
Cardiac arrhythmias are heart-rhythm disorders. Most
arrhythmias are not life threatening, and many are benign.
But some rhythm disturbances originating in the ventricles—
the heart’s main pumping chambers—can be fatal.

Visual observations of animal hearts, documented at
least as far back as the 16th century, revealed that the exposed
surface of a ventricular wall can break down into worm-like
regions or “fibrils” that appear to twitch randomly before
death. In an article published in 1874, the French physician
and neurologist Edmé Vulpian coined the term mouvement
fibrillaire to describe the quivering motion that stops the heart
from pumping.

In a human heart, ventricular fibrillation is almost al-
ways fatal. It is generally preceded by a very rapid rhythm
known as ventricular tachycardia. Roughly half of the deaths
caused by cardiovascular disease are sudden. The majority of
those sudden deaths—an estimated 300 000 per year in the
US—are associated with ventricular fibrillation. 

The prevention of sudden cardiac death remains a major
clinical challenge. One issue is risk stratification, which en-
tails developing reliable predictors of arrhythmias for differ-
ent heart diseases. For example, 5 million heart-failure pa-
tients in the US are at increased risk of lethal arrhythmias,
and roughly 1 in 12 will die within a one-year period. What
puts one patient more at risk than another?

The other important issue is therapy. At present, the only
effective therapy for treating high-risk patients is an im-
plantable defibrillator that administers a strong electric shock
to reset the heart to a normal rhythm. That therapy is inva-
sive and expensive. Moreover, electrical shocks are painful
and problematic for patients with frequent arrhythmias.
From that standpoint drug therapies are, in principle, prefer-
able if they can be made as effective as implantable devices.
But in an arrhythmia-suppression trial conducted in the late
1980s, the death rate was actually higher among patients
treated with drugs than among those given placebos. That
trial, and several others since, point up the danger of empir-
ical drug therapies. Such problems highlight the urgent need
for a better understanding of the genesis of life-threatening
arrhythmias and for new therapeutic approaches. 

We will use the concrete example of cardiac alternans to
illustrate how interdisciplinary research at the intersection of
physics, biology, and medicine is helping to fulfill the need
for new therapeutic approaches. The study of alternans links

basic science to clinical practice. Moreover, it pertains directly
to a central question of arrhythmogenesis: How can one fore-
see an impending lethal arrhythmic event and take steps to
prevent it? 

Alternans are period-doubling oscillations of electrical
or chemical signals in the heart that repeat every two beats.
A long history links these signals to sudden death. More gen-
erally, period doubling is a well-known hallmark of the onset
of chaos in nonlinear dynamics. But that classic route to chaos
is not what links alternans to arrhythmias. The relevant sig-
nals are arrhythmogenic patterns of asynchrony, in which pe-
riod-doubling oscillations become spatially out of phase. To
understand the arrhythmogenic patterns, researchers must
cope with the bewildering biological complexity of the heart,
and they must elucidate a wealth of dynamical phenomena
that span molecular, cellular, and tissue scales.

Pulsus alternans
Cardiac alternans are abnormalities in which one or more
properties of the heartbeat alternate from beat to beat, but 
the interval between beats is still regular.1 Although alternans
by themselves are not life threatening, they are often seen in
patients with arrhythmias. In 1872, the German physician
Ludwig Traube coined the Latin term pulsus alternans to de-
scribe a regular heart rhythm with an alternation of strong
and weak pulses, as recorded by a beat-to-beat variation of
arterial pressure (figure 1a), and he linked this phenomenon
to the cardiac death of a patient. With the advent of electro-
cardiography in the early 20th century, a different facet of al-
ternans was revealed as beat-to-beat variations in the so-called
T-wave portion of the electrocardiogram trace (figure 1b). 

The T wave indicates the electrical repolarization of the
ventricles after each contraction. For many decades, reports
of T-wave alternans in sudden-death victims remained
largely episodic. In the 1990s, however, clinical trials sys-
tematically investigated the statistical correlation between
T-wave alternans and survival rate for a large number of car-
diac patients.2 Those trials established a clear correlation be-
tween T-wave alternans and arrhythmia risk.

