of n -th harmonic. The assumption that the soliton amplitude vanishes continuously

at V = Vcr means that the leading term of the series in Eq. (4.12) corresponds to the first

harmonic, and all other harmonics are small in the parameter λ . This is the condition under

which the NLS equation is derived (see, for example, Refs. [23], [64], and [13]). In the present

case, we arrive at the stationary NLS

−k0Vcrλ
2ψ1 +

1

2
ωαβ

∂2ψ1

∂Xα∂Xβ
+ B|ψ1|2ψ1 = 0 (4.14)
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at leading order in λ , where B is related to the matrix T̃k1k2k3k4
of four-wave interactions as

B = −(2π)dT̃k0k0k0k0
. (4.15)

In this approximation the leading term in the interaction Hamiltonian has the form

Hint =
T̃k0k0k0k0

2

∫
c∗k1

c∗k2
ck3

ck4
δk1+k2−k3−k4

dk1dk2dk3dk4 = −
B

2

∫
|ψ1|4dx, (4.16)

and the tilde means renormalization of the four-wave matrix elements due to the three-wave in-

teraction — in the present case the interaction with the zeroth and second harmonics. According

to [23] T̃k0k0k0k0
is given by the following expression:

T̃k0k0k0k0
= Tk0k0k0k0

− 2
|U−2k0k0k0

|2

2ωk0
+ ω2k0

− 2
|V2k0k0k0

|2

ω2k0
− 2ωk0

− 4 lim
κ→0

|Vk0k0κ|
2

ωκ − κvgr
. (4.17)

Here the second and third terms represent the contribution from the interaction with the second

harmonic. The last term, in the form of a limit as κ → 0, accounts for the interaction with

the zeroth harmonic where vgr = ∂ω/∂k is the group velocity taken at k = k0 . According

to Goldstone’s theorem (cf. [94]) the frequency ωκ can vanish or tend to a constant value as

κ → 0. The same statement is valid for the matrix element Vkk1k2
if one of the wave vectors

k,k1 or k2 tends to zero. Thus, in the expression (4.17) for the matrix element of T̃ , there are

indeterminacies when ki = k0 . As a result we arrive at the limit

lim
κ→0

|Vk0k0κ|2

ω(κ) − κvgr
.

For example, for surface waves on the deep water

ω(κ) = (gκ)1/2 , Vk0k0κ ∼ κ3/4

and all the indeterminacies vanish. For finite depth one has Vk0k0κ ∼ κ1/2,ω(κ) ∼ κ , so that

this limit is finite in each direction, however, the quantity T̃k0k0k0k0
remains undetermined due

to the angular dependence between the vectors k0 and κ . Indeterminacies of this type are
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related to the excitation of induced motion of the medium as a whole. Such a situation occurs

for all waves whose dispersion laws ωk become linear as k → 0. In addition to the surface waves

considered above, such waves include ion-acoustic waves in plasma, sound waves in a solid, etc.

The additions to the four-wave matrix element T̃ will be finite far from the resonances

2ωk0
− ω2k0

= 0 (4.18)

and

ω(κ) − κvgr = 0. (4.19)

The first resonance corresponds to the excitation of the second harmonics, while the second one

relates to the resonant interaction of wave packets with low-frequency waves. In nonlinear optics

the latter corresponds to the Mandelstamm-Brillouin scattering.

As already noted, ωαβ in Eq. (4.14) is a symmetric positive-definite tensor. For this reason,

performing a rotation to its principal axes and carrying out the corresponding extensions along

each axis, Eq. (4.14) can be transformed into the standard form

−λ2ψ + ∆ψ − 2µ|ψ|2ψ = 0, (4.20)

where µ = sign(T̃ωαα). Hence it follows, in the first place, that solitons are possible only if µ

is negative (focusing nonlinearity when the product T̃ωαα is negative) and, in the second place,

that the amplitude of the solitons is proportional to

λ =
√

1 − V/Vcr, (4.21)

i.e., the amplitude vanishes according to a square-root law, the size of the soliton increases as

1/λ as the velocity approaches the critical value. This is in complete correspondence with both

examples considered in the previous sections.
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4.1 Stability of solitons in multi dimensions

It is obvious that for soliton stability the most dangerous disturbances will be those having wave

numbers close to k = k0 moving together with the soliton, i.e., modulation-type disturbances.

In order to include these perturbations one needs to introduce the time dependence in the

averaged equations. In this case the amplitudes ψn in the expansion (4.12) must be assumed to

depend not only on the “slow” coordinate X but also on the slow time T = λ2t . Then using

multiscale expansions, we obtain the nonstationary NLS equation instead of the stationary NLS

equation (4.20):

iψt − λ2ψ + ∆ψ − 2µ|ψ|2ψ = 0 (4.22)

(compare with Eq. (2.19)).

The problem of the stability of solitons solution to this equation has been well studied (see,

for example, Refs. [23] and [39]). We recall the basic points in the investigation of stability.

Equation (4.22) as an equation for envelopes inherits the canonical Hamiltonian form (4.4)

i
∂ψ

∂t
=

δH̃

δψ∗ , (4.23)

where the Hamiltonian

H̃ = λ2N +

∫
(|∇ψ|2 − |ψ|4)dr, (µ = −1) (4.24)

arises as a result of averaging the initial Hamiltonian. Equation (4.22) preserves, besides H̃ , the

total number N of particles (adiabatic invariant), so that solitons are stationary points of the

functional H = H̃ − λ2N (which we also call Hamiltonian) with a fixed number of particles:

δ(H + λ2N) = 0. (4.25)

The number of particles (or intensity) on the soliton solution as a function of λ has the form

Ns =

∫
|ψs|2dx = λ2−d

∫
|g(ξ)|2dξ, (4.26)
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where d is the dimension of the space, ψs = λg(λx) and g(ξ) satisfies the equation

−g + ∆g + 2|g|2g = 0.

In the 1D case, g =
√

2 sech ξ and, correspondingly, Ns = 4λ . In the 2D case Ns is independent

of λ for the entire family of solitons, while in the 3D case Ns decreases as λ increases. The

dependence of Ns on λ2 is crucial from the point of view of soliton stability. The (linear)

instability of 3D solitons follows from the so-called Vakhitov-Kolokolov (VK) criterion [40].

4.1.1 Vakhitov-Kolokolov criterion

Now we will give the derivation of this criterion, following the review [39] for the NLSE soli-

tons. The crucial point in its derivation is based on the oscillation theorem for the stationary

Schrodinger operator. This theorem establishes the one-to-one correspondence between a level

number and a number of nodes of the eigenfunction. As well known, this theorem is valid only

for scalar (one-component) Schrodinger operators and cannot be extended, for example, to the

analogous matrix operators. This means that the Vakhitov-Kolokolov type of criteria, as a

rule, define only sufficient conditions for soliton instability and cannot necessarily determine the

stability of solitons.

As known, the NLSE is invariant with respect to a Galilean transformation. Therefore it is

enough to consider only the rest soliton solution ψ = ψs(r)eiλ2t . where the function ψs(r) is

assumed to be radial symmetric without no nodes (ground soliton solution). Letting,

ψ(r, t) = (ψs(r) + u + iv)eiλ2t, ψs / u, v

in the equation (4.22) and linearizing on the background of the soliton solution leads to coupled

linear equations for real-valued functions u and v . These equations are Hamiltonian:

ut =
1

2

δH(2)

δv
, vt = −

1

2

δH(2)

δu
. (4.27)
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Here H(2) represents the second variation of H + λ2N :

H̃ = 〈v|L0|v〉 + 〈u|L1|u〉 (4.28)

with

L0 = λ2 − ∆ − 2ψ2
0 , L1 = λ2 −∆ − 6ψ2

0 ,

where 〈v|L0|v〉 =
∫

v(r)L0v(r)dr and 〈u|L1|u〉 =
∫

u(r)L0u(r)dr , respectively.

The first term in (4.28), the mean value of the operator L0 , can be interpreted as a kinetic

energy and the second one, < u|L1|u > , as a potential energy. Thus, soliton stability or

instability are determined by the properties of the operators L0 and L1 .

The first property of L0 follows directly from the soliton equation (4.20):

L0ψs = λ2ψs − ∆ψs − 2ψ3
s ≡ 0, (4.29)

which shows ψs is an eigenfunction of the operator L0 . Moreover, ψs is the ground state ,

i.e., it has no nodes. Thus, due to the oscillation theorem, L0 as a Schrodinger operator has

no energy levels with negative values and so the mean value 〈v|L0|v〉 ≥ 0. Hence the question

about soliton stability or instability will define by a sign of the potential energy 〈u|L1|u〉 . If

we will find such perturbations u for which this mean value will be negative then we shall have

instability and vise versa.

The (Schrodinger) operator L1 has also the eigenfunction with zero eigenvalue corresponding

to the s -state:

L1∇ψs = 0

which can be checked by differentiation of Eq. (4.20) with respect to r . The function φ1 = ∇ψs

represents a neutral mode corresponding to the soliton shift as a whole. Unlike ψs for L0 , this

eigenfunction has one node (at r = 0) and therefore according to the oscillation theorem below
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the level E = 0 we have one (ground) state φ0 . Hence, we could make a conclusion about

instability because for u ∼ φ0 the mean value of the L1 operator is negative. However, it is a

fictitious instability because on u there exists the constraint,

〈u|ψs〉 ≡
∫

uψsdr = 0 (4.30)

and therefore the minimal mean value of the operator L1 must be sought in the class of functions

orthogonal to ψs . The condition is a direct consequence of the conservation law for particle

number N =
∫
|ψ|2dr : δN = 2 〈u|ψs〉 = 0. For the linearized system (4.27) this restriction

serves as a solvability condition. Thus, the stability problem reduces to solution of the following

eigenvalue problem :

L1|φ >= E|φ > +C|ψ0 > (4.31)

where C is the Lagrange multiplier which should be found from the solvability condition (4.30)

〈φ|ψ0〉 = 0. If we shall show now that this eigenvalue problem contains one negative eigen-value

E < 0 then this means a soliton instability. If in the spectrum of (4.31) there are no states with

negative energies then the soliton solution is stable.

Expanding |φ > over the complete set of eigen-functions {φn} of the operator L1 (L1φn =

Enφn ),

φ =
∑

n

Cnφn,

from (4.31) for the coefficients Cn we get

Cn = C
〈φn|ψs〉
En − E

, C1 ≡ 0.

The solvability condition (4.30) gives the dispersion relation

f(E) ≡
′∑

n

〈ψo|φn〉 〈φn|ψ0〉
En − E

= 0. (4.32)
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Prime here means that in the sum the state with n = 1 (φ1 = ∇ψs ) is absent due to the

orthogonality condition 〈φ1|ψs〉 = 0.

Consider now the energy interval between the ground state energy E0 < 0 and the first

positive level E2 . In this interval the function f(E) monotonically (∂f/∂E > 0) increases from

minus infinity at E = E0 up to plus infinity at E = E2 . If the function f(E) at E = 0 takes

negative values then the dispersion equation has no negative eigenvalues and, thus we have a

stable situation. If f(0) > 0 then the eigenvalue problem (4.31) contains negative E and the

soliton undergoes instability.

In order to find f(0) first note that

f(0) =
′∑

n

〈ψo|φn〉 〈φn|ψ0〉
En

≡ 〈ψ0|L1|ψ0〉 .

Next, by differentiating the soliton equation (4.20) with respect to λ2 one can get

L1(∂ψ0/∂λ
2) = −ψ0

or

〈ψ0|L1|ψ0〉 = −
〈
ψ0|∂ψ/∂λ2

〉
= −

1

2

∂Ns

∂λ2
.

Hence we have the following (Vakhitov-Kolokolov) linear stability criterion for solitons [40]:
if

∂Ns

∂λ2
> 0 (4.33)

then the soliton is stable and respectively unstable if this derivative is negative.

This criterion has a simple physical meaning. The value −λ2 for stationary nonlinear

Schrodinger equation (4.20) can be interpreted as the energy of the bound state - soliton. If we

add one ”particle” to the system and the energy of this bound state will decrease then we will

have a stable situation. If by adding one ”particle” the level −λ2 will be pushed towards the

continuous spectrum, then such a soliton will be unstable.
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At d = 3 the derivative ∂Ns/∂λ2 is negative and therefore 3D solitons are unstable (the

modulational instability). For the 2D case the Vakhitov-Kolokolov criterion (4.33) provides

an absence of linear exponential instability. A more detailed analysis in this case yields the

power type instability (for details see the survey [39] and Ref. [53]). At d = 1 the derivative

∂Ns/∂λ2 > 0 and 1D solitons occur linearly stable in the full agreement with the Lyapunov

stability considered above.

It is necessary to mention that the VK criterion (4.33) is valid for a more general NLS

equation than (4.22), for instance, for the case when one changes |ψ|2 by arbitrary function

f(|ψ|2) (for more details see [39]).

4.1.2 Lyapunov stability

The VK stability criterion for the NLS equation has another interpretation. According to (4.25)

the envelope solitons are stationary points of the energy E for a fixed number of waves N .

Therefore such solutions will be stable in the Lyapunov sense if they realize a minimum (or a

maximum) of the energy for fixed N .

Under the scaling transformations leaving N unchanged,

ψ(x) =
1

ad/2
ψs

(x

a

)
, (4.34)

where ψs is the solitonic solution, the Hamiltonian H becomes a function of the scaling param-

eter a :

H(a) =
I1s

a2
−

I2s

ad
, (4.35)

where I1s =
∫
|∇ψs|2dx , I2s =

∫
|ψs|4dx and µ = −1. Hence, as already demonstrated for

solitons in the 1D case, the energy (4.35) is bounded from below and has a global minimum at

a = 1 corresponding to the soliton solution with

Hs = −
2λ3

3
and 2I1s = I2s =

4λ3

3
.
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In the 3D case, the opposite occurs: the function H(a) in (4.35) has a maximum, correspond-

ing to the soliton solution, and is unbounded from below as a → 0. The gauge transformation

(2.25) gives a minimum of E and therefore all soliton solutions at d = 3 represent saddle points

of the energy. This indicates a possible instability of solitons in this case.

4.2 About collapses

The nonlinear stage of this instability for d ≥ 2 leads to wave collapse, i.e., the formation

of singularity in a finite time. One of the main criteria for wave collapse is connected with

the unboundedness of H (or E ) which takes place as a → 0 [99] (see also [102]). In such a

case wave collapse can be understood as the process of some particle falling in the unbounded

self-consistent potential.

