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Cuprate Superconductivity: Dependence of Tc on the c-Axis Layering Structure
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Without relying on any “model” of the in-plane behavior of the electrons in either the normal or
the superconducting state, I show that for identically doped members of the same homologous se
as a result of the interplane Coulomb interaction, the differenceDT �n�

c of the transition temperature for
the nth member from the single-layer value is given byDT �n�

c � const3 �1 2 1�n�. On taking the
constant from experiment, I predict large changes in the electron-energy-loss spectroscopy and op
properties in the midinfrared regime on entering the superconducting state, and further infer that
basic mechanism of superconductivity in the cuprates has a large contribution from the small-q regime.

PACS numbers: 74.25.Gz, 74.62.–c, 74.72.–h
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One of the most intriguing aspects of superconductivi
in the cuprates is the apparently systematic dependenc
the transition temperatureTc on thec-axis structure and, in
particular, on the numbern of closely spaced CuO2 planes.
If we consider the homologous series at a given const
level of doping, then the situation may be summarized
follows: In cases such as the Bi, Hg, and various Tl serie
when the intra-multi-layer spacer is Ca,Tc rises withn at
least as far asn � 3 and sometimes up ton � 5, thereafter
decreasing slowly. On the other hand, when the intr
multi-layer spacer is other than Ca, and, in particular, wh
it is Sr or Ba, the limited evidence available is compatib
with the hypothesis thatTc is actually reduced below the
single-plane value and may even be suppressed to zero
possible reason for this striking difference is proposed
Ref. [1].

In this Letter I restrict myself to the Ca-spaced mat
rials and show that if one assumes no intra-multi-lay
tunneling on the relevant time scale [1] it is possible, o
the basis of very general considerations, to make a str
ing quantitative prediction about the dependence ofTc

on n, and further, on the basis of the comparison of th
prediction with experiment, to make a semiquantitativ
prediction concerning the optical and electron-energy-lo
spectroscopy (EELS) properties of these materials in t
superconducting state. It should be stressed that th
predictionsare completely independent of any “model”
either of the normal state of the electrons in the individu
CuO2 planes or of the fundamental mechanism of supe
conductivity in the cuprates; nevertheless, to the exte
that they are confirmed, they permit an important concl
sion concerning the latter. Ideally this Letter should b
read in conjunction with Ref. [1].

The basic physical idea is that the total Coulomb ener
in an n-layer structure may be thought of as locked u
in different modes of charge oscillation which, while
far too broad in spectrum to qualify as “plasmons,” ca
nevertheless be classified by their symmetry; e.g., forn �
2 one has one “optical” (in-phase) mode and one “acoust
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one, and in generaln 2 1 acoustic modes. If we focus on
wavelengths of the order of the inverse interplane spaci
and longer, all oscillations are strongly overscreened,
the Coulomb energy associated with a given mode
roughly speaking, inversely proportional to the strength
screening; this quantity in turn is the product of the “bare
density response (essentially theK0 introduced below),
which within our ansatz is a one-plane quantity and thu
independent ofn, and an effective coupling constant [~ the
fi�q� below] which forq ! 0 is smaller for the acoustic
modes than for the optical ones, so that in this lim
the former dominates the energetics. Now, the effect
Cooper pairing is to modify (in general to increase) the ba
response, which increases the efficiency of screening a
thusdecreases the Coulomb energy, thereby providing the
energy saving which drives the superconducting transitio
It turns out (not obviously) that the saving of Coulomb
energy in ann-layer structure, which has to be share
between then planes, is simply proportional to the numbe
of acoustic modes; thus the saving per layer is proportion
to 1 2 1�n. To the extent that the fractional change inTc

with n is small, it should be proportional to the saving, an
thus we obtain Eq. (5) below. A more detailed physica
discussion is given in Ref. [2].