Nowadays a diagnostic T-wave alternans test is used as a
predictor of sudden death. Because T-wave alternans are often
too weak to be detected simply by visual inspection of an ECG,
the test involves computing a Fourier power spectrum of the T
wave (see the lower panel of figure 1b). Such a test is considered
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positive, meaning that a patient is at increased risk of sudden
death, if the peak in the power spectrum at half the heartbeat
frequency is sufficiently high above the background noise at
other frequencies. This power-spectrum test for alternans
received approval from the Food and Drug Administration in
1999, and Medicare announced its coverage just a year ago. 

The clinical studies do not explain why T-wave alternans
are causally linked to lethal arrhythmias. But major insights
have emerged from experiments that explore, with milli-
meter resolution, the spatiotemporal distribution of cardiac
activity on the ventricular surfaces. An individual cardiac cell
is about 0.1 mm long and 0.01 mm wide. On that cellular
scale, cardiac activity is characterized by two dynamically
coupled signals. The first is an electrical excitation that prop-
agates as a wave through heart tissue to make the atria (the
heart’s two receptor chambers) and then the ventricles con-
tract. That wave originates from the heart’s natural pace-
maker, an area of spontaneously beating cells in the upper re-
gion of the right atrium. The change in the voltage difference
Vm across the cell membrane associated with that excitation
is called the cardiac action potential. 

The second signal is chemical. Excitation triggers the re-
lease of free Ca2+ ions from calcium stores inside each cell. This
causes a brief increase of intracellular Ca concentration—the
so-called calcium transient. The Ca rise activates the cell to pro-
duce a contractile force along its major axis. The total force
from a few billion cells produces the cardiac pulse, and the
sum of the ion currents from all the cell membranes during the
end phase of the action potential produces the T wave in the
ECG. Figures 1c and 1d exhibit alternans on the cellular level
in traces of Vm and intracellular Ca concentration.3,4

Concordant and discordant alternans
In a 1999 experimental study that causally linked cellular al-
ternans to T-wave alternans, Joseph Pastore and coworkers at
Case Western Reserve University used optical mapping to
study the spatial distribution of period-doubling oscillations
of Vm on the surface of a guinea-pig heart.5 They imaged the
electrical activity with a photodiode array that recorded
changes in the fluorescence of a dye that binds to the cell
membrane and detects the change in membrane voltage.

The group controlled the heart’s rate with an implanted
pacemaker electrode. When the heart rate was made fast
enough, alternans appeared that were concordant. That is, they
were in phase throughout the whole cardiac tissue. With a fur-
ther increase in heart rate, however, the oscillations became dis-
cordant, that is, spatially out of phase in two macroscopic re-
gions of tissue (see figure 2a). And raising the heart rate still
further induced fibrillation. Both concordant and discordant al-
ternans produce T-wave alternans in an ECG. But Pastore and
coworkers demonstrated that the discordant state is the one
that is relevant for the onset of a lethal arrhythmia. 

The arrhythmogenic role of discordant alternans stems
from the well-established concept that spatial heterogeneity of
electrical properties in the heart promotes the onset of lethal
arrhythmias. A key property is called “refractoriness.” After
being excited, a cell is in a refractory state. That is, it cannot be
excited again until after some time interval, the so-called re-
fractory period, which is proportional to the duration of the
action potential. One might think of the spread of cardiac ex-
citation as a forest fire. After a fire, an interval is necessary for
a new forest to grow before the next fire can spread. Thus the
propagation of a forest fire, or a cardiac excitation, fails if the
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Figure 1. Cardiac alternans are period-doubling oscillations of signals from the heart that repeat every two beats. (a) An arterial
blood-pressure trace recorded in 1872 by Ludwig Traube is the first published evidence of alternans. (b) The top-panel electro-
cardiogram shows no obvious alternans. But a Fourier power spectrum (bottom) of the ECG’s T wave shows a clear alternans peak
(a clinical warning sign) above noise at half the heartbeat frequency.2 (c) Alternans show up on the cellular level in a pioneering
1968 measurement of the oscillating voltage Vm across the membrane of a frog’s ventricular cells.3 (d) Alternans oscillations of
intracellular calcium concentration (bottom) in an isolated cell stimulated with a periodic voltage waveform (top panel) demonstrate
the key role of cellular calcium dynamics in the genesis of alternans.4



wavefront encounters a region that is still refractory after the
passage of a previous wave.