To clarify the latter we apply the variational approach and take a trial function for the NLSE

(4.22) in the form

ψ(r, t) = a−d/2ψs

(r

a

)
exp(iλ2t + iµr2),

where a = a(t) and µ = µ(t) are assumed to be unknown functions of time. After substitution

of this ansatz into the action

S =
i

2

∫
(ψtψ

∗ − c.c.)dtdr −
∫

Hdt

and integration over spatial variables we arrive at Newton’s equation for a :

Cä = −
∂H

∂a
, (4.36)

where C =
∫

ξ2|ψ0(ξ)|2dξ plays the role of a particle mass and the function (4.35) has a meaning

of potential energy. The behavior of a(t) depends on the total energy,

E = C
ȧ2

2
+ H(a)
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and the dimension d . For d = 1 the soliton realizes the minimum value of the potential energy

H(a) and it is one of the reasons why 1D solitons are stable. For d = 3 if a “particle” stands

at the maximum point of H(a) initially, then depending on the its direction of motion (towards

or away from the center a = 0) the system will collapse (ψ → ∞) or expand (ψ → 0). For the

collapsing regime (falling at the center) a(t) behaves like

a(t) ∼ (t0 − t)2/5 (4.37)

near the singularity, where t0 is the collapse time. As shown in [99], this asymptotic behavior for

a(t) near the singular time coincides with that following from the exact semi-classical collapsing

solution which asymptotically (as t → t0 ) tends to the compact distribution:

|ψ| → λ
√

1 − ξ2 for ξ = r/a(t) ≤ 1

with λ ∼ (t0 − t)−3/5 .

Hence we can make a few conclusions. First, the influence of nonlinearity grows with in-

creasing spatial dimension d . As a consequence, stable solitons are intrinsic for low dimensional

systems while for higher dimensions instead of solitons we expect blow-up events. Secondly,

one of the main criteria of collapse is the unboundedness of the Hamiltonian. In this case, the

collapse can be interpreted as the fall of a particle to an attracting center in a self-consistent

potential [99].

Thus, the Hamiltonian unboundedness can be considered as one of the main criteria of the

existence of wave collapse, and the collapse in such systems can be represented as a process of

falling down of some “particle ” in a self-consistent unbounded potential. However the global

picture is more complicated. From the very beginning we have a spatially-distributed system

with an infinite number of degrees of freedom and therefore, rigorously speaking, it is hardly

feasible to describe such a system by its reduction to a system of ODEs like (4.36). The NLS

equation is a wave system and we deal primarily with waves. Waves may propagate, radiate and
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so on. To illustrate the importance of this point, let us try to understand the influence of wave

radiation on wave collapse.

Let Ω be an arbitrary region with a negative Hamiltonian HΩ < 0. Then using the mean

value theorem for the integral I2 ,

∫

Ω
|ψ|4dr ≤ max

x∈Ω
|ψ|2

∫

Ω
|ψ|2dr,

we have

max
x∈Ω

|ψ|2 ≥
|HΩ|
NΩ

. (4.38)

This estimate shows that wave radiation promotes collapse: far from the region Ω radiative

waves can be considered almost linear, nonlinear effects are small for them. These waves carry

out the positive portion of Hamiltonian making HΩ more negative with simultaneous vanishing

of the number of waves NΩ that results in growth of the r.h.s. of (4.38) [96], [64], [97]. This

is why we can say that wave radiation promotes collapse, which plays the role of friction in

nonlinear wave dynamics. Simultaneously radiation turns out to accelerate the compression of

the collapsing area with the self-similar behavior

r ∼ (t0 − t)1/2, (4.39)

different from that given by the semiclassical answer (4.37).

4.3 Virial theorem

The exact criterion for singularity formation within the NLS equation can be obtained from

the virial theorem. In classical mechanics the virial theorem requires first the calculation of the

second time derivative of the moment of inertia and then its averaging. It gives the relation

between mean kinetic and potential energies of particles if the interaction between particles is

of power type.
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In 1971 Vlasov, Petrishchev and Talanov [63] found that this theorem can be applied also

to the 2D NLS equation. The resulting relation is written for the mean square size 〈r2〉 =

N−1
∫

r2|ψ|2dr of the distribution as follows:

d2

dt2

∫
r2|ψ|2dr = 8H. (4.40)

This equality can be verified by direct calculation. In this relation N〈r2〉 has the meaning of

the inertia moment.

Since H is a conserved quantity, Eq. (4.40) can be integrated twice to yield

∫
r2|ψ|2dr = 4Ht2 + C1t + C2, (4.41)

where C1,2 are the additional integrals of motion. The existence of these integrals is explained

by two Noether symmetries: the lens transform (this fact was established by V.I. Talanov [98])

and the scaling transformation [100], [101].

Hence one can easily see that the mean square size 〈r2〉 of any field distribution with negative

Hamiltonian

H < 0, (4.42)

vanishes in a finite time independently on C1,2 , which, with the conservation of N , means the

formation of a singularity of the field ψ [63]. This is the famous Vlasov-Petrishchev-Talanov

(VPT) criterion, which is nowadays a cornerstone in the theory of wave collapse. This was the

first rigorous result for nonlinear wave systems with dispersion, which showed the possibility

of the formation of a wave-field singularity in finite time, despite the presence of the linear

dispersion of waves, an effect impeding the formation of point singularities (focii) in linear

optics.

One can make the following two concluding statements:
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(i) Solitons near supercritical bifurcation are stable only in the 1D case, while in the 2D (crit-

ical) and 3D cases solitons are unstable and can be considered as separatrix solutions separating

collapsing solutions from the dispersive ones [56].

(ii) This is probably the simplest method for explaining the well-known empirical fact that

solitons, as a rule, exist only in 1D systems. For multidimensional systems stable solitons are

rare and can only appear as a result of topological constraints or of a mechanism that removes

Cherenkov singularities (which is discussed in the previous Section). The latter, as can be easily

understood, is due to the existence of a certain symmetry class.
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5 From supercritical to subcritical bifurcations

For subcritical bifurcation at the critical velocity the soliton undergoes a jump in its amplitude.

In this case the corresponding theory can be developed near the transition point between sub-

critical and supercritical bifurcations (in analogy with the tri-critical point for phase transitions)

when one can use the finite set of terms in the Hamiltonian expansion. This happens when the

coefficient µ in Eq. (4.22) changes its sign taking positive values. In this case Eq. (4.22)

no longer possesses stationary localized (vanishing at infinity) solutions. In order for them to

exist it is necessary to take into account the next higher-order terms in the expansion of the

Hamiltonian in terms of the parameter ∆k/k0 , where ∆k is the width of the main peak. If

the jump in the soliton amplitude at V = Vcr is large (of the order of 1), then the entire series

must used and it is no longer possible to count on a systematic theory based on an expansion

of the Hamiltonian. Only if the matrix element T̃k0k0k0k0
= T̃0 is small, i.e., there is an addi-

tional smallness compared with the supercriticality (and as a result the jump is also small), it is

sufficient in this case to retain several of the next terms in the expansion. We shall study only

one-dimensional solitons, since, as we have seen above, multidimensional solitons are unstable

for a soft transition (supercritical bifurcation). This same tendency also remains for subritical

bifurcations (hard regimes). It is easy to see that in this situation two additional terms make

the main contribution to the interaction Hamiltonian. The first term is a correction to the

local four-wave Hamiltonian, −B/2
∫
|ψ|4 dx . It arises because a term linear in κi = ki − k0 is

retained in the expansion of the matrix element T̃k1k2k3k4

T̃k1k2k3k4
= T̃0 + Re

(
∂T̃

∂k1

)

(κ1 + κ2 + κ3 + κ4), (5.1)

where

∂T̃

∂k1
≡

∂T̃k1k2k3k4

∂k1

∣∣∣∣∣
ki=k0

.
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Note that this expansion coincides, up to notations, with Eq. (3.39) of Section 3. It is necessary

to underline that Eq. (5.1) assumes analyticity of T̃k1k2k3k4
relative to κi (i = 1, 2.3.4). As we

will see later for the interfacial waves (propagating along the interface between two ideal fluids

in the presence of gravity and capillarity) in the expansion (5.1) in this expansion there exists

the nonlocal (non-analytical) contribution proportional to |κi| .

As a result of (5.1), the Hamiltonian of the four-wave interaction in the envelope approxi-

mation can be written in the x representation as

H(4) = π

∫ {

T̃0|ψ|4 + 2iRe

(
∂T̃

∂k1

)

(ψ∗
xψ − ψxψ

∗)|ψ|2
}

dx. (5.2)

The expression i(ψ∗
xψ−ψxψ∗) in this integral is well known in the theory of phase transitions

(see Ref. [18]) — it is the so-called Lifshits invariant.

The second term — local in ψ — is a six-wave interaction

H(6) = −C

∫
|ψ|6dx. (5.3)

As will be evident from what follows, the interaction constant C can be both negative and

positive — the combination of both contributions (5.2) and (5.3) will be important.

The total Hamiltonian in dimensionless variables will depend on three constants µ, β, and

C

H = λ2N +

∫ [
|ψx|2 +

µ

2
|ψ|4 + iβ(ψ∗

xψ − ψxψ
∗)|ψ|2 − C|ψ|6

]
dx. (5.4)

The constant µ is assumed to be small, and the constants β and C do not contain any additional

smallness.
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The equations of motion for ψ that correspond to this Hamiltonian can be written according

to Eq. (4.23) as

iψt − λ2ψ + ψxx − µ|ψ|2ψ + 3C|ψ|4ψ + 4iβ|ψ|2ψx = 0. (5.5)

This equation can be used for description of the envelope solitary water waves (WW) in finite

depth h when the coefficient µ changes its sign at θcr = k0h ≈ 1.363 [58] while ω′′
0 is always

negative. Thus the nonlinearity belongs to the focusing type for θ(= kh) > θcr and respectively

becomes defocusing in the region θ < θcr [58, 59]. (Here k is the carrying wave number).

According to [59], for dimensionless variables (when µ = sign(θcr − θ)) the coefficients β and

C for the WW case equal

β ≈ −0.397, C ≈ 0.176. (5.6)

In nonlinear optics, as shown in [24], a decrease of µ (Kerr constant) can be provided by the

interaction of light pulses with acoustic waves (Mandelstamm-Brillouin scattering).

5.1 Soliton solutions for local nonlinearity

The stationary (independent of t) soliton solutions of Eq. (5.5) will be determined from the

following ordinary differential equation:

−λ2ψ + ψxx − µ|ψ|2ψ + 3C|ψ|4ψ + 4iβ|ψ|2ψx = 0. (5.7)

We recall that by construction these solitons move with a constant velocity. The equation (5.5)

itself, however, contains a larger class of localized solutions. However, these solutions are all

nonstationary — their phase and group velocities are different.

Equation (5.7) can be integrated easily, if the amplitude r = |ψ| and phase ϕ = argψ are

introduced instead of ψ : ψ = reiϕ . Next, substituting ψ in Eq. (5.7) and separating real and
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imaginary parts we obtain an equation for the imaginary part

ϕx = −βr2. (5.8)

After eliminating the phase, the equation for r reduces to Newton’s equation

2rxx = −∂U/∂r (5.9)

with the potential

U = −λ2r2 −
µ

2
r4 + C1r

6,

where the interaction constant C is renormalized as C1 = C + β2 . Then Eqs. (5.8) and (5.9)

can be integrated using the energy integral:

r2 =
4λ2

√
16λ2C1 + µ2 cosh(2λx) − µ

, (5.10)

ϕ = −
β2

√
C1

tan−1

[√
16λ2C1 + µ2 e2λx − µ

4λ
√

C1

]

. (5.11)

This soliton-type solution exists only if C1 > 0. It is interesting to note that the renormalization

of the interaction constant C is due to the β term in the Hamiltonian. This can be seen directly

from Eq. (5.4), rewriting H in terms of the amplitude and phase as

H = λ2N +

∫ [
r2
x + r2(ϕ̇x + βr2)2 +

µ

2
r4 − (C + β2)r6

]
dx. (5.12)

It is also easy to see that the soliton solution (5.10) is a stationary point of H . Indeed, the

variation of H with respect to ϕ leads to Eq. (5.8), and Newton’s equation (3.3) arises as a

result of varying H with respect to r .
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The solutions (5.10) and (5.11) with λ = 0 and µ > 0 degenerate into a soliton that decays

in a power-law fashion [48]

r2
lim =

2µ

µ2x2 + 4C1
,ϕlim = −

β√
C1

tan−1 µx

2
√

β2 + C
. (5.13)

Thus, as the velocity passes through Vcr , the soliton undergoes a jump. The amplitude of

the soliton has its maximum value at the jump

(∆A)2 =
µ

2C1
.

For negative µ , as λ increases, the amplitude of the soliton increases according to a square-

root law, and the soliton size decreases as λ−1 , in accordance with the general behavior (4.21)

for supercritical bifurcations.

An important feature of the solution (5.10) is the existence of a nonlinear coordinate depen-

dence (called a chirp in optics) of the phase ϕ . The maximum change in phase (from −∞ to

+∞ in x)

∆ϕ = −
βπ√

β2 + C

is reached at the jump for V = Vcr . It can be both greater and less than π , depending on the

sign of the constant C .

The solution (5.10) can also be used for negative but small values of µ . In this case, as

should be, the soliton solution softly splits off zero at the point V = Vcr . Its amplitude then

grows for large λ exactly in the same manner as for µ > 0.

The integral characteristics of both solutions (with µ > 0 and µ < 0) are different. Thus,

the total number of particles on the soliton solution for µ > 0,

N =
2√
C1

[
π

2
− tan−1

{√
16λ2C1 + µ2 − µ

4λ
√

C1

}]

, (5.14)

reaches its maximum value

2Ncr =
π√
C1

(5.15)
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λ

N

Figure 8: The dependence (5.14) of the number of particles N versus λ for two soliton families:
µ < 0 (lower curve) and µ > 0 (upper curve)

at λ = 0 and decreases smoothly to Ncr as λ → ∞ (see Fig. 8 ). For negative µ the number

of particles N for small λ increases as λ and then asymptotically approaches N = Ncr from

below. It is important that the derivatives ∂N/∂λ has different signs: For solitons with a jump

this derivative is negative, while for solitons with µ < 0 it is positive. For both branches at

large λ the number of waves N =
∫
|ψ|2dx approaches from below and above the same value

Ncr which coincides with the number of waves N on the solitons with µ = 0. This property for

solitons in fibers, with large enough Mandelstamm-Brillouin scattering, means that the energy

of optical pulse saturates, tending to the constant value with a decrease of the pulse duration.