In the following I denoted byd, dint, and d, respec-
tively, the intra-multi-layer spacing��3.5 Å�, the inter-
multi-layer (center-to-center) distance (typically 6–15 Å
and the average interlayer spacing. Further, I introduce
quantityq0 which is an order-of-magnitude measure of th
typical scale of the midinfrared (MIR, cf. below) normal-
state in-plane behavior. Depending on what we believe
be an appropriate model for this behavior, it might be re
sonable to takeq0 as, e.g., the primitive reciprocal lattice
vector, the Fermi wave vector (if it exists), or somethin
else, but the important point for our purposes is that unle
the normal state is very anomalous,q0 is unlikely [3] to be
less than about1 Å21. Thus the quantityq0dint is always
much larger than 1, and the quantityq0d is at least 3–4, a
number I shall treat for present purposes as “large.”
© 1999 The American Physical Society
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The analysis of this Letter rests on three fundamental
assumptions:

(A1) The explanation of high-temperature superconduc-
tivity in the cuprates is to be sought in the interactions of
the electrons in the CuO2 planes with one another and
with the static lattice.

(A2) Once the number of carriers per CuO2 plane (and
the structure of the plane) is specified, the bare [4] normal-
state in-plane properties (or at least those relevant to
superconductivity) are universal.

(A3) The c-axis transport of charge both between and
(in Ca-spaced materials) within multilayers is too slow to
be relevant to superconductivity.

Assumption (A2) is in principle testable by experiment,
and despite uncertainties connected with the contribution
of the off-plane “background,” it is probably fair to say
it is at least consistent with existing data. For (A3),
cf. Ref. [1].

I shall now, for brevity of presentation only, make four
additional assumptions; for reasons of space I shall simply
state here that relaxing these does not change the outcome
qualitatively, and that in most cases even the quantitative
change resulting is small [2].

(A4) The quantity �q0dint�21 is sufficiently small that it
may safely be set equal to zero.

(A5) Both (i) the effect of interplane Coulomb interac-
tions relative to intraplane ones and (ii) the relative change
of (the important elements of) in-plane response functions
between the normal and superconducting states are suffi-
ciently small that we may work to lowest nonvanishing
order in each.

(A6) The bare normal-state in-plane density response
function [4] x0�r, r0, v� may for the purposes below
(only) be taken to be a function only of the difference
r 2 r0, so that its Fourier transform x0�q, v� may be
labeled by a single variable q (rather than being a matrix
with respect to the reciprocal lattice).

(A7) The effective Coulomb interaction between
electrons, whether in the same or different CuO2 planes,
may be approximated by the expression Veff�r� �
e2��4p´0´`jrj�, where ´` is an appropriate “high-
frequency” dielectric constant which takes into account
phenomenologically the screening effect of all the core
electrons, whether inside, between, or outside the planes.

Using (A1), (A3), and (A4), we see that different
multilayers are effectively noninteracting, and moreover
that the quantity x0 is diagonal in the layer index i;
thus the effective Hamiltonian for a single multilayer
reads Ĥ � T̂k 1 Û 1 V̂c, where T̂k, Û, and V̂c denote,
respectively, the in-plane kinetic energy, the potential
energy of the conduction electrons in the field of the
in-plane atomic cores, and the interconduction electron
Coulomb interaction as screened by the cores [both in and
off plane, cf. (A7)]. The observation which is crucial to
the argument below is that T̂k and Û are simple sums of
“single-plane” terms, which by (A2) are universal (and,
in particular, independent of the layer multiplicity n),
and hence so is x0, whereas V̂c contains both intraplane
and interplane terms. In fact, the Fourier transform with
respect to the ab-plane component r 2 r0 of Vc�jr 2

r0j� �r´i, r0´j� between electrons in planes i and j may
be expressed in the form of a matrix,

Vij�q� �
´2

2´0´`q
exp 2qdji 2 jj , (1)

where q is a 2D vector in the ab plane �q � jqj�. We
see immediately that, given the inequality q0d ¿ 1, all
effects of the layer multiplicity come entirely from the
region of “small” q�q ø q0�.