The propagation failure can be local; some islands of trees
take longer to regrow than others. Such spatial heterogeneity
is known in the cardiology literature as dispersion of refrac-
toriness. Local propagation failure is arrhythmogenic because
it produces a wave break that can initiate a pair of counter-
rotating spiral waves (see the article by Leon Glass in PHYSICS
TODAY, August 1996, page 40). Self-sustained spiral waves are
robust patterns that can be seen in a wide range of excitable
media. Because colliding waves annihilate in cardiac tissue,
high-frequency spiral waves suppress the normal waves emit-
ted by the heart’s pacemaker, and they drive the fast rhythms
characteristic of ventricular tachycardia and fibrillation.

Dispersion of refractoriness is present in a normal heart,
but it doesn’t suffice to initiate arrhythmias. The traditional
view has been that heart diseases facilitate the initiation of
arrhythmias by rendering cell properties more heteroge-
neous. Discordant alternans, however, accentuate or create
dispersion of refractoriness “dynamically.” Such dynamic
dispersion is due to the alternation of the refractory period
from beat to beat, with opposite phases in two regions of tis-
sue. Thus, on any given beat, the refractory period is longer
in one region than the other, and vice versa at the next beat.
During concordant alternans, by contrast, the refractory pe-
riod alternates in phase in the whole tissue and thus produces
no additional dispersion.

New insights into the genesis of alternans come from re-
cent experiments that probe calcium signaling on a wide
range of scales with calcium-sensitive dyes. One remarkable
finding is that calcium alternans can become discordant on
subcellular scales, as illustrated by the experiments of James
Weiss and coworkers at UCLA shown in figure 2b. On a
larger scale, Andrew Wasserstrom’s group at Northwestern
University has used laser scanning confocal microscopy to
image calcium signaling across a dozen cells during alternans
in an intact heart.6 The Northwestern work revealed a rich
variety of domain patterns: Depending on pacing frequency,
the size of synchronized regions of alternans ranged from a
fraction of a cell to the whole domain being imaged.

On even larger scales, optical mapping studies of whole
tissue cultures have demonstrated the existence of complex
spatiotemporal patterns of calcium and contractile activity
resulting from the interaction of alternans and spiral waves.7

Calcium transients can affect refractoriness through
their effect on membrane current and voltage. But because
membrane voltage diffuses much faster than calcium, Ca al-
ternans can influence refractoriness only if they are synchro-
nized over tissue regions greater than a millimeter. Under-
standing how and when alternan synchronization occurs will
require experimenters and theorists to bridge the gap be-
tween subcellular and tissue scales.

Symmetry breaking in a heart cable
The existence of the arrhythmogenic patterns of asynchrony
in the heart raises a number of fundamental questions. By
what mechanisms do those patterns form? How do the mech-
anisms depend on electrophysiological properties of cardiac
tissue and on the frequency of pacing? And from a more prac-
tical viewpoint, how can the asynchrony patterns be con-
trolled or suppressed to prevent arrhythmias? 

Over the past few years, experiments and computer stud-
ies of simple and detailed models of cardiac activity have shed
some light on those questions.8-11 Nonequilibrium patterns
ranging from stripes and hexagons in heated fluid layers
(Rayleigh–Bénard convection), to Turing structures in reac-
tion–diffusion systems, to wind-generated sand ripples, are
known to form when linear instabilities spontaneously break
the translation symmetry of some underlying homogeneous
state by amplifying small perturbations. It is now understood
that discordant alternans can also result from such a symmetry-
breaking instability. The translationally invariant homoge-
neous cardiac state is the one in which refractoriness is spa-
tially uniform. Spontaneous symmetry breaking produces
arrhythmogenic dispersion of refractoriness. 

Figure 3 shows computer simulations and experiments
that illustrate the formation of nonequilibrium patterns
under different pacing protocols in a one-dimensional cable
geometry in which all cells are assumed to have identical dy-
namical properties. The experiments use Purkinje fibers,
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Figure 2. Discordant alternans on different scales. (a) On the
surface of a guinea-pig ventricle, the color-coded map of the
difference in action-potential duration D between consecutive
heartbeats changes sign between ventricular regions a centi-
meter apart. The same discordance is manifested in the phase
shift between oscillating membrane-voltage traces (green)
measured at the two labeled points. (Courtesy of D. Rosenbaum.)
(b) Inside an isolated heart cell, calcium-sensitive dye reveals
subcellular discordant alternans in the images (top) of consecu-
tive beats imposed by an electronic pacemaker (bottom black
trace). The colored traces show the telltale 180° phase shift of
the oscillating calcium concentration between the two marked
points in the cell. (Courtesy of L. H. Xie and J. Weiss.)
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which are long cable-like strands of heart cells that approxi-
mate the idealized computer-model geometry. The computer
simulations are based on a Hodgkin–Huxley ionic model for
the cardiac action potential (see the box on page 55). Despite
their idealized geometry, the computer simulations yield
basic insights into the complex arrhythmias of real hearts. 