5.2 Lyapunov stability of solitons with local nonlinearity

As noted above, both types of solitons (with µ > 0 and µ < 0) are stationary points of energy

E with a fixed number of particles,

δ(E + λ2N) = δH = 0, (5.16)
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where the energy in accordance with Eq. (5.12) is given by the expression

E =

∫ [
r2
x +

µ

2
r4 − (C + β2)r6 + r2(ϕx + βr2)2

]
dx. (5.17)

As we see in the previous sections (see also Ref. [39]), in the case of Hamiltonian systems a

stationary point will be Lyapunov-stable if it provides a minimum or maximum of the energy.

In the case at hand, if one can find soliton solutions for which the energy will be bounded from

below for a fixed number of particles ( E is obviously the unbounded from above functional),

then the stationary point corresponding to the minimum of E will be stable. Since the solution

of the variational problem (5.16) is unique (up to a constant phase factor) for fixed λ2 , which

is equivalent to fixing N , the soliton solution (5.10) will be Lyapunov stable in this case.

Under the scaling transformations of the soliton solution that preserve the number of particles

the energy E as a function of the scaling parameter a takes the form:

E = (I1 − C1I2)
1

a2
+

µI3

2a
,

where

I1 =

∫
r2
xdx, I2 =

∫
r6dx, I3 =

∫
r4dx.

(We note that the last integral in the expression for the energy (5.17) is identically zero in the

soliton solution.) By virtue of Eq. (5.16)

∂E

∂a

∣∣∣∣
a=1

= 0 or I1 − C1I2 = −
µ

4
I3.

Hence it follows, in the first place, that the soliton energy likewise depends strongly on the

constant µ :

Es =
µ

4
I3s (I3s > 0).

This quantity is positive for solitons with weak repulsion (µ > 0) and negative for solitons with

weak attraction (µ < 0). In the second place, for µ > 0 the energy E as a function of the
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scaling parameter a ,

E = −
µ

4
I3s

(
1

a2
−

2

a

)
, (5.18)

is unbounded from below as a → 0, but for weak attraction (µ < 0 ) it possesses a minimum

corresponding to the soliton solution.

We shall now show that the energy E for µ < 0 has a lower bound for all possible deforma-

tions that leave N unchanged.

Let us consider the integral
∫

r6dx = I2. This integral can be estimated using the Sobolev–

Galiardo–Nirenberg inequality in terms of the integral I1 =
∫

r2
xdx and the number of the

particles N :

∫
r6dx ≤ MN2

∫
r2
xdx. (5.19)

This inequality can be obtained from the Sobolev embedding theorem (2.26) by the same scheme

as the inequality (2.28) was derived. The inequality (5.19) can be also improved by seeking the

smallest value of the constant M . To find this best constant one needs to consider the minimum

value of the functional

M [ψ] =
I2

I1N2
.

Namely, among all stationary points of the functional M [ψ] one needs to choose the point with

minimal value of M [ψ] . It is easy to see that this variational problem, δM = 0, is equivalent

to finding the soliton solutions for the ψ6 model with real ψ :

−ψ + ψxx + 3ψ5 = 0.

This equation has a unique solution ψ = 1/
√

cosh 2x , whence the best constant is simply found

as

Mbest = (2/π)2.

84



As the result, the inequality (5.19) reads

∫
r6dx ≤

(
N

N1

)2 ∫
r2
xdx, (5.20)

where N1 = π/2.

Next, substituting this inequality into Eq. (5.17) we obtain for the energy E the estimate

E ≥

[

1 − C1

(
N

N1

)2
]∫

r2
xdx +

∫
r2(ϕx + βr2)2dx +

µ

2

∫
r4dx. (5.21)

Hence for µ > 0 follows that the energy E is bounded from below by zero if the coefficient in

front of the integral I1 =
∫

r2
xdx is positive, i.e. when

1 − C1

(
N

N1

)2

≥ 0.

This defines an upper bound on the number of particles

N ≤
π

2
√

C + β2
= Ncr. (5.22)

We recall that Ncr is the lower limit for the family of solitons (5.10) with µ > 0. Therefore

for such solitons it is impossible to draw any conclusion about their stability. However, for

soliton solutions with µ < 0 the inequality (5.22) holds and, as will be seen from the estimates

made below, it is possible to prove stability of such solutions.

Thus, let µ < 0 in Eq. (5.21). According to (2.30), we have

∫
r4dx ≤

1√
3

(∫
r2
xdx

)1/2

N3/2.

Next, substituting this estimate into Eq. (5.21) one can obtain

E ≥

[

1 − C1

(
N

N1

)2
]

I1 −
|µ|

2
√

3
N3/2I1/2

1 +

∫
r2(ϕx + βr2)2dx ≥

≥ −
|µ|2N3

8
√

3

[

1 − C1

(
N

N1

)2
]

.

85



The latter inequality holds only if the criterion (5.22) is satisfied. This means that the energy

E has a lower (negative) boundary if

N < Ncr,

which is compatible with the entire region of existence of solitons with µ < 0. It should be

noted that for µ = 0 the NSE (5.4) is, as is said, a critical equation of the NLS-type. For this

nonlinearity (∼ |ψ|6 in H ) collapse becomes possible if β = 0 and the energy E is negative, as

it follows from the virial theorem (4.40).

If N < Ncr , dispersion completely spreads out the solution. However, a small negative

correction to the Hamiltonian significantly changes the situation. A relatively weak four-wave

interaction against the background of strong attraction (∼ |ψ|6 ), leading to collapse (see, for

example, Ref. [101]), is responsible for the existence of stable bound stationary states — solitons.

Weak localization appears [86].

5.3 Linear stability criterion

The preceding analysis has answered the question about stability only for solitons with weak

attraction. From this answer it is impossible to draw any conclusion about the stability of solitons

with weak repulsion (µ > 0). In this subsection we shall consider this question, investigating

the linear stability problem.

We shall seek for the solution of Eq. (5.4) in the form

ψ = (r + a)ei(φ+α) ≈ (r + a + irα)eiφ, (5.23)

where r and φ are the soliton solution (5.10) and (5.11), and a and α are small deviations of

the amplitude and phase of the soliton, respectively.
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Linearizing Eq. (4.5) it is easily found that the dynamics of the perturbations a and α is

determined by the Hamiltonian equations

2r
∂a

∂t
=

δH̃

δα
, 2r

∂α

∂t
= −

δH̃

δa
. (5.24)

Here H̃ = δ2H is the second variation of the Hamiltonian (5.10)

H̃ = 〈a|L|a〉 +

∫
r2(αx + 2βra)2dx, (5.25)

where the (Schrödinger) operator L is given by the expression

L = −
∂2

∂x2
+ λ2 + 2µr2 − 15C1r

4 (5.26)

and 〈a|L|a〉 is the mean value of the operator L for the given state |a〉 ,

〈a|L|a〉 =

∫
a(x)La(x)dx.

If the quadratic form δ2H is sign-definite, then the soliton solution will be stable. We note

that the second term in (5.25) is positive. Then the positiveness of the entire quadratic form

H̃ is determined by the average value of the operator L , 〈a|L|a〉 .In this expression the average

is taken not with respect to arbitrary states |a〉 but only with respect to those states that are

orthogonal to |r〉 :

〈r|a〉 = 0. (5.27)

This orthogonality condition is a consequence of the conservation of the number of particles N

and is one of the solvability conditions for the linear system (5.24). In this case, finding the

stability criterion for solitons (5.4) is identical to the derivation of the VK criterion (4.33) (see

also [40], [39]) for the NLSE. Positiveness of

∂N/∂λ2 > 0 (5.28)
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guarantees stability of solitons. This situation occurs for solitons with weak attraction, and as a

result they are stable. This conclusion is in complete agreement with the results of the preceding

subsection.

For solitons with weak repulsion (µ > 0) the criterion (5.28) gives a sign-indefiniteness for

the quadratic form H̃ . This is a necessary condition for instability. This criterion becomes

necessary and sufficient only in the case β = 0, where the average value of L in Eq. (5.25) can

be interpreted as a potential energy, and the integral
∫

r2α2
xdx can be interpreted as the kinetic

energy (compare with the derivation of the VK criterion (4.33) in the previous Section).

Certain arguments can be given in support of the fact that a soliton with weak repulsion is

nonetheless unstable for β 0= 0 also. The average value of L can be made negative by taking for

a the eigenfunction ξ with E < 0. For a given value of ξ it is always possible to find a phase

α such that the integral

∫
r2(αx + 2βra)2dx

vanishes. Thus the Hamiltonian H̃ can be made negative, which can be regarded physically

as necessary for instability. However, strictly speaking, this still requires a definite proof. An

example that refutes the above argument is well known. The Hamiltonian H = −p2/2 −

q2/2 gives the equation of motion for an ordinary stable oscillator even though H is negative.

However, it can be asserted absolutely that instability will remain for small values of β . Whether

or not a threshold with respect to β exists is still unknown, but it is likely.

But despite the uncertainty with the linear stability, it should be noted that a soliton with

weak repulsion is always unstable with respect to finite disturbances. This follows, specifically,

from the fact that under scaling transformations leaving the number of particles N unchanged

the energy E (5.18) as a function of the scaling parameter a for solitons with N > Ncr is

unbounded as a → 0. The latter, as we have mentioned already (see, Section 4 and the reviews

[52], [55] as well), is a criterion for wave collapse.
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5.4 Interfacial waves

As an example of bifurcations for solitons first we consider the interfacial deep-water waves (IW)

which propagate along the interface (z = η(x, t)) between two ideal incompressible fluids with

respective densities ρ1 and ρ2 , in the presence of gravity (with the acceleration g acting down

the vertical z−axis) and capillarity with interfacial tension σ . We shall assume that the lighter

fluid with density ρ2 occupies the region ∞ > z > η(x, t), and respectively the heavier fluid

occupies the region −∞ < z < η(x, t). Flows of both fluids are considered to be potential and

two-dimensional. The fluid velocities are given by

v1,2 = ∇φ1,2,

where the velocity potentials φ1 and φ2 satisfy Laplace’s equation

∆φ1,2 = 0. (5.29)

These equations are subject to the following boundary conditions. Far from the interface as

z → ±∞

φ1,2 → 0.

On the interface z = η(x, t) the kinematic conditions hold:

∂η

∂t
= (−vxηx + vz)1,2. (5.30)

The dynamic condition reduces to the discontinuity of pressures across the interface due to

capillarity:

p1 − p2 = −σ
∂

∂x

(
ηx√
η2

x + 1

)

.

The use of Bernoulli equations in each fluid allows to rewrite the latter equation in terms of

potentials and their derivatives:

ρ1

(
∂φ2

∂t
+

1

2
(∇φ2)

2 + gη

)
− ρ2

(
∂φ1

∂t
+

1

2
(∇φ1)

2 + gη

)
= σ

∂

∂x

(
ηx√
η2

x + 1

)

. (5.31)
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The equations (5.29)–(5.31) conserve the total energy:

H = K + U, (5.32)

where the kinetic energy is equal to

K =

∫

z>η

ρ2(∇φ2)2

2
dr +

∫

z<η

ρ1(∇φ1)2

2
dr

and the potential energy is given by the expression

U =

∫
(ρ1 − ρ2)

gη2

2
dx +

∫
σ
(√

η2
x + 1 − 1

)
dx.

As shown first in [107] (see also [108, 109, 35, 110]), the equations of motion (5.30) and (5.31)

together with the Laplace equations (5.29) represent a Hamiltonian system. The Hamiltonian

coincides with the energy (5.32). The new variables Ψ = (ρ1ψ1 − ρ2ψ2) and the interface shape

η are canonical conjugate variables:

∂η

∂t
=

δH

δΨ
,

∂Ψ

∂t
= −

δH

δη
, (5.33)

where ψ1,2 = φ1,2|z=η . The given Hamiltonian form generalizes Zakharov’s canonical form for

free-surface hydrodynamics [111]. A Hamiltonian formulation of the problem of a free interface

between two ideal fluids, under rigid lid boundary conditions for the upper fluid, was also given

by Benjamin & Bridges [112]. Craig & Groves [113] give a similar expression, by using the

Dirichlet-Neumann operators for both the upper and lower fluid domains (see also [114]).

The Hamiltonian can be expanded in series with respect to powers of the canonical variables.

In this case the steepness of the interface plays the role of a small parameter of expansion. The

normal variables ak for interfacial waves are given by the following formulas:

Ψ(k) = i

√
(1 + ρ)ωk

2|k|
(ak − a∗−k), (5.34)

η(k) =

√
|k|

2(1 + ρ)ωk
(ak + a∗−k),
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where ρ = ρ2/ρ1 . In these formulas

ωk =

(
|k|

1 + ρ
[g(1 − ρ) + σk2]

)1/2

(5.35)

is the dispersion relation for linear internal waves and k is the wave vector directed along the

x−axis (1D case). At ρ = 0 the interfacial waves transform into the gravity-capillary waves for

the deep water case with

ωk =
(
gk + σk3

)1/2
.

For the internal wave dispersion (5.35) the maximum solitary wave velocity V coincides with

the minimum phase velocity of linear waves:

Vcr = min
ωk

k
.

It occurs when

k = k0 =

[
g(1 − ρ)

σ

]1/2

. (5.36)

At this point the values of the linear frequency and critical velocity are

ω0 ≡ ω(k0) =
√

2Agk0 and Vcr ≡
ω0

k0
=

√
2Ag

k0
, (5.37)

where

A =
1 − ρ

1 + ρ

is the Atwood number.