I now come to the crux of the argument. I consider a
specific homologous series and assume that the conditions
of comparison are such that the number of carriers per
plane is the same in the different members of the series:
call this assumption (A8). Given assumptions [A5(i)],
(A6), and (A8), the expectation value �Vc�m of the
Coulomb interaction for a given multilayer at T � 0 may
be written quite generally in the form

�Vc�m � 2

nX
i�1

X
q

Z `

0

dv

2p

3 Im�1 1 qfi�q�K�q, v��´`	21, (2)

where fi�q� �i � 1, 2, . . . , n� is the ith eigenvalue of the
matrix Mij�q� � exp 2qdji 2 jj, and K�q, v� is related
to the bare density correlation function [4] x0�q, v� by
the formula K�q, v� � �e2�2´0q2�x0�q, v�. The single-
plane case is, of course, a special case of (2) with f1�q� �
1. From its definition and assumption (A2), K�q, v� is a
universal quantity; however, the simplest way of obtaining
it experimentally is via a nonuniversal quantity, the
measured bulk ab-plane longitudinal dielectric constant
´k�q, v�, to which it is related by the formula K�q, v� �
1
2d�´k�q, v� 2 ´b	 where ´b is the contribution to the
measured dielectric constant of everything except the
conduction electrons in the CuO2 planes (note that ´b

need not necessarily be equal to ´`). Alternatively,
K�q, v� may be obtained more directly from EELS
experiments: for a single-plane material transmission
EELS with qz � 0 and qdint ¿ 1 (and the Rutherford
factor q24 extracted as is conventional) simply measures
q times the integrand of (2), while for a multilayer
compound one should also be able to extract K , although
the relation is more complicated [5]. As emphasized
in Ref. [1], both optical and EELS evidence shows that
for small q the quantity 2ImK21 is large only in the
midinfrared region (roughly 0.1–1.5 eV) and above; at
low energies it is very small.

I next consider the change d�Vc��n� in Vc for a
multilayer system when the system passes (notionally)
from the normal to the superconducting state at T � 0.
Expressing it in terms of an energy per unit area per plane
393
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and subtracting the value for the single-plane system, and
defining for convenience a (complex) quantity h�q, v� �
394
dK�q, v��K0�q, v� where K0 is the normal-state value,
we obtain using (A5) the expression
d�Vc��n� 2 d�Vc��1� �
1

4p2´`

Z du

2p

Z `

0
dv

Z `

0
q2dq Im

(
n21

nX
i�1

"
fi�q�h�qv�K0�qv�

�1 1 qfi�q�K0�qv��´`	2

#)
2 � fi�q� ! 1	 .

(3)
Equation (3) is exact within assumptions (A1–A8). Note
that because of assumption (A5), not only K0�q, v�, but
also h�q, v� is universal; thus the effects of the interlayer
interactions enter only through the eigenvalues fi�q�.

To proceed further, we need to know something
about the magnitude and q dependence of the functions
K0�q, v� and, to a lesser extent, h�q, v�. While un-
certainties about the quantity ´b , etc., and the lack of
absolute calibration of existing EELS measurements [6]
in the relevant (midinfrared) region make it difficult to
infer the exact form of K0 rigorously, all the evidence
seems compatible with the hypothesis (which is rather
plausible on a priori grounds) that this function has
little q dependence [2] for qd & 1, and moreover (and
this is crucial) that for almost if not all relevant v we
have jK0�q, v�j ¿ d. Further, while without a detailed
theory of the pairing process we evidently have no a
priori knowledge of the specific form of h�q, v�, strong
general arguments [2] suggest that, as in the simple BCS
case, it should be constant as a function of q in the limit
q ! 0, and I shall assume that this behavior persists up
to qd � 1. Given the above information, we see that the
dominant contribution to the integral over q in (3) will
come from the region jK0�q, v�j21 ø q ø d21. Since
in the approximation of tetragonal symmetry K0 and h

must be isotropic in the plane in the limit q ! 0, we may
write them simply as functions of v in this region and
thus obtain from (3) the simpler expression,

d�Vc��n� 2 d�Vc��1� �
´`

4p2

Z `

0
dv Im

"
h�v�
K0�v�

#

3
Z `

0
dq

(
n21

nX
i�1

f21
i �q� 2 1

)
.