Figures 3a and 3b show the result of a numerical simu-
lation by one of us (Karma) and coworkers for a chain of re-
sistively coupled cells.9 In figure 3a, the discordant alternans
are initiated by a so-called ectopic beat. In the pathology of a
real heart, an ectopic beat is generally a mistimed pulse orig-
inating from a location in the heart different from the heart’s
normal pacemaker. Ectopic beats are common, and they can
trigger arrhythmias.

The simulation shows the effect of a single ectopic beat on
the pattern of membrane voltages as a function of time and po-
sition along the cable of cells. The first pacemaker stimulus (S1)
applied at the top end of the cable generates a pulse that prop-
agates down the cable at constant velocity. A second stimulus
(S2), applied at the cable’s bottom, represents the abnormal ec-
topic beat. It generates a pulse that propagates up the cable.
Subsequent normal pacemaker stimuli at the top end are
equally spaced in time. The discordant alternans form sud-
denly; they begin already with the third beat.

Figure 3b shows the result of a simulation in which the
cable is paced at constant period, always from the same end.
In that case, it takes several dozen beats for discordant alter-
nans to appear spontaneously. But when they do appear, they

form as a periodic pattern of out-of-phase domains with an
intrinsic length scale that’s independent of cable length. Our
recent experimental realization of this phenomenon with a
Purkinje fiber is shown in figure 3c. 

Complexity from simplicity
We now turn to the theoretical interpretation of these simu-
lation patterns. A recurring question is, How much of the bi-
ological complexity of cardiac electrophysiology should be
included in a computer model? Experience has shown that
some basic aspects of arrhythmogenesis can be understood
by focusing on a few simple empirical laws. That’s not sur-
prising from the perspective of physics, in which complex dy-
namical phenomena are known to emerge from simple laws.

Directly relevant for understanding the genesis of alter-
nans are the restitution properties of cardiac tissue that we
introduced with the forest fire analogy. If the interval after a
fire is too short for a forest to be completely regrown, the next
fire will be shorter and will not spread as quickly. Similarly,
after the end of an excitation pulse, the tissue recovers its rest-
ing electrical properties over a finite time interval such that
both the pulse’s duration and its velocity depend on the
interval between pulses. These dependences are embodied 
in the restitution curves of figure 3a. A steep curve of action-
potential duration versus recovery interval promotes alternans.

That relation was first explained in 1968 by Jesus No-
lasco and Roger Dahlen3 by means of a cobweb-like graphi-
cal construction now common in textbooks on nonlinear
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Figure 3. Computed and measured patterns of alternans in a
cable of heart cells. (a) In the left panel, temporal and spatial
(cell number) propagation of action-potential voltage pulses in
a one-dimensional, 800-cell simulation shows one ectopic
(misplaced) pacing stimulus (S2) at the far end of the cable
seeding the sudden onset of discordant alternans in subse-
quent beats initiated by pacing stimuli (S3–S6) at the cable’s
other end.9 The dashed red line roughly separates the cable
into the two discordant segments. The right panel indicates the
dependence of pulse duration D and propagation velocity c on
the recovery interval Δ between pulses. (b) A 1350-cell simula-
tion with no pacing stimuli out of place or time nonetheless
yields spontaneous formation of discordant alternans. The
eventual steady-state alternan distributions of D, c, and Δ
between consecutive beats shown here exhibit a characteristic
scale length (about 600 cells) independent of the cable’s total
length.9 (c) When a Purkinje fiber of actual heart cells is sub-
jected to perfectly periodic pacing, without feedback control,
by a stimulating electrode at one end, probing electrodes
along the fiber’s length record the eventual formation of discor-
dant alternans like those simulated in panel b. But when feed-
back control based on equation 3 and readings at probe 1 is
imposed by the adjacent stimulating electrode, it produces a
standing wave of alternans amplitude with a single node
pinned at that probe. (Adapted from ref. 14.)



dynamics. For periodic pacing with period τ, their construc-
tion is equivalent to the iteration map

Dn+1 = f(Δn) = f(τ – Dn) (1)
that relates the duration D of one action-potential pulse to
the one before. The function f is the red restitution curve in
figure 3a.