The transformation (5.34) diagonalizes the quadratic part of the Hamiltonian,

H0 =

∫
ωk|ak|2dk,

and the equations of motion in the new variables ak take the standard form (4.4):

∂ak

∂t
= −i

δH

δa∗k
. (5.38)
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In the case of internal waves the expansion of Hint in the wave amplitude starts with the cubic

terms. According to [34], the 3-wave matrix elements are given by the expressions

U123 =
A

4
√

2π(1 + ρ)1/2

{(
k3ω1ω2

2k1k2ω3

)1/2

[k1k2 + |k1||k2|] (5.39)

+

(
k1ω2ω3

2k2k3ω1

)1/2

[|k2||k3| + k2k3] +

(
k2ω3ω1

2k3k1ω2

)1/2

[|k3||k1| + k3k1]

}

,

V123 =
A

4
√

2π(1 + ρ)1/2

{(
k3ω1ω2

2k1k2ω3

)1/2

[−|k1||k2| + k1k2] (5.40)

+

(
k1ω2ω3

2k2k3ω1

)1/2

[|k2||k3| + k2k3] +

(
k2ω3ω1

2k3k1ω2

)1/2

[−|k3||k1| + k3k1]

}

.

where k1 ≡ 1, k2 ≡ 2, and k3 ≡ 3. Hence the values of Uk0k0−2k0
and V2k0|k0k0

are equal

Uk0k0−2k0
=

Ak0ωk0

2
√

2π(1 + ρ)1/2

(
k0

ω2k0

)1/2

, V2k0k0k0
=

Ak0ωk0

2
√

2π(1 + ρ)1/2

(
k0

ω2k0

)1/2

. (5.41)

Respectively the ”bare” four-wave constant Tk0k0|k0k0
is

Tk0k0|k0k0
=

5

32π

k3
0

(ρ + 1)
. (5.42)

Substituting expressions (5.41) and (5.42) into (4.17) gives

T̃0 =
k3
0

2π(1 + ρ)

(
A2

cr − A2
)
≡

µ

2π
,

where the square of the critical Atwood number A2
cr is equal to 5/16. This gives for the critical

value of ρ

ρcr =
4 −

√
5

4 +
√

5
,

in agreement with the paper [32]. For ρ < ρcr , the four-wave coupling coefficient is negative,

and the corresponding nonlinearity is of the focusing type. In this case, solitary waves near the
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critical velocity Vcr are described by the stationary NLSE (4.20) and undergo a supercritical

bifurcation at V = Vcr [32]. For ρ > ρcr the coupling coefficient changes sign and the bifurcation

becomes subcritical. In the particular case of the deep water waves (when ρ = 0) the solitons

undergo only a supercritical bifurcation.

Now we will give the general structure of the Hamiltonian expansion corresponding to inter-

facial waves near the critical density ratio assuming the following two dimensionless parameters

are small:

λ =
√

1 − V/Vcr and θ = 1 − ρ/ρcr.

In this case the expansion of the four-wave matrix element T̃k1k2k3k4
linear in κi = ki − k0

contains, besides the local terms proportional to β , the nonlocal ones:

T̃k1k2k3k4
=

µ

2π
+

β

2π
(κ1 +κ2 +κ3 +κ4)−

γ

8π
(|κ1−κ3|+ |κ2−κ3|+ |κ2−κ4|+ |κ1−κ4|). (5.43)

The constants β and γ have different parity relative to reflection k0 → −k0 . The coefficient β

changes its sign, but the coefficient γ retains its sign under this transform. The difference in

parities between β and γ gives different contributions to the averaged four-wave Hamiltonian:

H
(4)

=
1

2

∫ [
µ|ψ|4 + 2iβ(ψ∗

xψ − ψxψ
∗)|ψ|2 − γ|ψ|2k̂|ψ|2

]
dx. (5.44)

Here k̂ is the positive definite integral operator

k̂ = −∂xĤ,

and Ĥ is the Hilbert transform:

Ĥf(x) =
1

π

(
P.V.

∫ ∞

−∞

f(x′)dx′

x′ − x

)
.

The Fourier transform of the kernel of the operator k̂ is equal to |k| .

Due to this nonlocal interaction the equation of motion (5.5) for ψ takes the form

i
∂ψ

∂t
− λ2ω0ψ +

ω′′
0

2
ψxx − µ|ψ|2ψ + 4iβ|ψ|2ψx + γψk̂|ψ|2 + 3C|ψ|4ψ = 0. (5.45)
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The nonlocal term in this equation is analogous to that found first time by Dysthe for gravity

waves [49]. The existence of the nonlocal contribution in the expansion (5.43) is connected

with non-analytical dependence of the matrix element T in its arguments. For interfacial deep-

water waves (IW) this non-analyticity originates from the solution of Laplace equation for the

hydrodynamic potential and its reduction to the moving interface. For instance, for water

waves (WW) with a finite depth the nonlocal term is absent [59] as well as for electromagnetic

waves in nonlinear dielectrics [24] because of the analyticity of matrix elements with respect to

frequencies, which is a consequence of causality (see, for example, Refs. [46, 24]). In the latter

case the spatial dispersion effects are relativistically small and can be neglected.

As before, the solitary wave shape in this case will be defined from the solution of the

variational problem (5.16),

δ(E + ω0λ
2N) = 0, (5.46)

where the energy E (5.17) gets the nonlocal addition

−
γ

2

∫
r2k̂r2 dx. (5.47)

Thus, in order to solve the variational problem (5.46), we need to know three coefficients: β, γ

and C . One can easily see that the contributions from terms proportional to β, γ in H
(4)

and the six-wave Hamiltonian can be determined independently, which makes calculations more

simple. According to [34] for IW

β =
3k2

0

16(1 + ρ)
, γ =

16

3
β, C =

Mk6
0

3ω0
. (5.48)

where M = 289(21+8
√

5)
16384 ≈ 0.685961. Thus, the nonlocal (∼ γ ) and six-wave (∼ C ) interactions

correspond to an attraction between waves (focusing nonlinearity).

For ρ < ρcr , the four-wave coupling coefficient µ is negative, and the corresponding non-

linearity is of the focusing type. In this case, solitary waves near the critical velocity Vcr are
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described by the stationary (∂/∂t = 0) NLSE and undergo a supercritical bifurcation at V = Vcr

[32]. For ρ > ρcr the coupling coefficient changes sign and, as a result, the bifurcation becomes

subcritical.

5.5 Soliton families for IW and their stability

For IW near the transition point, |θ| ) 1, the product ω′′
0C is positive; moreover γ is also

positive for IW, and therefore the corresponding nonlinearities are focusing, thus providing the

existence of localized solutions. As for the local case, depending on the sign of µ there exist

two branches of solitons. For IW they were found numerically [33, 34] using the Petviashvili

scheme [60]. Explicit solutions for both kinds of IW solitons can be obtained in the limiting

case only when V → Vcr . For negative µ these are the classical NLS solitons with a sech shape.

For the subcritical bifurcation at V = Vcr the soliton amplitude remains finite with algebraic

decay (∼ 1/|x|) at infinity [33, 34] (compare with (5.13)). Like for the local nonlinearities both

soliton families for positive and negative values of µ asymptotically tend to the same state at

λ → ∞ which can be related to solitons for the critical NLS type equation. As the result both

dependences of N at large λ converge to the critical value Ncr , for the family with µ < 0

from below and from above for the family with µ > 0 (but here Ncr differs from the value

(5.15) because of nonlocalities). Thus, these dependences are familiar to those depicted in Fig.

9 , From this point of view influence of the nonlocal nonlinearity, being of focusing, is not of

principle if it concerns solitonic behavior. More or less the same conclusion can be made for

stability of solitons. As shown in [24, 33, 34, 59], for N < Ncr solitons corresponding to the

supercritical branch realize the minimum values of the energy and therefore they are stable in

the Lyapunov sense, i.e. stable with respect to not only small perturbations but also against

finite ones. In particular, the boundedness of E from below can be viewed if one considers the

scaling transformation ψ = (1/a)1/2ψs(x/a) retaining the number of waves N where ψ = ψs(x)
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is the soliton solution. Under this transform E = E(a) has the same form as Eq. (5.18):

E (a) =

(
1

a
−

1

2a2

)
µ

2

∫
|ψs|4 dx. (5.49)

It is worth noting that the dispersion term and all nonlinear terms in E , except
∫ µ

2 |ψ|
4dx , have

the same scaling dependence ∝ a−2 . The latter means that at µ = 0 Eq. (5.45) can be related to

the critical NLS equation like the two-dimensional cubic NLS equation. From Eq. (5.49) it is also

seen that for µ < 0 E(a) has a minimum corresponding to the soliton. Unlike the supercritical

case, the scaling transformation for the other soliton branch with µ > 0 gives a maximum of E(a)

on solitons and unboundedness of E as a → 0. Under the gauge transformation ψ = ψseiχ , on

the contrary, the energy reaches a minimum on soliton solutions and consequently the solitons

with µ > 0 represent saddle points. This indicates a possible instability of solitons for the whole

subcritical branch, at least with respect to finite perturbations.

We consider this question in more details with the main emphasis to the nonlinear stage of

the instability following to [57]. This problem, indeed, is not trivial in spite of a closed similarity

with the critical NLSE. It is worth noting that Eq. (5.45) at µ = γ = C = 0 represents an

integrable model (the so-called derivative NLSE) [61] and exponentially decaying solitons in this

model are stable. It is more or less evident also that small coefficients γ, C cannot break the

stability of solitons. This means that in the space of parameters we may expect the existence

of a threshold. Above this threshold solitons must be unstable and the development of this

instability may lead to collapse, i.e. the formation of a singularity in finite time.

Consider the energy (5.17) with account of the nonlocal addition (5.47) written in terms of

amplitude r and phase ϕ (ψ = reiϕ ):

E =

∫ [
r2
x +

µ

2
r4 −

γ

2
r2k̂r2 −

1

3
r6 + r2

(
ϕx + βr2

)2
]

dx, (5.50)

where by an appropriate choice of the new dimensionless variables the renormalized constant

C̃ = C + β2 can be taken equal to 1/3. Hence one can see that the energy takes its minimum
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value when the last term in (5.50) vanishes, i.e. when

ϕx + βr2 = 0. (5.51)

Integrating this equation gives an x−dependence for the phase, called chirp in nonlinear optics.

It is interesting to note that the remaining part of the energy does not contain the phase at all.

First investigate the local model when γ = 0. Let the energy be negative in some region Ω :

EΩ < 0. Then, following Refs. [64, 55], one can establish that due to radiation of small amplitude

waves EΩ < 0 can only decrease, becoming more and more negative, but the maximum value

of |ψ| , according to the mean value theorem, can only increase:

max
x∈Ω

|ψ|4 ≥
3|EΩ|
NΩ

. (5.52)

This process is possible only for energies which are unbounded from below. In accordance

with (5.49) such a situation is realized when µ > 0. In this case the radiation leads to the

appearance of infinitely large amplitudes r . However, it is impossible to conclude that the

singularity formation develops in finite time.

For γ > 0 the estimations on the maximum value of |ψ| are not as transparent as they are

for the local case. Instead of (5.52), it is possible to obtain a similar estimate,

max
x

|ψ|4 ≥
3|E|
N

.

However, it is expressed through the total energy E and the total number of waves N . Be-

sides, two inequalities must be satisfied: E < 0 and N < 2N2

γ . For interfacial waves, N2 ≈

1.39035 > Ncr ≈ 1.3521. Thus, the maximum amplitude in this case is bounded from below by

a conservative quantity and this maximum can never disappear during the nonlinear evolution.

Now we consider the situation where the self-steepening process can be neglected (β = 0).

In this case Eq. (5.45) becomes

iψt + ψxx − λ2ψ − µ|ψ|2ψ + γψk̂|ψ|2 + 3C|ψ|4ψ = 0.
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It is possible to obtain a criterion of collapse using the virial equation, compare with (4.41) (for

details, see also [63, 62, 64]). This equation is written for the positive definite quantity

R =

∫
x2|ψ|2dx,

which, up to the multiplier N , coincides with the mean square size of the distribution. The

second derivative of R with respect to time is defined by the virial equation

Rtt = 8

(
E −

µ

4

∫
|ψ|4dx

)
. (5.53)

Hence, for µ > 0 one can easily obtain the following inequality:

Rtt < 8E,

which yields, after double integration, R < 4Et2 + α1t + α2 . Here α1,2 are constants which

are obtained from the initial conditions. Hence, it follows that for the states with negative

energy, E < 0, there always exists such moment of time t0 when the positive definite quantity

R vanishes. At this moment of time the amplitude becomes infinite. Therefore the condition

E < 0 represents a sufficient criterion of collapse (compare with [63, 62]). However, it is nec-

essary to add that this criterion can be improved by the same way as it was done in Refs.

[65, 56] for the three-dimensional cubic NLS equation. From Eq. (5.53) one can see that for

the stationary case (on the soliton solution) Es = µ
4

∫
|ψs|4dx , in agreement with Eq. (5.49).

As we demonstrated before for µ > 0 the soliton realizes a saddle point of E for fixed N . It

follows from (5.49) that for small a the energy becomes unbounded from below, but for a > 1

it decreases (this corresponds to spreading). Therefore in order to achieve a blow-up regime the

system should pass through the energetic barrier equal to Es . Thus, for this case the criterion

E < 0 must be changed into the sharper criterion: E < Es . This criterion can be obtained

rigorously using step by step the scheme presented in [65, 56] and therefore we skip its derivation.
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5.6 Numerical results of the soliton collapse

In order to verify all the theoretical arguments about the formation of collapse presented above

a numerical integration of the NLSE (5.45) for µ > 0 was performed by using the standard 4th

order Runge-Kutta scheme. The initial conditions were chosen in the form of solitons but with

larger amplitudes than for the stationary solitons. The increase in initial amplitude was varied

in the interval from 0.1% up to 10%. The initial phase was given by means of Eq. (5.51). In all

runs with theses initial conditions we observed a high increase of the soliton amplitude up to a

factor 14 with a shrinking of its width. In the peak region pulses for both IW and WW cases

behaved similarly. Near the maximum the pulse peak was almost symmetric: anisotropy was not

visible. The difference was observed in the asymptotic regions far from the pulse core where the

pulses had different asymmetries for IW and WW because of the opposite sign for β (see Eqs.

(5.48), (5.6)). For the given values of β we did not observe the simultaneous formation of two

types of singularities with blowing-up amplitudes and sharp gradients as it was demonstrated in

the recent numerical experiments for the three-dimensional collapse of short optical pulses due

to self-focusing and self-steepening in the framework of the generalized NLS equation [66] and

equations of the Kadomtsev-Petvishvili type [67].

