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Abstract. Boundary critical phenomena are studied in the three-state Potts model in two

dimensions using conformal field theory, duality and renormalization group methods. A

presumably complete set of boundary conditions is obtained using both fusion and orbifold
methods. Besides the previously known free, fixed and mixed boundary conditions a new one
is obtained. This illustrates the necessity of considering fusion with operators that do not occur
in the bulk spectrum, to obtain all boundary conditions. It is shown that this new boundary

condition is dual to the mixed ones. The phase diagram for the quantum chain version of the
Potts model is analysed using duality and renormalization group arguments.

1. Introduction

Recently there has been considerable interest in the behaviour of two-dimensional systems
with boundaries, in the context of string theory, classical statistical mechanics and quantum
impurity problems. Exact results on the critical behaviour of these systems have been
obtained using boundary conformal field theory (CFT) [1, 2]. More complete exact results
on universal crossover functions have also been obtained using &xaatrix methods
[3]. One of the simplest examples of such a system is provided by the three-state Potts
model. It can be related, via conformal embeddings, [4] to quantum Brownian motion on a
hexagonal lattice [5] and to tunnelling in quantum wires [6]. The classical Hamiltonian for
this model can be written by introducing an angular variable at each site of a square lattice,
0;, restricted to take only three values; £27/3

BH =—J ) cos6; —0)). (1.1)

{i.J)

When the model is at its critical couplind,, various universality classes of boundary
critical phenomena are possible. These include free boundary conditions (b.c.’s) and (three
different) fixed b.c.’s,9; = 0 (or 2r/3 or —27/3), for i on the boundary. In addition, it
was argued [7] that there are also three ‘mixed’ b.c.’s in which one of the three spin states
is forbidden at the boundary so that the Potts spins on the boundary fluctuate between two
of the states (for example, between/3 and—25/3).

In the following it will also be convenient to consider the standard quantum chain
representation. The Hamiltonian is written in terms of unitary matriggsand R; defined
at each site.

010 B0 0
M=<O 0 1) R:( 0 i o). (1.2)
100 o 0 1
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In fact, these two matrices can be transformed into each other:

R=U'MU. (1.3)
This is related to the duality symmetry. The Hamiltonian is
H=—>"[(M;+ M)+ (RIR_1 + Rl_|R)]. (1.4)

Note that the second term corresponds to the classical Potts model with the three different
states corresponding to the vectors (1,0,0), (0,1,0) and (0,0,1). The first term flips the spin on
each site between the three states. Itis like a transverse field in the Ising model. The model
hasZ3; symmetry which interchanges the three basis vectors. Decreasing the strength of the
transverse field term puts the system in the ordered phase; increasing it gives the disordered
phase. As written, these terms exactly balance; the model is at its critical point. One way
of seeing this is to observe that, for this value of the coupling constant, the Hamiltonian
maps onto itself under the duality transformation:

Rijip= l_[ M;
j=0
— pf
Mi/+1/2 = Ri+1Ri'
The six fixed and mixed b.c.’s were represented in terms of boundary states [1].
These are defined by a modular transformation of the partition function on a cylinder of
circumferenceg and length/ with b.c.’s A and B at the two ends:
Zap = trexpl—pH) ] = (A|exp[-1H}]|B). (1.6)
Here, H', ; is the Hamiltonian on a strip of lengthwith b.c.’s A and B at the two ends.

H,'f is the Hamiltonian on a circle of circumferenge Z,5 may be expanded in characters
of the (chiral) Virasoro algebra:

Zpp = ZniBXk(CI) (x.7)
X

(1.5)

Here g is the modular parametey, = exp[—n /1], k labels (chiral) conformal towersg
are the characters amq p are non-negative integers. The boundary states may be expanded
in Ishibashi states, constructed out of each conformal tower:

|A) =) Ik)(k, 0] A). (1.8)
k

One way of generating a complete set of boundary states (and hence b.c.’s) from an
appropriately chosen reference state is by fusion. Beginning with the reference boundary
state|0), one constructs a set of boundary stat¢sassociated with the conformal towers,
j. Its matrix elements are given by:
LS
(i,01j) = (i, 0[0) (1.9)
SO

WhereSJ’ﬁ is the modularS-matrix. This construction gives physically sensible multiplicities,
n',g; that is they are non-negative integers obeyifig = 1. This construction relies on
the Verlinde formula [8] which relates the modulsematrix to the fusion rule coefficients.

A subtlety arises in the Potts model connected with an extedealgebra. While
there are 10 Virasoro conformal towers for central charge ‘3‘, labelled by pairs of
integers,(n,m) with 1 < n < 4 andm < n, only four larger conformal towers, which
are combinations of these ones, occur in the bulk spectrum or with certain pairs of b.c.’s.
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Furthermore, two of these conformal towers occur twice in the bulk spectrum corresponding
to pairs of operators of opposite chargel( with respect to th&Z; symmetry of the Potts
model. (In general, operators can have chayge 0, 1 or —1, transforming undeZs
transformations as:

0 —€d’o (1.10)
for & = 0, +27/3.) These operators ate o of dimensionl—l5 andy, v of dimension%.