This iteration map exhibits a period-doubling bifurca-
tion if the slope of f at its so-called fixed point (where further
iteration no longer changes D) exceeds unity. The map
doesn’t always predict the onset of alternans accurately.
That’s probably because it neglects the coupling of voltage to
calcium concentration. But it does provide a useful starting
point for understanding alternans in tissue.

Let us now interpret discordant alternans from the
broader standpoint of symmetry breaking. The phase of pe-
riod-doubling oscillations is degenerate by π, which means
that the pulse-duration sequences long-short-long-short and
short-long-short-long are equivalent. This discrete symmetry
is identical to the up–down symmetry of the classic Ising
model of ferromagnetism. Below the Curie temperature, up
and down domains of opposite magnetization have equiva-
lent thermodynamic properties. Therefore a wall between two
such domains is stable in one dimension. In the example of
figure 3a, symmetry is broken explicitly by the misplaced
ectopic stimulus at the cable’s far end, and the resulting dis-
cordant alternans formed at subsequent beats are directly
analogous to magnetic domain-wall patterns.

But fundamental differences between magnetic patterns
and discordant alternans do arise when out-of-phase cardiac
domains form a pattern with some intrinsic spatial periodic-
ity, as in the example of figure 3b. In that case, symmetry
along the cable is broken by a subtle pattern-forming linear
instability that has no magnetic analogue. This instability,
which develops over many beats during periodic pacing at
one end of the cable, arises because pulse velocity depends
on the recovery interval Δ. That generates an effective non-
local coupling between period doubling oscillations in dif-
ferent regions of the cable.

To see why, let us compute the time interval between the
arrival of two consecutive pulses at a position x along a cable
that is paced at constant period τ at its x = 0 end. When the
velocity c is constant, the time for one pulse to reach x is just
x/c. But when the velocity varies spatially, that time becomes
an integral of dx/c. Therefore, the difference of arrival times
between the pulses at beat n and its predecessor is simply

(2)

where c(Δ) is the functional dependence of conduction veloc-
ity on recovery interval shown by the blue curve in figure 3a.

The dynamical consequences of this nonlocal coupling for
pattern formation of small-amplitude alternans has been ana-
lyzed by one of us (Karma) and Blas Echebarria10 in the theo-
retical framework introduced in the 1950s by Vitaly Ginzburg
and Lev Landau in the context of superconductivity and
widely used since then to study phase transitions and pattern
formation. This analysis, which rests on an analogy between
symmetries of magnetization and cardiac period doubling,
predicts the existence and scale of standing- and traveling-
wave modulations of alternans that have indeed been experi-
mentally observed. Also, the recent extension of that analysis
that includes the coupling of intracellular calcium to mem-
brane voltage links the formation of subcellular discordant al-
ternans like those in figure 2b to Turing structures.11

Control of alternans
Finding means to control alternans is important from a ther-
apeutic standpoint, given their link to arrhythmias. There are,
in principle, two routes to that end. One is to suppress alter-
nans with drugs that alter the properties of one or more kinds
of ion channels. Drugs that flatten the restitution curve of ac-
tion-potential duration D versus Δ in figure 3a have been
shown to have an antifibrillatory effect in laboratory ani-
mals.12 But those particular drugs would be lethal in humans.
Moreover, if calcium dynamics is the cause of alternans, it is
not clear what should be the pharmacological target.

The other approach is to use an implantable electrical
device that simultaneously records the electrical activity of
the heart and delivers low-amplitude stimuli designed to
suppress alternans.13 Several studies have demonstrated its
feasibility, but successes to date remain limited to zero-
dimensional applications, that is, cases in which alternans
are manifested only temporally in small tissue patches.
Therefore one has to ask whether such devices can also sup-
press spatiotemporal patterns such as discordant alternans.