In our numerical computations we found that the amplitude and its spatial collapsing distri-

bution develop in a self-similar manner. Near the collapse point in the equation (with µ > 0) one

can neglect the term proportional to µ . In this asymptotic regime Eq. (5.45) admits self-similar

solutions,

r(x, t) = (t0 − t)−1/4f

(
x

(t0 − t)1/2

)
, (5.54)

where t0 is the collapse time.

To verify that we approached the asymptotic behavior given by Eq. (5.54), we normalized

at each moment of time the ψ− function by the maximum (in x) of its modulus max |ψ| ≡ M
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Figure 9: Initial (solid line) and final (dashed line) at t = 1.18 distributions for |ψ| , interfacial
waves, self-similar variables. The soliton amplitude was increased by 1%, µ = 1, λ = 1. The
ratio between final and initial soliton amplitudes in the physical variables is about 11.
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Figure 10: Initial (solid line) and final (dashed line) at t = 2.7192 distributions for |ψ| , WW
solitons, self-similar variables. The soliton amplitude was increased by 1%, µ = 1, λ = 1. The
ratio between final and initial soliton amplitudes in the physical variables is about 11.
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Figure 11: Dependence of 1/max |ψ|4 on time. Interfacial waves.

and introduced new self similar variables,

ψ(x, t) = Mψ(ξ, τ), ξ = M2(x − xmax), τ = ln M. (5.55)

Here xmax is the point corresponding to the maximum of |ψ| . In comparison with those given by

Eq. (5.54), such new variables are more convenient because they do not require the determination

of the collapsing time t0 .

Fig. 9 and Fig. 10 show typical dependences of |ψ| as a function of the self-similar variable

ξ at t = 0 (solid line) and at the final time (dashed line) for both the IW and WW cases. In

both figures one can see a fairly good coincidence between the initial soliton distribution and

the final one at the the central (collapsing) part of the pulse and asymmetry of the pulse at its

tails due to self-steepening. The latter demonstrates that collapse has a self-similar behavior.

The form of the central part of the pulse approaches the soliton shape because asymptotically

the NLS model (5.45) tends to the critical NLS system. It is necessary to mention that this

has been well-known for the classical two-dimensional NLS equation since the paper by Fraiman

[68].
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Fig. 11 shows how 1/max |ψ|4 depends on time. This dependence is almost linear in

the correspondence with the self-similar law (5.54). If the initial amplitudes were less than

the stationary soliton values, then the distribution would spread in time dispersively, in full

correspondence with qualitative arguments based on the scaling transformations (5.49).
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6 Bifurcations for the interacting fundamental and second har-

monics

In Section 4 we saw that the renormalized four-wave interaction constant T̃0 (4.17) becomes

infinitely large while approaching the resonance (4.18)

2ω(k0) = ω(2k0) (6.1)

In this case the perturbation theory for (4.17) breaks down and we should consider this reso-

nance separately by introducing two envelopes ψ1 for the fundamental frequency (FF) and ψ2

for its second harmonic (SH). These envelopes satisfy two equations coupled due to quadratic

nonlinearity (∼ V2k0k0k0
). As well known, such system represents a partial case of the so-called

three-wave system [25] when carrier frequencies of three wave packets satisfy the triad resonant

condition. It is known also that such wave packets can form bound states - solitons - due to

their mutual nonlinear interaction (see e.g. [26]). The three-wave system describes spatial soli-

tons as well as spatial-temporal solitons in χ(2) media [26, 28]. This system couples amplitudes

of three quasi-monochromatic waves due to quadratic nonlinearity (see also [27] for the study

of the interactions between the fundamental wave and its second harmonic in the presence of

symmetries).

When the difference in group velocities between these first and second harmonics is small

enough (which is typical for nonlinear optics) it is necessary to take into account wave dispersion.

In this case this model can be considered as a vector nonlinear Schrodinger system but with

quadratic nonlinearity. The balance between nonlinear interaction and dispersion results in the

existence of solitons. If the difference in group velocities is large enough, then each wave packet

propagates away with its group velocity, and the system cannot form a bound state between the

first and second harmonic. Moreover, in this case this system is close to being integrable. For

zero dispersion it can be integrated by means of the inverse scattering transform [95, 12].
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As it was shown in Section 4, when the soliton velocity V is close to the minimum phase

velocity of linear waves, Vcr = min (ω(k)/k), the Fourier spectrum of the stationary pulse

represents a set of peaks. Their positions in the frequency domain correspond to the frequency

related to the minimal phase velocity (fundamental harmonic) and to its multiple harmonics.

The width of these peaks vanishes when the critical velocity Vcr is approached. This allows

us to introduce an envelope for each peak, and apply a standard multi-scale expansion. In

the case when the carrier frequency, corresponding to the critical velocity does not satisfy the

resonance condition (6.1), then near the supercritical bifurcation point the envelope of the

fundamental harmonic obeys the stationary (focusing) nonlinear Schrodinger equation (2.14).

If the carrier frequency for the fundamental harmonic is close to the resonance condition (6.1)

then the corresponding equations for a steady pulse transform into the steady (time-independent)

equations for the interacting fundamental and second harmonics. The stability of these soliton

solutions with respect to modulation perturbations can be described in the framework of the

unsteady system for fundamental and second harmonics.

With account of dispersion (plus diffraction in the multi-dimensional case) the system of

interacting fundamental and second harmonics contains three free parameters: the phase mis-

match Ω , which characterizes how far the carrier frequencies of the first and second harmonics

are from resonance, and two dispersion coefficients ω′′
1 and ω′′

2 where 1, 2 stand for FF and

SH respectively, and prime means derivative with respect to k1,2 where k2 = 2k1 . In the

multi-dimensional case, instead of dispersion coefficients two dispersion tensors arise. All other

parameters can be excluded by simple rescaling. The behavior of solitons depends significantly

on these three parameters. In the simplest variant soliton solutions are determined by one in-

ternal parameter λ2 , which can be considered as a “chemical potential”. Until now, mainly

such solutions have been treated. We would like to pay attention to the fact that the system of

interacting fundamental and second harmonics (as well as the three-wave system) is not Galilean
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invariant in the general situation. In particular, this means that the system must have a more

broad soliton family than could be considered before. The velocity of the soliton, together with

the “chemical potential” are two inner independent parameters of the soliton family. In this

Section, following [30], we analyze this two-parameter family both analytically and numerically.

These two parameters are not arbitrary indeed: there are some restrictions imposed on them

which follow from the conditions for soliton existence. This yields a two-dimensional region in

the parameter space. Passing across the boundary of this region, a soliton undergoes bifurca-

tions. In this section we show that for this system two types of bifurcations are possible. The

first is a supercritical bifurcation, when the first harmonic amplitude ψ1 for the soliton solution

vanishes smoothly while the second harmonic amplitude depends on ψ1 quadratically. Near

such a bifurcation a soliton solution transforms into the soliton of the nonlinear Schrodinger

equation (NLS) that is embedded in the general scheme considered in Section 4 . As we showed,

such solutions are stable for the one-dimensional case.

Another possibility is a subcritical bifurcation which takes place when the characteristic

size for the second harmonic becomes infinite as the soliton parameters approach the boundary.

In this case near the boundary the amplitude of the second harmonic remains finite, but the

amplitude ψ1 vanishes. Correspondingly, close to the boundary the Manley-Rowe integral in

this case becomes infinite. The derivative of this integral relative to the parameter λ2 becomes

negative, so that, in accordance with the Vakhitov-Kolokolov (VK) type of criteria [40, 47],

there is soliton instability. In this case, however, this criterion is only a sufficient criterion

for instability : it cannot be used to establish stability. The original VK stability criterion

for the NLS equation [40] is simultaneously necessary and sufficient. The difference in the

stability criteria between the NLS and the FF-SH system (being a two-component NLS system),

is connected with the vector character of the latter (for details see the next Section and also

[47]). Just for this reason, it is impossible to generalize the criterion (4.33) to the FF-SH system
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completely.

6.1 Basic equations

The equations of motion describing the interaction of the first (fundamental) and second har-

monics can be written as follows:

i
∂ψ1

∂t
+

1

2
ω

′′

1ψ1xx = −2ψ2ψ
∗
1 , (6.2)

i
∂ψ2

∂t
− Ωψ2 +

1

2
ω

′′

2ψ2xx = −ψ2
1 (6.3)

where the parameter Ω in (6.2) characterizes the phase mismatch and the matrix element

V2k0k0k0
is choosen to be equal −1. Here, for simplicity, we consider only the one-dimensional

case. The corresponding generalization to the multi-dimensional case is straightforward. In

particular, in the multi-dimensional case one needs to change the 1D operators ω′′
l ∂

2
x ( l = 1, 2)

in (6.2,6.3) to

∂2ωl(kl)

∂kli∂klj

∂2

∂xi∂xj
.

The system under consideration (6.2,6.3) is Hamiltonian:

i
∂ψl

∂t
=

δH

δψ∗
l

(6.4)

with the Hamiltonian

H =

∫
Ω|ψ2|2dx +

∑

l

∫
1

2
ω

′′

l |ψlx|2dx −
∫

(ψ∗2
1 ψ2 + c.c.)dx. (6.5)

Besides the Hamiltonian, this system conserves also the Manley-Rowe integral

N =

∫
(|ψ1|2 + 2|ψ2|2)dx (6.6)

which is a consequence of gauge invariance of the system. This integral has also be regarded

as an adiabatic invariant which appears as a result of average of the original system over fast
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oscillations corresponding to the carrier frequencies of two resonant wave packets. From the

definition (6.6), the Manley-Rowe integral is a positive quantity.

Another integral of motion for Eqs. (6.2, 6.3) is the momentum,

P = −
i

2

∑

l

∫
(ψ∗

l ψlx − ψ∗
lxψl)dx ,

which is a consequence of the invariance of the system to spatial translations. The latter,

however, does not guarantee that the equations of motion will be Galilean invariant. To check

this, let us perform two transformations. The first is passing to the coordinate system moving

with velocity V,

x′ = x − V t, t′ = t, (6.7)

and another is a simple gauge transform:

ψ1 → ψ1e
−iωt+ikx, ψ2 → ψ2e

−i2ωt+i2kx. (6.8)

Then we require that the obtained equations have a similar form to the original system. Simple

calculations show that this demand can be satisfied if and only if

2p1 = p2 (6.9)

where pl = 1/ω′′
l . Under this condition only, we have Galilean invariance. In all other cases the

system (6.2, 6.3) is not Galilean invariant. The same situation occurs for the three-wave system

which describes the interaction of three resonant wave packets (compare with [47]).

The absence of Galilean invariance in the general case for the system (6.2, 6.3) means that

movable soliton solutions cannot be transformed by means of the transformations (6.7, 6.8) to

the rest soliton. In other words, the soliton velocity V itself is a new independent parameter,

which together with the energy of solitons (as bound states) ε = −λ2 defines a two-parameter

soliton family. This family is given as follows:

ψ1(x, t) = ψ1s(x − V t)eiλ2t, ψ2(x, t) = ψ2s(x − V t)e2iλ2t,
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where the amplitudes ψ1s and ψ2s satisfy the equations:

− λ2ψ1 − iV ∂xψ1 +
1

2
ω

′′

1∂
2
xψ1 = −2ψ2ψ

∗
1 , (6.10)

−2λ2ψ2 − iV ∂xψ2 − Ωψ2 +
1

2
ω

′′

2∂
2
xψ2 = −ψ2

1 . (6.11)

Here and below the index s for ψ1s and ψ2s is temporarily omitted.

It is easy to verify that a solution of the stationary equations is a stationary point of the

Hamiltonian H for fixed N and momentum P : equations (6.10, 6.11) follow from the variational

problem

δ(H + λ2N − V P ) = 0. (6.12)

In order to have localized solution of the stationary system it is necessary to require that two

operators

A1 = −λ2 − iV ∂x +
1

2
ω

′′

1∂
2
x ,

A2 = −2λ2 − iV ∂x − Ω +
1

2
ω

′′

2∂
2
x

must be sign (negative or positive) definite to provide exponentially decreasing behavior at

infinity. Physically, this requirement means absence of Cherenkov radiation by solitons. Indeed,

the condition on the signature of the operators is more restrictive: the operators A1 and A2 must

be simultaneously negative (or positive) definite. This follows from the two integral relations

which can be obtained from the variational principle (6.12) and directly from the stationary

equations (6.10,6.11) after multiplying the first equation by ψ∗
1 , the second one by 2ψ∗

2 , with

summation of the obtained results, followed by their integration over x (for details, see [47]).

In the case when the operators are negative definite, the following conditions must be fulfilled:

ω
′′

1,2 > 0, (6.13)

−λ2 +
1

2

V 2

ω
′′

1

< 0, (6.14)
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2λ2 − Ω +
1

2

V 2

ω
′′

2

< 0. (6.15)

These requirements guarantee absence of Cherenkov radiation by stationary propagating solitons

(for details, see papers [23, 24]).

The conditions (6.13-6.15) define the region of parameters where soliton solutions are pos-

sible. To find this region it is convenient to introduce instead of λ2 a new quantity Λ2 =

λ2 − p1V 2/2 which in accordance with (6.14) has to be a positive quantity. As a result, the last

inequality (6.15) reads as

2Λ2 + (2p1 − p2)
V 2

2
+ Ω > 0. (6.16)

Depending on the signs of κ = 2p1 − p2 and Ω we have four possibilities:

1. κ > 0, Ω > 0. In this case the inequality (6.16) is satisfied automatically. The allowed

region for the soliton parameters is the quarter-plane Λ2
1 > 0, V 2 ≥ 0.

2. κ > 0, Ω < 0. The allowed region for the soliton parameters is the quarter-plane Λ2 >

0 and V 2 ≥ 0 except the triangular region near origin bounded by the straight line

2Λ2 + κV 2/2 = |Ω| .

3. κ < 0, Ω > 0. The allowed region for the parameters is the quarter-plane Λ2 > 0 and

V 2 ≥ 0 except the region below the straight line 2Λ2 = |κ|V 2/2 − Ω .

4. κ < 0, Ω < 0. The allowed region is the quarter-plane Λ2 > 0 and v2 ≥ 0 except the

region below the straight line 2Λ2 = |κ|V 2/2 + |Ω| . In this case Λ2 can not reach zero

value.