The Potts model also contains an energy operatorf,dimensioné as well as the identity
operator,/. TheseW-characters are given by:

X1 = X11+ Xa1 Xe = X21+ X31
Xo = Xot = X33 Xy = Xyt = X43
where y,,, is the Virasoro character for the:,(n) conformal tower. The Potts model
has a fusion algebra which closes on these operators. The modular transform of these
W-characters can be expressed entirely in term3¥Vetharacters and the corresponding
S-matrix and fusion rule coefficients obey the Verlinde formula. Ambiguities in $he
matrix and fusion rules associated with having operators of equal dimension are removed
by requiring consistency with th#; symmetry. Cardy constructed a set of boundary states
which were linear combinations of the Ishibashi states constructed using the ex#&nded
algebra. The reference state for the fusion process, in this construction, is the boundary
state,|/), obeying Z;j; = x;. It was argued in [1] that it corresponds to one of the fixed
b.c.’s, the other two being&) and |y ). Similarly |€), |6) and|6) correspond to the
three mixed b.c.’s. All partition functions involving these six b.c.’s can be expressed in
terms of W characters. On the other hand, it was observed that partition functions that
combine free b.c.’s with fixed or mixed cannot be expressed in tern¥® oharacters and
the corresponding free boundary state was not determined.
Clearly the set of b.c.’s generated by fusion with the primary fields of the bulk Potts
spectrum (which are covariant with respect to Wealgebra) is not complete, since it does
not include the free b.c.’. In the next section we shall generate a presumably complete set of
boundary states including the one corresponding to free boundary conditions and one new
boundary state. We do this in two different ways; one method uses fusion and the other
uses an orbifold projection. In the final section we shall explore the physical significance
of this new boundary condition and the boundary renormalization group flow diagram. The
appendix contains a peripherally related result: a general proof that the ground-state entropy
alwaysincreasesunder fusion.

(1.11)

2. Boundary states

2.1. Fusion approach

In order to determine the ‘free’ boundary state and check for possible additional boundary
states (and conditions) we must work with the larger set of conformal towers not constrained
by the W-symmetry. The full modulas-matrix, in the space of all 10 Virasoro conformal
towers that can occur in a= g‘ minimal model, is given in table 1. The stdt® may be
expanded in terms oV -Ishibashi states as:

|I)y = N{I) + [¥) + [¥") + Alle) + o) + o D]} (2.1)
where

5-5 1+ 5
4 2
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Table 1. The modularS-matrix for Virasoro characters (multiplied by ®2). Characters are
labelled by their Kac labels:(m) (and by their highest weight).

110)  41(3) 213 3L 433 335  44d 42 223 323

11(0) 1 1 e 22 2 02 V3 V3 V312 /332
41(3) 1 1 22 22 2 22 /3 V3 V3?2 V32
243 22 22 -1 -1 22 -2 V32 32 /3 V3
3Ly a2 2 -1 -1 22 -2 Va2 /a2 -3 -3
43(%) 2 2 22 202 -2 —2)2 0 0 0 0
33(%) 2 22 -2 -2 —2.2 2 0 0 0 0

445 V3 V3 VB2 VBP0 0 -3 V3 Va2 V32
4202 V3 V3 VAP VA:mE 0 0 V3 VB V32 VB2
2255 VA2 VB2 VB B 0 0 V32 V32 V3 -3
3% VA -VAm2 V3 -3 0 0 —V32 Va2 -3 V3

The W-Ishibashi states may be expanded in terms of Virasoro Ishibashi states as:
|I) = |11) + |41) l€) = |21) + |31). (2.3)

Now consider all new boundary states that can be obtained ffopry fusion with all
nine non-trivial Virasoro primaries using equation (1.9). Note {liathas zero amplitude
for the last four Ishibashi states in table 1: (4,4), (4,2), (2,2), (3,2). Also note that the
SED = 5“9 for all i except for these last four states. The same statement hold$*for

and Si(?”l). Thus expanding the identity tower with respect to the W-algebra into (1,1) and
(4,1) does not lead to any additional boundary states. Neither does expandingpthier

into (2,1) and (4,3). The (4,3) and (3,3) towers just give the states found previously since
these are themselvag-towers. However, two additional boundary states can be obtained
by fusion with (4,4) and (2,2). On the other hand, fusion with (4,2) gives the same result
as (4,4) and (3,2) the same as (2,2) since all but the last four elements in the corresponding
rows in table 1 are equal. Thus, the fusion construction, beginning wittWthevariant
boundary staté/) but considering the full set of Virasoro primaries leads to two additional
boundary states besides the six found previously by considering fusioriivighimaries.