The cardiac cable geometry serves as a good test bed to
address that question.10,14 In particular, it provides the freedom
to record the electrical activity at some control site and then to
feed that information back to modify the interval between
stimuli delivered by a pacemaker. That task could be assigned
to an implantable device in a real heart. Let xc designate the
position of the control site along the cable, and place the pace-
maker at the cable’s left end (x = 0). One could, for example,
modify the interval between the nth and (n+1)st pacemaker
stimuli by an amount proportional to the difference of pulse
durations of two consecutive beats at xc. That is,

Tn(0) = τ + γ[Dn(xc) – Dn–1(xc)], (3)
where γ is the feedback gain.

The efficacy of this scheme can be addressed through the
Ginzburg–Landau theory.10 For a short cable in which the
pulse velocity is approximately constant, the theory predicts
that feedback control simply produces regular standing
waves with a single node very close to xc. Figure 3c illustrates

T xn( ) = τ + dx′,1 1
c x( ( ))Δ ′n c x( ( ))Δ ′n 1−∫

x

0

−[ ]
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Cardiac electrical activity in one dimension is described by the
cable equation

C dVm/dt = α d2Vm/dx2 – I (Vm, y1, y2, . . .),

where Vm, C, and I are the membrane voltage, capacitance, and
ion current in a cell at x along the cable. The “gate variables” yi
describe how the ion flow rate through pores in the membrane
depends in a time-dependent and highly nonlinear fashion on
Vm. The equation comes from applying Kirchoff’s law to a chain
of identical circuit elements that represent individual cardiac
cells. The elements are linked by resistors that represent ohmic
resistance to ion flow from a cell to its neighbors. 

In pioneering work after Word War II, Alan Hodgkin and
Andrew Huxley elucidated the mechanisms that govern ionic
currents in nerve cells. They supplemented the cable equation
with kinematic equations—abstracted from experimental data—
for the gate variables. The membrane pores are now under-
stood to be genetically encoded proteins. These ion channels are
molecular switches that make thermally activated transitions
between different voltage-dependent states in which they are
open, closed, or inactivated. To elucidate how genetic abnor-
malities that alter those switches cause lethal arrhythmias, new
experiments are yielding ever more data that is being incorpo-
rated into increasingly complex simulation models.18

The cable equation



the experimental validation of this prediction with a Purkinje
fiber on which the pacing is actually done at the feedback
control site.14 As predicted, the pattern of discordant alter-
nans is transformed by feedback control into a standing wave
whose node coincides with the control site.

Alternans generally start in some localized region of the
ventricles. The feedback scheme offers the possibility of sup-
pressing such alternans by recording in the ventricular region
while pacing the heart from another region. But alternans
can’t be suppressed so easily if they are present in a large re-
gion of the ventricles. In figure 3c, for example, the alternans
are still present at the antinode of the feedback-controlled
standing wave. How the feedback scheme might deal with
that problem is an active topic of research.

From cables to real hearts 
How can basic insights into alternans obtained in a 1D
cable—not even the physicist’s proverbial spherical cow—be
used to understand the onset of fibrillation in a real heart?
The real heart differs from the cable not only by its three-
dimensionality but also by the spatial variation of tissue
properties that is an inherent part of its architecture.

For hundreds of millions of beats, these heterogeneities
do not disturb the normal pattern—until the sudden onset of
a lethal arrhythmia. Are arrhythmias in a real heart due to
the same dynamical processes that enhance dispersion of re-
fractoriness in a spatially homogeneous cable? The clinical
link of T-wave alternans to sudden death supports, but does
not prove, this conjecture. 

The results of experiments and computer simulations
that link cables to real hearts are shown in figure 4. The work
was motivated by the observation that complex sequences of
premature ectopic beats often trigger lethal arrhythmias. The
link was convincingly established by a theoretical model in-
corporating measured restitution curves from a real dog
heart in a cable simulation to predict which sequences of pre-
mature beats are most likely to cause propagation failure.
Those lethal sequences were then used to pace the real dog
heart and reliably induce fibrillation. 

The computer studies, carried out by one of us (Gilmour)
and coworkers at Cornell, used the cable equation (see the box
on page 55) and a set of spatially coupled iterative maps based
on measured restitution curves.15 The model extended equa-
tion 2 to aperiodic pacing. Figure 4a shows the most lethal ape-
riodic five-pulse pacing sequence predicted by the model. An
initial stimulus at the beginning of the cable, followed by a se-
quence of four premature successors, produces spatiotempo-
ral variations of pulse duration and refractory period that cul-
minate in the failure of the last pulse to propagate. The failure
occurs when the pulse encounters a site along the cable where
the interval between two waves falls below the minimum re-
covery time necessary for propagation. As in the simulation
shown in figure 3, dispersion of refractoriness is produced dy-
namically by restitution kinetics—that is, by the relation be-
tween the pacing time sequence and the dependence of pulse
duration and velocity on recovery time. 