(4)

Now, the quantity in brackets in (4) turns out to be given,
for all n, by the expression [7] 2�1 2 1�n� �exp�2qd� 2

1	21, and the logarithmic divergence of the integral at
small q [which must, of course, be cut off by returning
to the exact form (3)] should introduce, at least for small
n, at best a weak n-dependence. Moreover, in view of
assumptions (A2) and [A5(ii)], the increase of Tc in the
n-layer system relative to the single-plane one should be
simply proportional to minus the (negative, cf. below) left-
hand side of Eq. (4). Consequently we obtain, for the
relevant class of the homologous series, the strikingly
simple prediction �DT �n�

c � T �n�
c 2 T �1�

c �,

DT �n�
c � const 3 �1 2 1�n� . (5)

In attempting to compare the prediction (5) with
existing experimental data, the main problem is to identify
those cases, if any, in which assumption (A8) is satisfied.
Since a plausible, if not certain, indicator of the number of
carriers per plane is R � l

22
ab d (lab � in-plane London

penetration depth), one would ideally like to compare
members of the same homologous series at equal values
of R; however, the available measurements of lab are
insufficient for a systematic comparison. Since there
is no space to discuss this question further, I shall
err on the side of extreme conservatism and make the
comparison only for the n � 1, 2, 3 members of the Hg
and Tl �2, 2, n 2 1, n� series, at optimal doping, cases in
which I believe the existing data are, at least, compatible
with the hypothesis of constant R. Then the prediction
of (5) is that �T �3�

c 2 T �2�
c ���T �2�

c 2 T �1�
c � � 1

3 for both
series. The experimental ratios are 0.25–0.28 for the Hg
series and 0.25–0.34 for Tl. Given the approximations
[see especially (A5)] used in obtaining the theoretical
prediction, this would seem to indicate that the idea of
attributing the systematics of Tc in the Ca-spaced cuprates
wholly or mainly to the interlayer Coulomb coupling is,
at least, not obviously unviable.

If the observed rise in Tc with n is indeed due
to interlayer Coulomb interactions, then Eq. (4) permits
a further quantitative prediction: Assuming that the
differential loss in Coulomb energy between the N
and S states is not actually less than the differential
increase per unit area per plane in condensation energy,
DE

�n�
cond (certainly true in BCS theory, and more generally

overwhelmingly plausible) we find [8], putting n � 2 in
Eq. (4),
2d
Z

MIR
dv Im

"
2

1
´k�v� 2 ´b

#
$

8p2dd�DE
�2�
cond 2 DE

�1�
cond�

h̄´` ln�K�2d´`�
, (6)
where both sides of the equation refer to the bilayer com-
pound, d indicates the change in going from the nor-
mal to the superconducting state, and K is an appropriate
average of K�v� over the MIR region. For Tl-2212 we
find, taking the logarithm to be of the order of 2 and
´` � 4, a value of the right-hand side of (6) of the
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order of 3 meV�h̄. While optical experiments measure
Im´

21
k rather than the left-hand side of (6), and that some-

what indirectly, it should in principle be possible to ver-
ify this inequality directly in EELS experiments [2]; note
that the fractional change predicted is at least 2 orders of
magnitude greater than the naive estimate ��kTc�h̄v�2

based on simple BCS theory. The inequality (6) rests
on the approximation of replacing (3) by (4): A more
rigorous inequality can obviously be obtained directly
from (3).