Note that we have performed a sort of hybrid construction. Instead we could have begun
with the reference boundary stdfel) such thatZ;; 1 = x11. In this case we would obtain
a larger set of boundary states. However, these states do not occur in the Potts model. One
reason is thatl1) is not consistent with/). This follows from the identity

- 1 - .

|7) ﬁ[llb + 141)]. (2.4)
The factor of ¥+/2 in equation (2.4), necessary to avoid a two-fold degeneracy in
the spectrum ofZ;;, leads to an unphysical partition functidfi;;;, with non-integer
multiplicities. Another reason why this larger set of boundary states cannot occur in the
Potts model is because they contain Ishibashi states not derived from the bulk spectrum.
The eight boundary states discussed here presumably form a complete set of states which
are mutually consistent.

We note that the idea of obtaining new boundary states (and conditions) by fusion with
operators which do not occur in the bulk spectrum is also fundamental to the solution of
the non-Fermi liquid fixed points in the Kondo problem [9]. In that case, the reference
state was chosen to give a Fermi liquid b.c. The conformal embedding representing the free
fermions restricts the bulk spectrum to contain only certain products of operators from the
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spin, charge and flavour sectors. Fusion with pure spin operators, not contained in the bulk
spectrum, gives the infrared stable fixed points of both Fermi liquid and non-Fermi liquid
variety.

The two additional boundary states for the Potts model, found above, are:

|44) = NV3[(112) — |41)) — A(121) — [31)]
122) = NV3DP2(1D) — [4) + 271(20) — |31)].

The partition functions for any pair of b.c.’s can be determined from the boundary states
using:

(2.5)

(il exp—LHp|j) = 8ijx:(@) (2.6)
whereg = e #"/#_ Finally we perform a modular transformation to theepresentation:
Xi(@ =Y S x. 2.7)

j

Alternatively, we may determine these partition functions from the fusion rule coefficients.
For a b.c.,; obtained by fusion with primary operata®, from |I) and some other b.cj,

njf; = z,: lelnllj (2.8)
Here N¥ is the number of times that the primary operafroccurs in the operator product
expansion of0; with O,. The needed fusion rule coefficients are given in table 2. These
are derived from the fusion rules of the tetracritical Ising model. For instance, to obtain the
first box in the table we use:

Osa- I =044 [011+ Os1] = Oss+ Osa. (2.9)

In cases where two dimensio§1 (lls) operators occur in the operator product expansion
(OPE) we have interpreted them ds+ ' (o + o). This calculation shows that all
partition functions involving|44) and any of the fixed or mixed boundary states are the
same as those determined previously for the free b.c. Hence we concludd4hist the

free boundary state. On the other haiD) is a new boundary state corresponding to a
new b.c. whose physical interpretation is so far unclear. In the next section we investigate
the nature of this new boundary fixed point. First, however, we obtain this set of boundary
states by an interesting different method.

2.2. Orbifold approach

An alternative way of producing the complete set of boundary states for the Potts model is
based on obtaining the Potts model from an orbifold projection on the oﬂ&e@ conformal

field theory, the tetracritical Ising model, which has a diagonal bulk partition function [10].
A Z, Ising charge,;, can be assigned to each primary operat@y,of the tetracritical

Ising model which is 0 for the first six entries in table 1 and one for the remaining four.

Table 2. Fusion rules for extended operator algebra. The fusion rules not shown are the standard
ones for the Potts model [1].

Toryory!t  eoroorof Oss+ Oz O+ O3

Oag 0r Og2 Oaa+ Og2 022+ 032 I+y+yt e+o+of ,
Opor Oz O+ Oz Ou+Osm+0p+0z e+o+ol I+ +yT+e+o+of
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(This is a special case of a general construction for minimal models. Choosing a different
fundamental domain for Kac labelss, ¢n) with

1<n<p -1 1<m<p-1 n+m=0mod?2 (2.10)
the charge is:
qg=n+1 (2.11)

Thec = ‘E‘ case corresponds top = 6, p’ = 5. This identification is consistent with the
Landau—Ginsburg description of the tetracritical Ising model [11]. The charge 1 operators
0,2, 044 andO3; correspond t@, : ¢ : and :¢° : respectively. The charge 0 operatisg,

0,1 and O43 correspond to 2 :, : ¢* : and :¢° : respectively. The other three operators
other than the identity presumably could be identified with operators in the Landau—Ginsburg
description containing derivatives with the number of powerg @ven for O4; and Oz,

and odd for(Q4,.) The tetracritical Ising model has the diagonal bulk partition function:

10
Zre=Zioy =Y xl (2.12)
i=1

where we number the conformal towers from 1 to 10 in the order in table 1. We may define
a twisted patrtition function:

10
Zi = (=D xl* (2.13)
i=1

We also define two other twisted partition functions by the modular transfornas of
Z_+ = SZ+_ Z__ = TZ_+ (214)

where S is the modular transformation —~ —1/r and 7 is the modular transformation
7 — 7+ 1. It can be shown that:

Zpotts= Zorb = (%)[Z++ +Zi +7Z ++ Z,,]. (2-15)

We may think of the first two terms as representing the contribution of the untwisted sector of
the Hilbert space, with th&, invariant states projected out. The second two terms represent
the contribution of the twisted sector of the Hilbert space, corresponding to twisted b.c.'s
on the circle. (For the simpler case of the= 1 bosonic orbifold the twisted b.c.’s are
simply ¢(0) = —¢(/).) These contributions are explicitly:

DZss + Zo2] = [xaal® + 1xar® + Ix21l® + Ix31l® + | xa3l® + | xa3l?