It is interesting to note that κ = 0 recovers Galilean invariance of the equations (6.2), (6.3).

In this case both criteria (6.13) and (6.16) when expressed through Λ2 do not contain the
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velocity:

Λ2 > 0, 2Λ2 + Ω > 0.

6.2 Solitons

Next we shall analyze the soliton solutions which are defined from the system (6.10), (6.11). By

the transformation,

ψl → ψ1e
ip1V x, ψ2 → ψ2e

2ip1V x,

and rescaling the amplitudes ψl , this system can be rewritten as follows:

− Λ2
1ψ1 + ∂2

xψ1 = −2ψ2ψ
∗
1 , (6.17)

−Λ2
2ψ2 + (∂x − ik)2ψ2 = −ψ2

1 (6.18)

where k = κV and

Λ2
1 = 2p1Λ

2, Λ2
2 = 2p2(2Λ

2 + κV 2/2 + Ω).

The ordinary differential equations (6.17) and (6.18) have two integrals. The first is

ψ∗
1ψ1x − ψ∗

1xψ1 + 2(ψ∗
2ψ2x − ψ∗

2xψ2) − 4ik|ψ2|2 = M, (6.19)

which has a meaning of “angular momentum” for the system (6.17, 6.18). Another integral,

“energy”, is:

|ψ1x|2 + |ψ2x|2 − Λ2
1|ψ1|2 − (Λ2

2 + k2)|ψ2|2 + ψ∗
2ψ

2
1 + ψ2ψ

∗2
1 = E. (6.20)

For a soliton solution (ψ1,2 → 0 as |x| → ∞) both integrals are equal to zero. Here we have

two cases k = 0 and k 0= 0. In the first case a soliton solution can be taken purely real and so

the first integral becomes equal to zero identically. Thus, in this case only the “energy” integral

survives, which can be used to reduce the order of the system of ordinary differential equations.

In the second case the solution remains complex.
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It is worth noting that the conditions (6.13)-(6.15) for localized solutions of the system (6.17),

(6.18) correspond simply to the positivity of Λ2
1 and Λ2

2 . Thus, the boundary of the soliton

parameter region is given by the two equations Λ2
1 = 0 (when Λ2

2 > 0) and Λ2
2 = 0 (when

Λ2
1 > 0). Accordingly, we have two variants of soliton degeneracy.

6.3 Supercritical bifurcations

Consider first how the soliton family looks like near the parameter boundary Λ2
1 = 0 (when

Λ2
2 > 0). First, note that in Eq. (6.17) ψ1 near this boundary changes on the scale l ∼ 1/Λ1 .

In this limit the wave function ψ2 has the same characteristic scale, i.e, l ∼ 1/Λ1 . Therefore

in Eq. (6.18) we can neglect the derivatives and, as a result, obtain a local relation between ψ1

and ψ2 :

(Λ2
2 + k2)ψ2 = ψ2

1 .

Substitution of this expression into (6.17) leads to the stationary nonlinear Schrodinger equation

(NLS):

−Λ2
1ψ1 + ∂2

xψ1 +
2

Λ2
2 + k2

|ψ1|2ψ1 = 0. (6.21)

Its solution is the NLS soliton:

ψ1 =
Λ1√

Λ2
2 + k2

sech (Λ1x). (6.22)

In this case the second harmonic amplitude is given by the expression

ψ2 =
Λ2

1

(Λ2
2 + k2)2

sech 2(Λ1x).

In this asymptotic regime, the main contribution in the Manley-Rowe integral is given by

the first harmonic (6.22):

N ≈
2Λ1

Λ2
2 + k2

. (6.23)
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Figure 12: The dependence of N on Λ1 for the case k = 0 and Λ2
2 = 1 (near the supercritical

bifurcation boundary). The straight (dashed) line corresponds to the analytical result (6.23)

In Fig. 6.3 we show the dependence of the Manley-Rowe integral N on Λ1 for the case

k = 0 and Λ2
2 = 1, obtained by numerical integration of the system (6.17),(6.18). For small Λ1

N changes linearly in accordance with the analytical dependence (6.23). For larger Λ1 we have

a positive deviation from this linear dependence. In all our numerical work we also checked that

for Λ2
1 < 0, as well as for Λ2

1 < 0, soliton solutions are absent, which is in complete agreement

with the definition of the soliton region given by (6.13 - 6.15).

Thus, while approaching the boundary Λ2
1 = 0 the first harmonic amplitude undergoes a

supercritical bifurcation: max |ψ1| ∼ Λ1 and ψ2 vanishes like Λ2
1. For Λ2

1 < 0 Eq. (6.21) has
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no localized solution at all. Note that this case is completely embedded in the general situation

for this type of bifurcations of solitons (cf. [23], [24]).

To conclude this subsection, we would like to point out that the reduction of the FF-SH

system to the NLS was first obtained in the paper [26] at the case when the phase mismatch

parameter is large enough. Later it was discussed in many other papers (see, for instance, the

paper [83] and the review [84]).

6.4 Subcritical bifurcations

Consider now how solitons behave near the other boundary Λ2
2 = 0 (when Λ2

1 and k are not

equal to zero). In the special case k = 0 the system (6.17), (6.18) takes the form:

− Λ2
1ψ1 + ∂2

xψ1 = −2ψ2ψ1, (6.24)

−Λ2
2ψ2 + ∂2

xψ2 = −ψ2
1 (6.25)

Here without lose of generality we put ψ1 = ψ∗
1 so that Eq.(6.24) transforms into the stationary

Schrodinger equation for ψ1 and U(x) = 2ψ2(x) there serves as a potential. The latter quantity

is found from the second equation (6.25) by means of a Green’s function:

ψ2 =
1

2Λ2

∫ ∞

−∞
e−Λ2|x−x′|ψ2

1(x
′)dx′. (6.26)

Thus one can see that ψ2(x) decreases exponentially for large x and the small parameter Λ2

defines the largest scale L = Λ−1
2 in this problem:

ψ2 ≈
e−Λ2|x|

2Λ2

∫ ∞

−∞
ψ2

1(x
′)dx′ for |x| ∼ L. (6.27)

On the other hand, in the stationary Schrodinger equation (6.24) the value Λ2
1 can be considered

as the energy of the bound state and will yield the smallest scale l = Λ−1
1 ) L in this problem.

Further, as we show below, the characteristic scale a of ψ1(x) lies between l and L :

L / a / l. (6.28)
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This allows one to neglect the second derivative term in (6.24) and so estimate the maximum

value of ψ2 (attained at x = 0):

max(ψ2) ≈ Λ2
1/2. (6.29)

Comparing (6.27) and (6.29) we arrive at the following estimate for the integral

∫ ∞

−∞
ψ2

1dx ≈ Λ2
1Λ2,

Thus, this integral vanishes as Λ2 → 0. At the same time the integral of ψ2
2 becomes infinitely

large: the maximum value remains constant and the characteristic scale becomes infinite as Λ2

tends to zero. By this argument, the corresponding Manley-Rowe integral will diverge as

N ≈ 2

∫
ψ2

2dx ≈
Λ4

1

2Λ2
. (6.30)

The main contribution to this integral is given by the second harmonic, and correspondingly the

contribution from the first harmonic is small.

Let us next consider the behavior of ψ1(x). To estimate its amplitude and to find its

characteristic size we shall assume that

ψ1(x) = Aφ1(ξ), where ξ = αx and α =
1

a
. (6.31)

Substituting (6.31) into the integral (6.26) and taking into account the relations between the

scales (6.28) we find that

ψ2 =
A2C0

2αΛ2
exp(−Λ2|x|) +

A2

α2
φ2(ξ),

where C0 =

∫ ∞

−∞
φ2

1(ξ)dξ and φ2ξξ ≈ −φ2
1.

For large |x| (∼ L), this expression has the same asymptotic behaviour as (6.27). For small

|x| ∼ a the first term can be expanded so that the potential (U = 2ψ2 ) can be represented as

follows

U(x) = U0 +
A2

α2
V (ξ),
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where U0 =
A2C0

αΛ2
, and V (ξ) = [−|ξ| + 2φ2(ξ)] .

Here U0 gives the constant background and the potential V (ξ) () U0) provides the bound

state for ψ1 . In this case U0 is approximately equal to Λ2
1 which coincides with (6.29) for the

maximum value of ψ2 . The small difference between Λ2
1 and 2max(ψ2) is just α2 , so that:

Λ2
1 =

A2C0

αΛ2
+ α2, and A2 = α4.

As a result, for these scales Eq. (6.24) takes the form:

−φ1 + ∂2
ξφ1 + V (ξ)φ1 = 0.

We now see that the scaling of the small parameters yields the relations:

A2C0

α
≈ Λ2

1Λ2

from which it follows that:

C0α
3 ≈ Λ2

1Λ2, (6.32)

and the amplitude of ψ1 is of the order:

A ≈
Λ4/3

1 Λ2/3
2

C2/3
0

.

Thus, we have shown that for the case k = 0 the amplitude of the second harmonic (SH) remains

constant at the bifurcation point, but its size becomes infinitely large. In contrast to SH, the

FF amplitude vanishes as Λ2/3
2 , but its size grows as Λ−1/3

2 . This means that we have in this

case a subcritical bifurcation.

In spite of this behavior for ψ1 , the main contribution to the Manley-Rowe integral comes

from the SH, since the input from the FF is small. This statement holds also at k 0= 0. To

establish this fact it is not necessary to know the solution for ψ1 , it is enough to estimate

contributions from the FF and SH in the Manley-Rowe integral.
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At k 0= 0 it is possible to arrive almost at the same conclusion as for k = 0.

Assuming that the amplitude ψ1 has a characteristic scale larger than Λ−1
1 and k−1 , one

can get an estimate for ψ2 at x = 0 (analogous to (6.29)):

max|ψ2| 4 (Λ2
1 + k2/4)/2, (6.33)

so that it remains finite at Λ2 = 0. As in the case k = 0, the characteristic size of |ψ2| grows like

Λ−1
2 . From this point of view, the type of bifurcation remains the same as it was at k = 0: this

is the subcritical bifurcation. As far as ψ1 is concerned, its contribution to the Manley-Rowe

integral becomes infinitely small with respect to that from SH:

∫
|ψ1|dx ∼ Λ2.

This follows from comparison of Eq. (6.27) at x = 0 and Eq. (6.33). The latter indicates that

the FF amplitude must vanish at Λ2 = 0.

Thus, for both cases (k = 0 and k 0= 0) the Manley-Rowe integral diverges like 1/Λ2 for

small Λ2 :

N ≈ 2

∫
|ψ2|2dx ∼ 1/Λ2.

Thus, the function N(Λ2) has a negative derivative near Λ2 = 0, which, due to the VK-type

criterion (see the next section and [47]), corresponds to instability of solitons. At k = 0 it is

possible to prove. For k 0= 0 it is an open problem, but it looks very reasonable to expect

instability also in this case because the instability holds for small k .

In Fig. 6.4 we show the dependence of N on Λ2 for the case Λ2
1 = Λ2

2 + 1 and k = 0,

obtained from our numerical solutions. It was found that such behavior of N with respect to

Λ2 is typical for all cases including k = 0: for small values of Λ2 N diverges, for intermediate

values it has a minimum at Λ2 = Λ2min and grows for larger Λ2 . When N → ∞ as Λ2 → 0,
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to the subcritical bifurcation point.
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the dependence N(Λ2) can be approximated by the function

f(Λ2) =
a

Λ2
+ b (6.34)

where for Λ2
1 = 1 + Λ2

2 and k = 0, a = 0.537, b = 3.33. So we can see a nice correspondence

with theoretical formula (6.30) where a = 1/2.

In Fig. 14 we show the dependence of N(Λ2) for this case, where the dashed line corresponds

to the approximation (6.34). The same dependence N(Λ2) is displayed on Fig. 6.4 for k = 1

with the same value of Λ1 = 1 (in this case a = 0.763 and b = 4.299).

As Λ2 → 0 our numerics demonstrate that the maximum amplitude of the second harmonic

tends to a constant (Fig. 6.4) but its width grows (Fig. 6.4) which causes the divergence of

N for small Λ2 . Simultaneously the first harmonic amplitude vanishes and its width increases

slightly as Λ2 approaches zero (see also Fig. 6.4). We note that such a tendency was also

observed numerically in [85] for the FF-SH solitons in one particular case, but the authors did

not give any explanation of this fact. As a result, the contribution of the first harmonic to N

becomes small compared with that from the second harmonic.

Thus, the function N(Λ2) for the soliton solution has a negative derivative in the band

0 < Λ2 < Λ2min where, according to the VK-type criterion [47], the considered soliton solutions

should be expected to be unstable against small perturbations. It can be proved rigorously for

k = 0. For Λ2 > Λ2min the sign of the derivative changes and therefore we should expect a stable

soliton branch. However, the VK criterion cannot be applied to this case. It is connected with

very fine details in the proof for the VK-type criteria (for details see [47]). For the NLS case the

proof is based on use of the oscillation theorem for scalar Schrodinger operators, which appear

after linearization of the NLS on the background of the soliton. However, for the linear stability

problem for the FF-SH solitons, instead of scalar operators, we have a matrix (2×2) Schrodinger

operators for which the oscillation theorem does not hold. Recall that the oscillation theorem for

the scalar Schrodinger operator establishes a correspondence between a number of nodes of the
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wave function and a level number. Therefore the VK-type criterion, being a sufficient criterion

for instability, cannot be used for stability. Thus we can expect instability for the region of

the negative derivative of N(Λ2
2). In the region of positive derivative, nevertheless, one can

make a conclusion about stability by using a combination of the (incomplete) VK criterion and

the Lyapunov approach. As first shown in [29] (for details see also [47]) the Hamiltonian of the

FF-SH system is bounded from below for a fixed Manley-Rowe integral. A key point for stability

is to consider the dependence H(N,P ) for soliton solutions. If this dependence is monotonic

and unique then the soliton solution will be stable. Indeed, the boundedness of the Hamiltonian

from below means that solutions realizing its minimum will be stable in accordance with the

Lyapunov theorem. In the case of a unique surface H(N,P ) this minimizer will belong to

this surface. Strictly speaking, the latter needs also compactness of the considered functionals,

which can be proved by standard methods for such systems. If the function H(N,P ) is not

monotonic, then there exist several branches for fixed N and P , i.e. H = H(N,P ) represents

a set of separate surfaces. Then the solitons from the lower branch, or from the lower surface,

will be stable only in the Lyapunov sense.