Finally, I note that the considerations of this Letter,
if correct, have important implications for the basic
mechanism of high-temperature superconductivity. Let
us consider an optimally doped single-plane cuprate
such as Tl-2201 and ask: Suppose that we could
somehow exclude all contributions to the saving d�Vc��1�

of the Coulomb energy [the “1” term in Eq. (6)] from
small q, say q & d21, where d is the Tl-2212 value.
How much would Tc decrease? From Eq. (4) and
assumption (A5) we see that the answer is approximately
�2� ln�K�2d´`�	DT �2�

c ; while we have no good a priori
estimate of K , the logarithm is unlikely to be much greater
than 2 (and may indeed be less), and DT �2�

c for the Tl-22,
n 2 1, n series is about 25 K, so the answer is around
25 K, i.e., about 25% of the original value. Thus even
values of q & d21 make a substantial contribution to the
in-plane mechanism, and indeed the above analysis is
quite compatible with the original hypothesis of Ref. [1],
namely, that the bulk of the mechanism is associated with
values of q small compared to q0, and with values of v

in the MIR region [9].
This work was supported by the National Science Foun-

dation through the Science and Technology Center for Su-
perconductivity (Grant No. DMR91-20000) and through
the Institute for Theoretical Physics (PHY94-07194). I
thank my students Rachel Wortis, Misha Turlakov, Lihyir
Shieh, and Vladimir Lukic for their work on problems re-
lated to this topic and for valuable discussions. The col-
leagues, both experimental and theoretical, with whom I
have enjoyed helpful discussions and/or correspondence
are too numerous to all be named individually here, but
I would particularly like to acknowledge S. L. Cooper,
J. Eckstein, M. J. Holcomb, D. Mihailovic, D. L. Mills,
M. Onellion, G. Sawatzky, K. Schulte, D. van der Marel,
and Y-Y. Wang for information and suggestions on the
current and potential situation in optics and EELS, includ-
ing in some cases sharing of unpublished data, and D. J.
Scalapino for his general interest. Finally, I thank the In-
stitute for Nuclear Theory and the Institute for Theoretical
Physics, Santa Barbara, for hospitality while parts of this
work were being performed.

*Present and permanent address.
[1] A. J. Leggett, J. Phys. Chem. Solids 59, 1729 (1998).

Note, however, that to the extent that the remarks
following Eq. (7) of this reference concerning the q
dependence of dx�q, v� are inconsistent with those below
about h�q, v�, I believe the latter are to be preferred.
As a result, the reduction of the effective coupling g
due to intra-multi-layer conduction is probably somewhat
overestimated in this reference. Note also that in it ´`

and ´b are implicitly identified.
[2] A. J. Leggett, Proc. Natl. Acad. Sci. U.S.A. (to be

published).
[3] I believe that “stripes,” even if present, are likely to be

irrelevant to the MIR behavior.
[4] Defined by omitting from the complete set of diagrams for

x�q, v� all graphs which can be cut into two by cutting a
single Coulomb line of wave vector q.

[5] For a general discussion of the theory of EELS in a
layered system, see D. L. Mills et al., Phys. Rev. B 50,
6394 (1994). Note that the experiments analyzed in this
paper are at energies well below those of interest in the
present context.

[6] N. Nucker et al., Phys. Rev. B 39, 12 379 (1989); Y. Y.
Wang et al., ibid. 42, 420 (1990).

[7] It is straightforward to obtain this formula case by case
for n # 6 and n � `. I am indebted to Misha Turlakov
for a proof of its general validity.

[8] A more careful treatment of the cutoff [2] actually
multiplies the right-hand side of Eq. (6) by a factor of
approximately 2.

[9] Any failure of assumptions (A4) and/or (A7) is likely if
anything to strengthen this conclusion [2].
395