DIZ_y + Z__] = Xuaxar + Xarxu1 + Xeixas + Xaixer + |xasl® + | xaal®.

There are two types of Ishibashi states which may be used to construct boundary states
in the orbifold model. We may take states from the untwisted sector, projecting out the
Z, invariant parts or we may take states from the twisted sector. The first set of Ishibashi
states are labelled by the first siy even) conformal towers in table 1. We refer to
these untwisted43) and|33) states asy,) and|o,) respectively. There are two additional
Ishibashi states from the twisted secta#,) and|o;). We then define:

1¥) = /YY) +ilvn)]

1y = @W/V2UY) —ilyn)]

and similarly for|c). One way of constructing consistent boundary states, using only the
untwisted sector, is by projecting out ti#® even parts of the tetracritical Ising boundary
states. From inspecting table 1 we see that the various tetracritical Ising boundary states are

(2.16)

(2.17)
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mapped into each other by th® transformation. We have ordered them in table 1 so that
successive pairs are interchanged, apart ff48 and|33) which are invariant. We expect

the conjugate pairs to correspond to various generalized spin-up and spin-down b.c.’'s. We
may formally write the transformed states as:

(—1)?|Arc). (2.18)

With each boundary state Atc), of the tetracritical Ising model, we may associate a
boundary statelApos Of the Potts model using:

14 (~1

(i, O] Apotts = NG (i, 0| Atc). (2.19)
Formally we may write:
14 (-2
|Apotts = TMTC)o (2.20)

It is necessary to divide by/2 in order that the identity operator appear only once in the
diagonal partition functions. In this way we obtain the following Potts boundary states from
each tetracritical Ising boundary state:
|11rc) — |1)
|41rc) — |I)
|2Lrc) — |€)
[31rc) — [€)
143rc) — |) + It/f ) (2.21)
33rc) — 16) +167)
|ddrc) — |44)
|42rc) — |44)
22rc) — |22)
32rc) — [22).
(Note that the stated1rc) and|41rc) are the same states simply labelldd) and |41) in
equation (2.4).) We observe that this construction gives us a sum of Potts boundary states
in the 43 and 33 cases because the corresponding tetracritical Ising boundary states are

invariant. We may remedy this situation by forming linear combinations of the projected
tetracritical boundary states with the twisted Ishibashi states:

- 1 1
) = (4 >%|43m> NV32[) + Mo
. 1 1
oh =<§>%|43m )+ Ny/372L1) + o]
, (2.22)
1 -1
5) = <%>%|33m — NV320219) — A Yow)]
14 (12
61y = (%)%Bsm )+ Ny/3/2[2219,) — A7 Yan)].

This construction is rather reminiscent of the one used to obtain orbifold boundary states
to describe a defect line in the Ising model [12] where it was also necessary to add



5834 | Affleck et al

a contribution from the twisted sector when the periodic boson boundary states were
invariant under theZ, transformation. This is presumably an important element of a general
prescription for constructing boundary states for orbifold models.

3. The new boundary condition

The various partition functions involving the new b.c. are given below. Henceforth, to
simplify our notation, we will refer to the fixed b.c.’s a5 B andC (corresponding to the
three possible states of the Potts variable) the mixed b.c.4BsAC, BC, the free b.c.

as ‘free’ and the new b.c. corresponding to tB&) boundary state as ‘new’. (In [1] the
notation ‘A + B’ was used rather thamA'B’.)

Znevv,A = Znew,B = ZneW,C = X222+ X32= ZfreeAB

ZnewaB = ZnewBC = Znewac = Xaa+ X42+ X22+ X32

Znewfree = Xe + Xo + Xot = ZaB.a+ Zapp+ Zas.c

Znewnew = X1 + Xe + Xo + Xot + Xy + Xyt = Zap,aB + Zap,pc + ZaB,AC-

Several clues to the nature of the new fixed point are provided by these partition functions.
The equality of the three partition functions on the first line of equation (3.1) and on the
second line strongly suggests that the new b.Zzisvariant. This is also probably implied

by the fact that their is only one new b.c., and not three. In general, the diagonal partition
functions, Z,, give the boundary operator content with beg. with the usual relation
between the finite-size energies and the scaling dimensions of operators. This in turn gives
information about the renormalization group stability of the boundary fixed point. We give
all diagonal partition functions below:

(3.1)

Zar = X1

ZAB.AB = X1t Xe

Ztreefree = X1 + Xy + Xyt

Znewnew = X1 + Xe + Xo + Xot + Xy + Xyt-
We see that the fixed boundary fixed point is completely stable. Apart from the identity
operator it only contains operators of dimensigns2. The mixed fixed point has one
relevant operator of dimensi(@while the free fixed point has two relevant operators, both

of dimension%. It is easy to see, on physical grounds, what these operators are. Consider
adding a boundary ‘magnetic field’ to the free b.c.:

(3.2)

BH — BH — X/:[hei"f +c.cl. (3.3)
J

Here the sum runs over the spins on the boundary dnig.a complex field and c.c. denotes
complex conjugate. The two relevant operators at the free fixed point correspond to the real
and imaginary parts ok. If we assume thafh| renormalizes tao then it would enforce

a fixed b.c. for generic values of afg( For instance, a real positive picks outd; = 0.

There are three special directions, @)= =, £x/3 for which two of the Potts states
remain degenerate. For instance, foreal and negatived = +27/3. These values of
Im(#) are invariant under renormalization owing tdZa symmetry. We expect the system

to renormalize to the mixed fixed point for these values of Igrg(m(#) corresponds to

the single relevant coupling constant at the mixed fixed point witth)ra= 0. Giving &

a small imaginary part at this fixed point will select one of the two Potts stat¢8 2r
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—27m/3, corresponding to a renormalization group flow from mixed to fixed. Since the free
fixed point hasZsz symmetry we can classify the relevant operators by thgicharge. The
two operators at the free fixed point®, have charget1, corresponding tgy and .

We see from equation (3.2) that there are five relevant operators at the new fixed point.
Two with charge 1, two with charge-l and one with charge 0. The charged operators
presumably arise from applying a magnetic field. However, even if we preservgsthe
symmetry, there still remains one relevant operatonf dimensioné. Thus, we might
expect the new fixed point to be unstable, even in the presené siymmetry, with a
renormalization group flow to the free fixed point occurring.

It turns out that there is a simple physical picture of the new b.c. within the quantum
Potts chain realization. The corresponding classical model can also be constructed but
involves negative Boltzmann weights. Therefore we first discuss the quantum model and
turn to the classical model at the end.

We now consider the quantum chain model on a finite intervad, i0< . In order to
explore theZs symmetric part of the phase diagram it is convenient to consider the model
with a complex transverse field; at the origin and a free b.c. &t

i
H = —(hy Mo+ M) = Y [(M; + M) + (RIR_1 + R_,R)].  (3.4)
i=1
We can effectively map out the phase diagram by considering the duality transformation of
equation (1.5). The dual lattice consists of the poi’nﬁs% fori =0,1,.../. Note that,
from equation (1.5):

R} = M,. (3.5)
2

The exactly transformed Hamiltonian is:

1
H=—hrR1+mR) =Y RT R
2 3 i—0 H_i i

-1
p+he)=Y "M . (3.6)
2 i—0 t2
We have a longitudinal field at sit§, as well as a transverse field. Also note that, at the
last site,/ + % there is no field of either kind.
First consider the case whelig is real and positive, for examplé;y = 1 corresponding
to standard free b.c.’s. The dual model has the longitudinal field ter%n at

~1 0 0
—hT< 0 -1 o) (3.7)
0 0 2

which favours the third@) Potts state. We expect this Hamiltonian to renormalize to the
fixed (C) b.c. The spin at site+% cannot flip. We may fix it in theA, B or C state. This
corresponds to a sum of three fixed b.cA'sB or C. From the dual viewpoint the partition
function at low energies is

Zea+Zep+Zcec=xi+ Xy + Xyt = Ztreefree. (3-8)

This is obviously the correct answer whép = 1 and is a useful check on duality. It
implies that the dual of free is fixed. Now consider the case wheris real and negative.
The dual model has a longitudinal field which favours stateand B equally. It should
flow to the mixed b.cAB. Thus the partition function is:

Za A+ Za s+ Zac = Xe + Xo + Xot- (3.9)
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We see from equation (3.1) that this Bewfree- This indicates that we obtain the new

b.c. by reversing the sign of the transverse field at the boundary. We see that the dual of
mixed is new. This is consistent Withnewnew in €quation (3.1). This newBC is stable
provided thathr is real and negative. There is a discrete symmetry associatedhyith
being real, time reversal. Now let us break this symmetry and gjva small imaginary

part, iy — hr +ih%. Note that we have not broken tH& symmetry (in the original
formulation). In the dual picture the longitudinal field at sgés:

hr + /31 0 0
0 hr —/3h, 0 |. (3.10)
0 0 —2hy

For hy > 0 and smallh}. the C state is still favoured, but fok; < O the s/, term breaks

the degeneracy betweet and B. We then obtain a flow from mixedA(B) to fixed (A

or B) in the dual picture. In the original formulation we obtain a flow from new to free.