As for the stability of solitons near a supercritical bifurcation, this problem has some peculiar-

ities. As shown before the soliton family near the boundary Λ1 = 0 transforms into NLS solitons,

generally speaking, independently of the problem dimension. In this case the most dangerous

perturbations will be disturbances of the modulation type. Their dynamics will be described by

the time-dependent nonlinear Schrodinger equation. It we saw above (see, e.f., [39]) that only

one-dimensional solitons are stable with respect to perturbations with the same dimension. For

instance, the solutions (6.22) will be stable with respect to one-dimensional modulation pertur-

bations, guaranteed, in particular, by the criterion (4.33). Thus, in the one-dimensional case

the soliton boundary in the parameter space coincides with the stability boundary. However, for

dimensions D ≥ 2 the NLS solitons are unstable (see Section 4). From another perspective, the
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boundedness of the Hamiltonian for fixed N provides stability of solitons realizing the minimum

of H . This means that for D ≥ 2, in the parameter space the stability region is separated from

the soliton boundary.

6.5 Concluding remarks

It is necessary to emphasize that the results presented in this Section about the behavior of

solitons near both the supercritical and subcritical bifurcations are in complete agreement with

a general theory given in Sections 4 and 5 . It is interesting to note that if the phase mismatch

parameter Ω is negative for stationary solitons (V = 0) only the supercritical bifurcation is

possible; the subcritical bifurcation is forbidden. For propagating solitons we have another

possibility. For instance, if

(
1 −

κ

2

)
V 2 + Ω < 0

which can be satisfied if

κ < 0, or p2 > 2p1 (6.35)

and then necessarily Ω < 0, the only possible bifurcation is the subcritical one. Note, that

equality in (6.35) recovers the Galilean invariance of the FF-SH system. Thus, the soliton family

significantly depends on the phase mismatch Ω and κ (i.e.p2 − 2p1 ) with a large asymmetry

with respect to these parameters. The latter will be interesting to observe in experimentally, for

instance, in nonlinear optics.

We would like to underline once more that the results of this Section can be easily extended

to the multi-dimensional case. In particular, the main conclusion about the character of soli-

tons near subcritical and supercritical bifurcations holds in the multi-dimensional case. For

a dimension D ≥ 2 solitons near a supercritical bifurcation for the FF amplitude will coin-

cide with D -dimensional NLS solitons, and the SH amplitude will be proportional to square
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of the FF amplitude as it is in 1D case. When approaching a subcritical bifurcation point in

the multi-dimensional case, the Manley-Rowe integral diverges which results in instability of

solitons.
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7 Stability of the NLS-type solitons

The main aim of this Section is to demonstrate how two methods discussed in the previous

sections, i.e. the Lyapunov approach and linear stability analysis, can be applied to investigating

the stability of solitons in the three-wave system.

As was mentioned, the three-wave system describes spatial solitons as well as spatial-temporal

solitons in χ(2) media [25, 26]. This system couples amplitudes of three quasi-monochromatic

waves due to quadratic nonlinearity. As we saw in the previous section in a special case this

system describes the interaction of fundamental and second harmonics. When the difference in

group velocities of three wave packets is large enough this system coincides with the Bloembergen

equations [25] which can be integrated by the inverse scattering transform [95, 12]. For close

group velocities in the system one needs to take into account both dispersion and diffraction

terms [26, 29]. In this case this model can be considered as a vector NLS system but with

quadratic nonlinearity. Solitons in this system are possible as a result of a balance between

nonlinear interaction and dispersive effects. For this system soliton solutions are stationary

points of the Hamiltonian, for fixed momentum and the Manley-Row integrals. In this section we

give the proof of the Lyapunov stability of such ground solitons based on the Sobolev embedding

theorem. This proof [47] generalizes all results about application of this approach to the three-

wave system starting from the first results obtained by Kanashov and Rubenchik [29] and those

obtained later by Turitsyn [120] and Berge, Bang, Rasmussen and Mezentsev [121]. The linear

stability criterion given in this section is also the generalization but of the VK criterion. We

would like to remind that the crucial point in its derivation for the NLSE solitons is based on

the oscillation theorem for the stationary Schrodinger operator. This theorem establishes the

one-to-one correspondence between a level number and a number of nodes of the eigenfunction.

As well known, this theorem is valid only for scalar (one-component) Schrodinger operators

and cannot be extended, for example, to the analogous matrix operators. This means that
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the Vakhitov-Kolokolov type of criteria, as a rule, define only sufficient conditions for soliton

instability and cannot necessarily determine the stability of solitons. For three-wave system

the linearized operator represents a product of two (3 × 3)−matrix Schrodinger operators to

which the oscillation theorem cannot be applied. We discuss this situation in detail for solitons

describing a bound state of the fundamental frequency and its second harmonics.

7.1 The three-wave system

Consider the three-wave system, written in the form (see, for instance, [29], [35]):

i
∂ψ1

∂t
− ω1ψ1+i(v1∇)ψ1 +

1

2
ωαβ

1 ∂2
αβψ1 = V ψ2ψ3, (7.1)

i
∂ψ2

∂t
− ω2ψ2+i(v2∇)ψ2+

1

2
ωαβ

2 ∂2
αβψ2 = V ψ1ψ

∗
3 , (7.2)

i
∂ψ3

∂t
− ω3ψ3 + i(v3∇)ψ3+

1

2
ωαβ

3 ∂2
αβψ3 = V ψ1ψ

∗
2 . (7.3)

Here ψl(x, t) ( l = 1, 2, 3) are amplitudes of three wave packets, slowly varying with respect

to x , so that values of their wave vectors kl satisfy restrictions klLl / 1 where Ll is a

characteristic size of l -th packet. The frequencies ωl = ωl(kl) are supposed to be close to the

resonance condition:

ω1(k1) = ω2(k2) + ω3(k3), (7.4)

k1 = k2 + k3. (7.5)

vl = ∂ωl(kl)/∂kl is the group velocity for the l -th packet,

ωαβ
l =

∂2ωl(kl)

∂klα∂klβ

is the dispersion tensor, and V is a three-wave matrix element which can be taken as real,

without loss of generality. Like the NLSE, this system is Hamiltonian

i
∂ψl

∂t
=

δH

δψ∗
l

.
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where

H = H0 + H1,

H0 =
3∑

l=1

[∫
ωl|ψl|2dr−i

∫
ψ∗

l (vl∇)ψldr+
1

2

∫
∇αψ

∗
l ω

αβ
l ∇βψldr

]
, (7.6)

H1 = V

∫
(ψ1ψ

∗
2ψ

∗
3 + ψ∗

1ψ2ψ3)dr. (7.7)

Here the Hamiltonian H0 relates to the linear characteristics of the three wave packets: the first

term in (7.6) is the main contribution to their energy, the next term describes propagation of

the wave packets with the group velocities vl , while the last term accounts for the effect of the

finite width ∆kl of each wave packet, responsible for their dispersion broadening. It is worth to

noting that the dispersion term is small compared with respect to the second one through the

parameter ∆kl/kl . Therefore it is necessary to take this term into account only if the difference

in the group velocities is small enough.

If the carrier frequencies ωl and wave vectors kl satisfy exactly the resonant conditions (7.4)

then the terms proportional to ωl can be excluded by the transformation: ψl → ψl exp(−iωlt).

In the 1D case the general system (7.1- 7.3) can be simplified. By introducing new variables

ψl = ψ̃l(x − vt, t)eiκlx; κ1 = κ2 + κ3, (7.8)

one can exclude the first derivatives in the equations if one chooses the velocity v and wave

numbers κl as follows 2

v =
v1d1 − v2d2 − v3d3

d1 − d2 − d3
, κl = dl(v − vl), dl =

1

ω′′
l

. (7.9)

2When d1 = d2 + d3 the equations become invariant relative to the Galilean transformations.

129



As a result, in the 1D case the system (7.1-7.3) takes the form ( tilde above ψl is omitted and

V is put equal to -1):

i
∂ψ1

∂t
− Ω1ψ1+

1

2
ω

′′

1ψ1xx = −ψ2ψ3, (7.10)

i
∂ψ2

∂t
− Ω2ψ2+

1

2
ω

′′

2ψ2xx = −ψ1ψ
∗
3 , (7.11)

i
∂ψ3

∂t
− Ω3ψ3+

1

2
ω

′′

3ψ3xx = −ψ1ψ
∗
2 . (7.12)

where

Ωl = ωl + κlvl + ω′′
l κ

2
l /2. (7.13)

Here, as before, the new frequencies are close to resonance:

Ω1 ≈ Ω2 + Ω3

or, in other words, the mismatch is assumed to be small enough.

At the next step Ω2 and Ω3 are excluded with the help of the transformation:

ψ1(x, t) → ψ1(x, t)e−i(Ω2+Ω3)t,ψ2(x, t) → ψ2(x, t)e−iΩ2t,ψ3(x, t) → ψ3(x, t)e−iΩ3t.

As a result, the equations (7.10-7.12) take the form

i
∂ψ1

∂t
− Ωψ1+

1

2
ω

′′

1ψ1xx = −ψ2ψ3, (7.14)

i
∂ψ2

∂t
+

1

2
ω

′′

2ψ2xx = −ψ1ψ
∗
3 , (7.15)

i
∂ψ3

∂t
+

1

2
ω

′′

3ψ3xx = −ψ1ψ
∗
2 . (7.16)

where Ω = Ω1 −Ω2 −Ω3 is the phase mismatch characterizing how far the carrying frequencies

of the three wave packets are from the resonance (7.4).

The resulting system (7.14 -7.16) keeps a Hamiltonian structure. A new Hamiltonian is of

the form

H =

∫
Ω|ψ1|2dx +

∑

l

∫
1

2
ω

′′

l |ψlx|2dx −
∫

(ψ∗
1ψ2ψ3 + c.c.)dx. (7.17)

130



Besides H , the system (as well as the old one) has two other conservative quantities, the so-called

Manley-Row integrals,

N1 =

∫
(|ψ1|2 + |ψ2|2)dx, N2 =

∫
(|ψ1|2 + |ψ3|2)dx. (7.18)

These invariants appear as a sequence of the averaging procedure excluding all other non-

resonant processes except three-wave interaction.

The three-wave system (7.14 -7.16) in the partial case of the interaction of fundamental and

second harmonics transforms into the system (6.2,6.3) and, respectively, the Hamiltonian (6.5)

transforms into (7.17)

For an arbitrary dimension d all the above transformations for system (7.10-7.12) can be

performed. In this case ω
′′

l ψlxx for both systems transforms into ωαβ
l ∂2

αβψl, with a familiar

change in all integrals of motion. In the transformations (7.9) instead of dl it is necessary to

substitute the matrix inverse to ωαβ
l , the velocities vl there have meaning of vectors.

These changes allow us to restrict our consideration to the one-dimensional 3-wave system

only. Some difference between one-dimensional and multi-dimensional cases is not too basic for

this system, at least as far as soliton stability concerns.

7.2 Soliton solutions of the 3-wave system

Consider soliton-like solutions of the system (7.14-7.16) in the form,

ψ1(x, t) = ψ1s(x)ei(λ1+λ2)t, (7.19)

ψ2(x, t) = ψ2s(x)eiλ1t,

ψ3(x, t) = ψ3s(x)e−iλ2t,
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where functions ψ1s(x), ψ2s(x), ψ3s(x) are supposed to be real and decay at the infinity. They

obey the equations:

L1ψ1s = −ψ2sψ3s, L1 = −(λ1 + λ2 + Ω) +
1

2
ω

′′

1∂
2
x; (7.20)

L2ψ2s = −ψ1sψ3s, L2 = −λ1 +
1

2
ω

′′

2∂
2
x; (7.21)

L3ψ3s = ψ1sψ2s, L2 = −λ2 +
1

2
ω

′′

3∂
2
x. (7.22)

The solutions to this system yield extremums of the Hamiltonian for two fixed Manley-Row

invariants:

δ(H + λ1N1 + λ2N2) = 0, (7.23)

that is soliton solutions are stationary points of the Hamiltonian for fixed N1,2 .

Soliton solutions of this system will be exponentially decreasing at the infinity if simultane-

ously three inequalities are satisfied:

µ2
1 ≡ d1(λ1 + λ2 + Ω) > 0, µ2

2 ≡ d2λ1 > 0, µ2
3 ≡ d3λ2 > 0. (7.24)

where dl = 1/ω′′
l .

It is possible to come to the this result also if one analyses integrals consisting of the Hamil-

tonian and N1,2 on the soliton solution (for more details see the review [88]). For this purpose

multiply equation (7.20) by ψ1s and then integrate over x. As a result, one gets

−(λ1 + λ2 + Ω)n1+D1 = −I. (7.25)

An analogous procedure applied to equations (7.21) and (7.22) gives

− λ1n2 + D2 = −I, (7.26)

−λ2n3 + D3 = −I (7.27)

where

nl =

∫
|ψls|2dx, Dl =

1

2

∫
ω

′′

l

∣∣∣∣
dψls

dx

∣∣∣∣
2

dx, I =

∫
ψ1sψ2sψ3sdx.
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These integral relations should be completed by the condition following from the variational

problem (7.23) after applying scaling transformation to be remaining N1,2 :

ψls(x) → a−1/2ψls(x/a).

Under this transformation the Hamiltonian becomes a function of the scaling parameter a :

H(a) =
∑

l

∫
Ωl|ψls|2 +

1

2a2
ω

′′

l |ψlsx|2)dx −
2

a1/2

∫
ψ1sψ2sψ3sdx.

By using both this relation and Eq. (7.23), one gets

dH

da
|a=1 = 0 or

∑

l

∫
ω

′′

l |ψlsx|2dx −
∫

ψ1sψ2sψ3sdx = 0. (7.28)

Combining the integral relations (7.25-7.28) and using the positive nature of nl (by definition) we

get to the conditions ( 7.24). Thus, it turns out that all operators Ll must simultaneously have

the same sign-definiteness. Note, that this latter requirement holds for all physical dimensions

D ≤ 3, and so the matrices ωαβ
l must also have the same sign-definiteness.