The pacing sequence of figure 4a turned out to be the one
most likely to induce simulated fibrillation. It involves alter-
nating short and longer recovery intervals Δ between suc-
cessive pulses at the beginning of the cable. It is this alterna-
tion that drives the cells along the cable at their natural
period-doubling frequency, thus amplifying oscillations that
would otherwise damp out. The amplification ultimately
causes propagation failure when Δ falls below the requisite
minimum. The black curves above the four premature stim-
uli show the relative probability of such propagation failure

before the end of the fifth wave when a particular stimulus
is shifted slightly from its most lethal time.

How do the simulation results compare with real hearts?
Figure 4b shows action-potential recordings obtained from
the right and left ventricles of an anesthetized dog during de-
livery of multiple premature stimuli to the right ventricle. De-
livery of the most lethal sequence predicted by the model did
indeed induce fibrillation. In eight animal experiments thus
far, the model—when it incorporated measured restitution
relations—accurately predicted which pacing sequences
would produce fibrillation and which would not.

Prospects 
The above examples reflect a departure from the traditional
view that congenital anatomical heterogeneities in the heart,
exacerbated by various diseases, are the main cause of lethal
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Figure 4. Linking simulations to the onset of lethal
arrhythmias in a real heart. (a) Ionic-model simulation of
an 800-cell cable shows how a sequence of stimuli
(S1–S5) that mimic premature ectopic beats causes prop-
agation failure after S5. The pacing sequence shown is
the one that turned out to have the highest probability of
producing such failure within five beats in the model.15

Black curves above S2–S5 indicate how the predicted
probability of propagation failure before the end of the
fifth wave decreases with small shifts from that most lethal
pacing sequence. (b) Electrocardiograms from the left and
right ventricles of an anesthetized dog show that when the
most lethal sequences predicted by the model—which
incorporates restitution curves actually measured in dog
hearts—are applied to the right ventricle, they induce
fibrillation in both ventricles.



arrhythmias. Arrhythmogenic patterns such as discordant al-
ternans can also arise spontaneously from symmetry-breaking
dynamical instabilities in homogeneous tissue. Moreover,
these dynamical instabilities can potentially be more lethal
than anatomical heterogeneities. 

The interaction and relative importance of anatomical
and dynamical heterogeneities remain to be explored. There
is hope that suppressing dynamical instabilities, either phar-
macologically or by low-amplitude stimuli, may prevent ar-
rhythmias in some patients. But it will undoubtedly fail for
others, for whom anatomical heterogeneities make fibrilla-
tion inevitable. 

Relevant for the latter group of patients, research is fo-
cused nowadays on elucidating wave processes that come after
the onset of a lethal arrhythmia. Considerable progress has
been made in characterizing wave turbulence manifested as
spiral defect patterns on the surface of the fibrillating heart.16

Also, new approaches to defibrillation are being developed.17

More than two centuries after Vulpian’s description of
the mouvement fibrillaire, however, we still do not know what
hides beneath the quivering surface of the fibrillating heart.
But new subsurface imaging methods are under active study.
They range from light-scattering techniques to ultrasound-
guided insertion of nanofabricated electrical probes into the
ventricular wall. Until these methods can characterize the 3D
geometry of fibrillation with adequate spatial and temporal
resolution, its origin will remain a subject of debate and find-
ing alternatives to today’s implantable defibrillators may
prove difficult.

In the early 1980s, Arthur Winfree pioneered the math-
ematical study of scroll waves in excitable media and argued
that they may play an important role in ventricular fibrilla-
tion. But almost three decades later, the dance of those waves
in the heart remains elusive.
This article grew out of an interdisciplinary workshop on cardiac
dynamics hosted in July 2006 by the Kavli Institute for Theoretical
Physics in Santa Barbara, California, and supported by NSF, the Bur-
roughs Wellcome Fund, and DARPA. Many of its talks are available
on the website given in reference 16.
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