In either picture, the flow is driven by an= % boundary operator. This explains tkg
symmetric relevant operator at the new fixed point that we were discussing. Importantly
there is a different symmetry, time reversal, which forbids it. In the complglane the

phase diagram can be easily constructed. There are three completely stable free fixed points
(in the original formulation) at equal distances from the origin on the positive real axis
and at anglest27 /3. There are three new fixed points at equal distances from the origin
on the negative real axis and at angles/3. These are attractive for flows along rays
from the origin but repulsive for flows perpendicular to these rays. One can easily connect
up these critical points and draw sensible looking flows for the whole complex plane, as
shown in figure 1. Although three ‘free’ fixed points occur in this phase diagram, they all
correspond to the same boundary state. In facthaiggan be rotated bys2/3 by a unitary
transformation at site 0 by the matri®y. Thus the three finite-size ground states (and all
excited states) fohr at the three ‘free’ fixed point values, are rigorously identical except

for a local change at site 0. The spectra, with any given b.¢.isthe same in all three
cases. Clearly all three cases have the same long distance, low-energy properties and should
thus be thought of as corresponding to the same fixed point. Similarly all three ‘new’ fixed
points are equivalent. It might, in fact, be more appropriate to draw the new fixed point

LS

New Free

Figure 1. Schematic phase diagram of the quantum chain version of the Potts model with a
complex boundary transverse field. Arrows indicate direction of renormalization group flows as
the energy scale is decreased.
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at |hr| = oo rather than at a finite distance from the origin, as in figure 1. This follows
since, in the dual picture, we obtain the mixed b.c. by eliminating one of the classical Potts
states and hence taking the longitudinal fielddo An infinite real negative transverse field
eliminates the symmetric state (1,1,1) at the first site and projects onto the two orthogonal
states with basigl, €27/3, e-127/3) (1, e 127/3 g27/3y

The origin, iy = 0, corresponds to a sum of, B and C boundary conditions. We
may specify a value for the Potts variable at 0 and it is unchanged by the action of the
Hamiltonian. The Hilbert space breaks up into three sectors depending on which value is
chosen. One way of checking the consistency of this is the duality transformation. For
hr = 0 the dual model still has a transverse field at %ithut no longitudinal field. Thus
it corresponds to a free b.c. However, in the dual model the blc+é is a sum ofA, B,
andC b.c.’s. Thus we obtain the same patrtition function from either picture

ZfreeA + Zfree,B + Zfreec-

The set of boundary operators/at = 0, is given by the finite-size spectrum with a
sum of A, B and C boundary conditions at each end of the system. This gives the partition
function:

Z=3Zpaa+Zap+ Zac) =3+ xy + Xyi)- (3.11)

Note that there are three zero-dimensional boundary operatorkrfee 0. One is the
identity. The other two correspond to a longitudinal fiéldRo + h’;Rg. This should pick

out one of the three b.c.’d, B or C (for generic phases df;). (Rp) takes on a finite
value for infinitesimalz, corresponding to a 1st order transition. This becomes especially
obvious by again using duality but now running the argument backwards. That is, let us
now study the dual model with 0 transverse field and a small non-zero longitudinal field,
hy. This corresponds to the original model with a transverse figltfo + h.c. but zero
classical Potts interactioﬁgRl + h.c. Clearly, h; produces a first-order transition in this
model since the first site is exactly decoupled. We can diagonadizend 1 or the other

of the three eigenstates will be the ground state depending on the phagefof generic
values of this phase). In the dual model this corresponds to first-order transitions between
eigenstates oR; when a longitudinal field is turned on (with a non-zero classical Potts

interaction of or2der 1). It is also clear that there are special values for the phagefaf
which two ground states remain degenerate so another first-order transition occurs, across
the negative reat; axis (and the two other axes rotated hgr/3).

From equation (3.11), there are six relevant boundary operators of dime@sibthe
hr = 0 fixed point. We may identify these with these with the six tunneling processes
A — B, B — A, etc. ImposingZs symmetry, no dimension 0 operators and only two-
dimension% operators are allowed. The latter couple to the complex transverse/field,

Thus we see that the flow away frolm = 0 to the new or free fixed points is driven by
x = £ operators.