7.3 Nonlinear stability

Next we demonstrate how Lyapunov stability can be established for solitons in this three-wave

system. As for the NLS solitons, for demonstration of the Hamiltonian boundedness we used

the embedding theorems. The difference with the NLSE case, consists, first of all, in that,

instead of one complex field ψ, now we have three fields ψ1 , ψ2 and ψ3 , while, instead of cubic

nonlinearity, we have a quadratic one. This means that one should consider two spaces L3,3 and

W 1
2 with the norms

||u||L3,3 =

[∫
(|ψ1|3 + |ψ2|3 + |ψ3|3)dDx

]1/3

,

||u||W 1
2

=

[

λ̃1

∫
(|ψ1|2 + |ψ2|2)dDx + λ̃2

∫
(|ψ1|2 + |ψ3|2)dDx +

1

2

∑

l

∫
∂αψ

∗
l ω

αβ
l ∂βψld

Dx

]1/2
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where λ̃1,2 > 0 and the tensors ωαβ
l are assumed positive definite. Then the Sobolev inequality

reads as follows:

||u||L3,3 < M ||u||W 1
2
. (7.29)

It is worth noting that between the norm ||u||L3,3 and the interaction Hamiltonian for the

three-wave system, here is the following simple inequality:

||u||3L3,3
≥

3

2

∫
(ψ∗

1ψ2ψ3 + c.c.)dDx. (7.30)

A multiplicative variant for the Sobolev inequality (7.29) can be obtained by the same manner

as for the NLSE . We present here only the analog of (6.28) for the one-dimensional case:

J ≤ M1[λ̃1N1 + λ̃2N2]
5/4I1/4

where

J =

∫
(ψ∗

1ψ2ψ3 + c.c.)dDx, I =
1

2

∑

l

∫
∂ψ∗

l ω
′′
l ∂ψldx.

In this expression λ̃1,2 are still arbitrary positive constants. By minimization over both these

parameters we have

J ≤ C(N1N2)
5/8I1/4. (7.31)

The next step is to find the best constant C as a minimal value of the corresponding functional

Cbest = min
[ψ]

F [ψ], F =
J

(N1N2)5/8I1/4
.

It is easy to check that this minimum is attained on the ground soliton solution, namely, on the

solution of the system (7.20-7.22) without nodes 3:

Cbest = F [ψs]. (7.32)

3It is possible to show that for the ground soliton all functions ψls can be considered as positive quantities
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Analogously to (2.31), with the help of the inequality (7.31) where instead of C stands the best

constant (7.32), it is easy to get the estimate for the Hamiltonian (7.17) for the case when the

phase mismatch is absent (Ω = 0):

H ≥ I − 2I3/4
s I1/4 ≥ Hs(Ω = 0).

This proves stability of the ground-state soliton in one dimension for a zero phase mismatch.

Again, this inequality becomes precise for the soliton solution. By the same scheme stability of

the ground-state solitons for all other physical dimensions can be proved.

Now consider how a finite phase mismatch effects soliton stability. The answer which will

be obtained is that the Hamiltonian is always bounded from below, independently of both the

value and the sign of Ω . Consider the Hamiltonian (7.17) in which it is convenient to separate

the phase mismatch term:

H = Ω

∫
|ψ1|2dx + H̃

so that the remainder coincides with the Hamiltonian with Ω = 0:

H̃ =
∑

l

∫
1

2
ω

′′

l |ψlx|2dx −
∫

(ψ∗
1ψ2ψ3 + c.c.)dx.

There are two possibilities: Ω > 0 and Ω < 0. In the first case we have the following evident

estimate:

H ≥ Hs(Ω = 0). (7.33)

Thus, the Hamiltonian is bounded from below by its value on the ground soliton solution with

zero phase mismatch.

The second case gives

H ≥ Hs(Ω = 0) − |Ω|
∫

|ψ1|2dx. (7.34)
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The integral
∫
|ψ1|2dx is always bounded from above by min(N1,N2). Therefore the estimate

(7.34) can be written as follows

H ≥ Hs(Ω = 0) − |Ω|min(N1,N2). (7.35)

The resulting inequality completes the proof of Hamiltonian boundedness for an arbitrary phase

mismatch. Importantly, this result takes place for all physical dimensions D ≤ 3. In the general

situation the Hamiltonian is majorized by its value with zeroth phase mismatch taken on the

ground soliton solution and some additional term proportional to the minimal Manley-Row

integral. The constant of proportionality is 0 or |Ω| .

The fact of the Hamiltonian boundedness for the 3-wave system (7.1-7.3) was first demon-

strated by Kanashov and Rubenchik [29] when the dispersive operators were there for an isotropic

media. Later, Turitsyn [120] showed for the partial case - interaction between fundamental fre-

quency (FF) and second harmonics (SH) - under assumption that the second order operators

in the system are Laplacians in each equation that for zero phase mismatch the Hamiltonian

reaches its minimum at the ground-state soliton. Then, in the paper [121] the boundedness of

the Hamiltonian for the FF-SH interaction was demonstrated in the presence of a nonzero phase

mismatch. Here we gave the stability proof for ground solitons in the three-wave system in the

general case for arbitrary dispersion tensors ωαβ
l having the same sign-definiteness, for instance,

being positive. It should be noted also that both inequalities (7.33) and (7.35) demostrate

different criteria at Ω > 0 and Ω < 0, in the correspondence with the conditions (7.24) for

soliton existence which are not symmetric under the change Ω → −Ω .

7.4 Linear stability for the system with FF-SH interaction

Let us turn to the linear stability problem for the solitons in the three-wave system. For the

sake of simplicity we shall consider the partial case of the three-wave system, namely, the FF-SH

interacting system (6.2,6.3) and show how the VK type criterion can be obtained in this case.
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Soliton solutions for the FF-SH interacting system are defined from the equations (6.2,6.3).

They are of the form

ψ1(x, t) = ψ1s(x)eiλ2t, ψ2(x, t) = ψ2s(x)e2iλ2t,

where the amplitudes ψ1s and ψ2s satisfy the equations:

− λ2ψ1 +
1

2
ω

′′

1ψ1 = −2ψ2ψ1, (7.36)

−2λ2ψ2 − Ωψ2 +
1

2
ω

′′

2∂
2
xψ2 = −ψ2

1. (7.37)

Here the solution ψ1s and ψ2s are assumed to be real and without nodes, i.e. they can be

regarded as a ground state soliton, where the index s for ψ1s and ψ2s is temporarily omitted.

Consider small perturbations on the background of this soliton solution, putting

ψ1(x, t) = (ψ1s + u1 + iv1)e
iλ2t, ψ2(x, t) = (ψ2s + u2 + iv2)e

2iλ2t.

Linearization of the system (6.2,6.3) leads to the linear (Hamiltonian) equations:

ut =
1

2

δH̃

δv
, vt = −

1

2

δH̃

δu
(7.38)

where H̃ is also the second variation of F = H + λ2N ,

H̃ = 〈v|L0|v〉 + 〈u|L1|u〉 , (7.39)

u and v are vectors with two components u1, u2 and v1, v2 , respectively, and N is given by

the expression (6.6). Now the second order differential operators L0 and L1 are the (2 × 2) -

matrix operators:

L0,1 =



 λ2 − 1
2ω

′′
1∂

2
x ∓ 2ψ2 −2ψ1

−2ψ1 2λ2 − 1
2ω

′′
2∂

2
x − Ω



 .

Both operators remain self-adjoint. From the quantum mechanics point of view such operators

correspond to the Schrodinger operators for a nonrelativistic particle with spin S = 1/2 moving
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in an inhomogeneous magnetic field. For such operators, as known, the oscillation theorem

is not completely valid. The ground eigenfunction has no node, but correspondence between

node number and level number is already absent. The lack of such correspondence, as will

be seen below, does not allow us to make certain conclusions about soliton stability. The VK

type criteria for this matrix system can give only sufficient conditions for instability. The same

statement holds for the 3-wave system.

As far as properties of the operators L0 and L1 are concerned, they are similar to those

for the NLSE case. The operator L0 is non-negative. This follows if instead of v1 and v2 one

introduces new functions χ1 and χ2 by means of the formulas

v1 = ψ1χ1, v2 = ψ2χ2.

As a result of such changes < v|L0|v > can be rewritten as follows:

< v|L0|v >=
1

2

∫
[ω′′

1ψ
2
1χ

2
1 + ω′′

2ψ
2
2χ

2
2]dx +

∫
ψ2

1ψ2(2χ1 − χ2)
2dx.

Hence the non-negativeness of L0 becomes evident and the ground state eigen-vector is simply

defined:

χ1 = c1, χ2 = c2, 2c1 = c2

or

v0 =



 ψ1

2ψ2



 .

This eigenfunction, as for the NLSE case, provides conservation of N and consequently

δN = 2

∫
(ψ1u1 + 2ψ2u2)dx ≡ 2 〈v0|u〉 = 0. (7.40)

As for the NLSE this relation represents a solvability condition for the linear system (7.38).
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The next analysis is closely analogous to that for the NLSE. It is necessary to consider the

eigen-value problem for the operator L1 :

L1|ϕ >= E|ϕ > +C|ψ0 > (7.41)

and then to expand |ϕ > over the complete set of eigenfunctions {|ϕn >} of the operator L1 .

As a result, the solution of Eq. (7.41) is given by the expression:

|φ >= C
∑

n

|φn >< φn|v0 >

En − E
. (7.42)

Analogously to (4.32), applying the solvability condition (7.40) to (7.42) leads us to the disper-

sion relation

f(E) ≡
′∑

n

〈vo|φn〉 〈φn|v0〉
En − E

= 0. (7.43)

A prime here means, as before, absence in the sum of the state with E = 0 because < Ψx|v0 >=

0, L1|Ψx >= 0 where

< Ψx| = (ψ1x,ψ2x).

Up to this point, everything looks similar to the NLSE case. The difference appears when we

begin to analyze the function f(E). Now the oscillation theorem does not hold. This means

that below the level E = 0 a few levels are possible. Therefore the dispersion relation may have

negative roots E < 0 independently on whether the derivative ∂Ns/∂λ2 is positive or negative.

As a result, we can formulate only sufficient criterion for instability which has the same form as

for the NLS solitons:

∂Ns

∂λ2
< 0. (7.44)

But we cannot say anything in general about stability. The stability criterion

∂Ns

∂λ2
> 0
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holds only if below E0 = 0 the operator L1 has the only (ground) level, but it is not a generic

case. Thus, the Vakhitov-Kolokolov type of stability criteria when applied to the vector models

provides only sufficient conditions for instability of solitons.

Nevertheless, a combination of the (incomplete) Vakhitov-Kolokolov criterion and the Lya-

punov approach can give a complete answer to the stability problem. At the end of this section

we discuss such an example when based on this combined method, and with the help of numer-

ical integration of the FF-SH interacting system (7.36,7.37), it is possible to make more or less

certain conclusion about soliton stability. The dependencies of H and N (on 1D soliton solu-

tions) found numerically in [30] as functions of λ for Ω < 0 show monotonic behavior: N grows

with increasing λ but H decreases. As a result, it was found that there is only a soliton branch

with one-to-one dependence H(N). For Ω > 0, however, N contains two branches. The first

branch lies in the region 0 < λ < λmin . N(λ) increases monotonically as λ approaches origin.

At λ = λmin this function has minimum. All of this branch will be unstable in accordance with

the criterion (7.44). For λ > λmin N grows monotonically but the linear criterion can not be

applied to this branch. However, the dependence of H(λ) helps us to get a conclusion. This

function has maximum at the point λ = λmin , so that H as a function of N has at this point

a cusp which separates two branches. The upper branch has larger values of H than the lower

branch. If one assumes that for this given interval of N there are no other soliton solutions

(numerically this is not too simple a task) then one can say that the lower branch represents a

stable soliton family.

To conclude this section, it is worth noting that the linear stability criterion of the Vakhitov-

Kolokolov type for these vector NLS systems can be considered only as a sufficient criterion for

soliton instability. However, its combination with the Lyapunov approach represents a powerful

tool for investigation of soliton stability. Another important point of this section is the embed-

ding theorems which play a very essential role in proof of the Lyapunov stability for solitons.
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This method allows to demonstrate stability of solitons for the three-wave system. Although we

have applied this approach to the 1D solitons, it can be successfully used in the general multi-

dimensional case also. Let us recall, that, when we speak about χ2 media, we mean, first of all,

crystals without reflection symmetry. Electromagnetic waves propagating in such crystals have

anisotropic dispersion relation. This means, for instance, that in the general situation the dis-

persion tensors ωαβ for each wave packet coupled by three-wave interaction cannot be reduced

simultaneously to diagonal form. However, the method presented here does not require any di-

agonalization of the dispersion tensors, and the only condition needed is a sign-definiteness of all

dispersion tensors (simultaneous positiveness or negativeness). Only in such a case do solitons

exist. Sign-definiteness of dispersion tensors, in turn, permits to introduce the corresponding

Sobolev space and then to get the desired integral estimates for the Hamiltonian. It is also

important that solitons realizing minimum of the Hamiltonian establish their stability not only

with respect to small perturbations, but also against the finite ones. In this sense the Lyapunov

stability criterion is equivalent to an energy principle.
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[16] G. Iooss and K. Kirchgässner, Bifurcation d’ondes solitaires en présence d’une faible tension

superficielle, C. R. Acad. Sci. Paris, Série I 311, 265-268 (1990).

[17] T. R. Akylas, Envelope solitons with stationary crests, Phys. Fluids 5, 789-791 (1993).

[18] L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Pergamon Press, New York)

[Russian original: Nauka, Moscow, 1995, p. 521].

144



[19] F. Dias and G. Iooss, Capillary-gravity solitary waves with damped oscillations, Physica D

65, 399-42(1993)

[20] J.-M. Vanden-Broeck and F. Dias, Gravity-capillary solitary waves in water of infinite depth

and related free-surface flows, J. Fluid Mech. 240, 549-557 (1992).

[21] F. Dias and G. Iooss, Water waves as a spatial dynamical system, Handbook of Mathemat-

ical Fluid Dynamics, Vol. 2, Ed: Friedlander and Serre, Elsevier, 443-499 (2003)

[22] M. S. Longuet-Higgins, Capillary-gravity waves of solitary type and envelope solitons on

deep water, J. Fluid Mech. 252, 703-711 (1993).

[23] V. E. Zakharov and E. A. Kuznetsov, Optical solitons and quasisolitons, Zh. Éksp. Teor.
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