Further insight into the nature of the new fixed point can be gained by considering
again the model with no classical Potts interaction between sites 0 and #,0 and no
longitudinal field. Thus we have a Potts chain with a free b.c. at one and an additional
decoupled Potts spin at 0. For real positivg, the decoupled Potts spin has a unique
symmetric ground state, (1,1,1). In this case, we expect that turning on the classical Potts
interaction with the first site leads to the free fixed point. The end spin is simply adsorbed,
with a flow from free to free. On the other hand, for real and negaitivethe ground
state of the decoupled spin at 0 is two-fold degenerate. These two states can be chosen
to be (1, €7/3, e27/3) and (1, e %7/3, &71/3). Turning on the classical Potts interaction
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should now produce a flow to the new fixed point from the above discussion. Thus we
obtain a flow from a free b.c. with a decoupled system with a two-fold degeneracy, to
the new b.c. This is somewhat like the renormalization group flow inSthe % Kondo
problem, with the two states of the decoupled spin in the Potts model corresponding to
spin up or down in the Kondo model. The flow to the new fixed point is analogous to
Kondo-screening of the impurity. A related problem, an impurity with triangular symmetry
coupled to conduction electrons, was discussed in [13]. The two-fold degeneracy of the
ground states of the impurity is guaranteed by #xesymmetry (for the appropriate sign

of the tunneling term) and can lead to two-channel Kondo behaviour (when electron spin
is taken into account) without the fine-tuning necessary for ordinary two-level impurities.
We note that both of these problems correspond # &ymmetric impurity coupled to a
dissipative environment. In [13] this environment is the conduction electrons; in our model
it is the rest of the Potts chain.

The dual version of this last renormalization group flow is easily constructed. A% site
there is originally a longitudinal field but no transverse field. Thus the system is in a sum
of two states,A + B. Upon turning on the transverse field we expect a flow to the mixed
stateAB.

Now let us consider the classical Potts model of equation (1.1). We may again construct
the new boundary fixed point using duality. The first step is to Fourier transform the factor
associated with each linkj in the partition sum. Thus we introduce a new angular variable,
¢ij, taking on values 027 /3 associated with the linkj by:

g/ Cosbi—0) _ Z gl301;(6i—0))/27 4 oK cosdyy) (3.12)
bij
where A is a normalization constant. We now sum over the original Potts variafjles,
Ignoring the boundaries, for the moment, the sum over the Potts variable at each site gives
a constraint on the four link variables associated with the links terminating at the site. (See
figure 2.)

Z(@.iﬁ + ¢ii+5) =0 (mod 2r) (3.13)
+
/
X 61+§/2+Ay/2
q)i,i+§f\
4o
¢i,i—’i i 1L,i+X
‘q)ii/\
1y

Figure 2. Site, link and dual lattice variables.
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where¢;; = —¢;;. We may solve these constraints by introducing new angular variables,
6! (also restricted to the valuesd®r/3) on the dual lattice, i.e. the centres of the squares
of the original lattice (see figure 2). Explicitly:

’ ’
Gii+s =i z0052 = Oi_ijors)2

L , (3.14)
biivs =020 52 = Oiyzsars/2:
The partition function is transformed into:
7 & 1_[ Z eXi.j K cos§/—0) (3.15)

i 6

Thus we retreive the original Potts model with a dual coupling consténtThe critical
coupling is given by the self-duality conditiod,= K, which gives:

Jo=2In1+ V3). (3.16)

Now consider the system with a free boundary alongatfeis with a boundary Potts
interactionJp (and no fields at the boundary). Consider summing over the Potts variable
0; at the boundary, as indicated in figure 3. This gives the constraint:

Giivs + Diivs + hiiz =0. (3.17)
Writing ¢; ;13 in terms of the dual variables, this becomes:

O s/2152 = Oivijarssz + Giive + Giii =0, (3.18)
We may solve this equation for all sites,along the boundary by:

¢i,i+)? = 61'/4,/%/24,&-/2' (319)

Thus the edge of the dual lattice is at= % In addition to the bulk Potts interaction of

strengthk, given by equation (3.12), there is an additional classical boundary term in the
dual Hamiltonian:

— B Hiield = h Z cosd; o, (3.20)
J
with the dual boundary field;, determined by the boundary interaction:
@’8 o0 —0;1) _ Z d30ii5 0 =0i15) /2w g COLBii1) (3.21)
¢:,i+£‘

for some constant;. This gives the condition:
—h/2
BInl2 _ e+ 2e

m . (3 -22)
h [CH
x | x| x| x {1 x| x| x
-
% %

Figure 3. Boundary variables.
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This equation has the annoying feature that, for thahnd s, there are only solutions for

h and J)0, with i running fromoo to 0 asJp runs from 0 toco. From our analysis of the
guantum model we expect that the new critical point occurs when the dual model has a real
negativeh. This requires a complexz, Im(Jg) = 27/3. Noting that the ratio of Boltzmann
weights for6;, — 6,,; = 0 or £27/3 is €/#/2, we see that this implies real but negative
Boltzmann weights. In particular, we may regard the new fixed point as corresponding to
an infinite negativex; this corresponds to

ez = 2 (3.23)

In the quantum model, discussed above, this limit eliminates the symmetric state (1,1,1) on
the first site, projecting onto the two orthogonal states. The same projection is realized in
the standard transfer matrix formalism for the classical Potts model. The Potts model with
negative Boltzmann weights in the bulk occurs quite naturally in the cluster formulation
based on the high-temperature expansion [14].

We note that the values of the ‘ground state degeneracies’ of the various fixed points,
(@]0, 0) are given by:

ga=N  gis=N2>  gree=Nv3  grew=NV3Z (3.24)
Noting that

1 5
1<AZ=+—2f<«/§ (3.25)
we see that:

84 < 8AB < Liree < Znew < 3g4 < 2gfree- (3.26)

Thus all renormalization group flows that we have discussed are consistent witg-the *
theorem’ [15] (or g-conjecture’ as it is more accurately referred tg)always decreases
under an renormalization group flow. We also note that the various flows which are related
by duality have the same ratios gffactors:

&new _ 848 — )2
8free 8A
3g4 _ 8free _ \/é
8free 8A

3.27
3ga 8free \/é ( )

8new 8AB B ?
2gfree _ ZSJ 2

&new 8AB Ve
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Appendix. g-theorem for fusion

At present, the most general and systematic method used to construct a new boundary state
is fusion. For rational CFTs (with a finite number of conformal towers), fusion is quite a
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powerful method. Empirically it has been recognized that fusion is a kind of irreversible
process: when a boundary stageis obtained by fusion from another boundary stdte
fusion on B does not generally givd. (Although sometimes it does.) This irreversibility
reminds us of theg-theorem’ which states that the ground-state degeneyaxdythe system
always decreases along the boundary renormalization group flow [15]. Actually, here we
prove that the irreversibility of fusion is also related to the ground-state degengracy
Amusingly, the ‘direction’ is opposite to that of the renormalization group flow. We state
the following.

Theorem.We consider a unitary rational CFT. LBtbe a boundary state obtained by fusion
from the boundary statd. The ground-state degeneracy Bfis always greater than or
equal to that ofA.

Proof. To prove the theorem, first let us give the definition of the ground-state degeneracy.
Given a boundary statgX), the ground-state degeneracy of the stateis given by the
following

gx = (01X) (A1)

where|0) is the ground state of the system and we choose the overall phasé s6 that
gx is positive. For unitary CFTs, the ground state corresponds to the identity operator with
conformal weight 0. We primarily denote this identity as 0. The definition of equation (A.1)
follows from the fact that the partition function is proportional to this matrix element in the
limit of an infinite length system.

On the other hand, a general relation for fusion [1, 15] reads:

Sa
(a|B) = (al4) o (A.2)
0
wherea represents an aribitrary primary field,is the primary used for fusion from to
B, and Sj is the modularS-matrix element for primaries andy. The special case = 0
(identity) gives the relation between the degeneracies:

g8 _ 5 (A.3)
84 Sg
Now we employ the Verlinde formula [8, 1]:
SUSLI
D OSEND ==l (A.4)
b So

The special case = 0 andd = ¢’ (¢’ is the conjugate of), combined with equation (A.3)
gives

2
gB 1 0 arb
Bl = N s0ND
g4 582;7: ’
Sp b
=1+) Solee (A5)
b0 20

where we used the fact that the operator product expansion betwaea its conjugate’
always contains the identity operator.
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Since the fusion rule coefficients’. are non-negative integers, the theorem follows if
§2/89 > 0. Actually, it is known thatS? > 0 for any primaryb, proved as follows [10].
Consider the charactey,(g). By modular transformation,

X(@ =) Sixe(@). (A.6)

When evaluating the limiy — 0, the right-hand side is dominated by the lowest power of
q. Thusx,(§) ~ SPq=</?*. (Herec in the exponent is the central charge of the CFT.) Since
the left-hand side ang=</?4 are both positiveS? > 0. Thus the theorem is proved. O

Our theorem is of course consistent with all known cases, including boundary states
of the Ising and Potts models. When there is a renormalization group flow between two
boundary states, our theorem implies that the direction of the fusion rule construction is
opposite. Namely, we can obtain an unstable boundary state from a more stable boundary
state, but the reverse is not possible. However, there can be an exception: if there are some
extra degrees of freedom, the renormalization group flow can be in the same direction as
the fusion. An example of this is the Kondo effect; the screened state, which has larger
ground-state degeneracy than the original state, is constructed by fusion. However, if we
take the degeneracy owing to the impurity spin into account, the total degeneracy is smaller
in the screened state. Thus the renormalization group flow occurs from the unscreened to
screened state.

That fusion generates rather opposite ‘flow’ to the renormalization group one which
makes it somewhat difficult to understand the physical meaning of fusion, which is a more
or less abstract mathematical manipulation. Perhaps the best intuition is gained again from
the example of the Kondo effect. Namely, fusion roughly corresponds to an absorption of
some degree of freedom by the boundary. Considering the generality of this result, it is
tempting to imagine some deeper connection with th¢heorem’ on the renormalization
group flow.
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