Silibinin mode of action(s) against HCV: A controversy yet to be resolved

Harel Dahari1,2, Jeremie Guedj1, Alan S. Perelson1

1Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545; 2Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612

Dear Sir,

Ahmed-Belkacem et al.1 suggested that silymarin components (such as silibinin A and silibinin B or Legalon-SIL (SIL), a commercially available intravenous (IV) preparation of silibinin) mainly inhibit HCV NS5B RNA-dependent RNA polymerase (RdRp) activity. Here we note the HCV kinetics observed in patients treated with SIL2-4 and the HCV-RdRp inhibitor RG7128 (5 and manuscript in preparation) have similarities and suggest further studies to better understand SIL’s MOAs in vivo.

To our best knowledge three clinical studies have reported the viral response during SIL therapy: one clinical trial2 with 20 patients receiving ascending doses of SIL from 5mg/kg to 20mg/kg and two case reports with patients treated with 20mg/kg3, 4. In these three studies patients were infected with HCV genotype 1 and were non-responders to Peg-IFN+ribavirin; the patient in4 was HCV/HIV coinfected. The protocols were similar and consisted of daily injection of SIL for 7 days followed by Peg-IFN+ribavirin; however in3 ribavirin was administered before and during silibinin treatment. Viral decline after the initiation of SIL was monophasic until day 7 (which led to approximately 3 log decline in viral load from baseline) in the two case reports and in the majority of subjects in 2 (Fig. 1, red squares). Interestingly, a monophasic pattern of viral decline (Fig. 1, blue curves) was also observed in about half of patients (N=31) given 14 days of monotherapy with RG7128, a nucleoside HCV-RdRp inhibitor (manuscript in preparation), and in 3 subjects (N=5) in Le Pogam et al. (Fig. 1A in5). This monophasic decline is strikingly different from the biphasic viral decline typically observed in patients treated with protease inhibitors or (pegylated)interferon-α-based therapies (Fig 1, triangles; reviewed in 6). The fact that both SIL and RG7128 led to a monophasic HCV decline in some patients is interesting and tends to support, in part, Ahmed-Belkacem et al1 findings in vitro. Further studies are needed to reveal why only a portion of subjects treated with SIL or RG7128 monotherapy had a monophasic viral decline during the first week of treatment.

Very recently, however, it was suggested by Wagoner et al7, 8 that silymarin components (including SIL), have a profound effect on HCV entry and cell-to-cell spread in vitro with only marginally suppression of HCV-RdRp activity. While this controversy needs further attention, modeling viral kinetics in vivo may bring new insights into SIL’s mode of action(s). According to the standard HCV infection model9, a monophasic viral decline pattern suggests that viral infection is blocked. On the other hand, one can also predict a monophasic decline of virus if one assumes in the standard viral kinetic model a gradual reduction in blocking viral production (rather than an immediate high antiviral effectiveness in reducing viral production as it is the case with interferon-α or protease inhibitors) (manuscript in preparation). This gradual reduction in viral production could be related to drug pharmacokinetic and pharmacodynamic (PK/PD) properties and/or gradual destabilization of viral replication components that are still not known. Such PK/PD properties and/or...
intracellular processes leading to a progressive reduction in viral production could explain the similarity in the pattern of viral decline observed under treatment with SIL and RG7128 and possibly will shed light on why some patients treated with either of these two agents had a monophasic viral decline pattern.

In conclusion, Ahmed-Belkacem et al.¹ findings that SIL inhibits HCV RdRp activity in vitro might be in resonance with in vivo observations as similar viral decline patterns were observed in patients treated with SIL and with RG7128, an HCV-RdRp-nucleoside inhibitor (Fig. 1). Pharmacokinetic and pharmacodynamic studies of SIL are needed to better understand the nature of the observed monophasic viral decline. If SIL resistant strains can be identified, the nature of the resistance mutations would provide information about the MOA. If resistance mutations are found in the HCV polymerase it would favors an HCV-RdRp inhibitor mechanism, whereas if resistance mutations are in HCV E1/E2 it would support an entry inhibitor mechanism. Further in vitro experiments¹⁰ that include detailed kinetics of both intracellular and extracellular HCV RNA during treatment with silymarin components (such as SIL) are likely to provide more insights into their MOAs against HCV with the ultimate goal of developing better anti-HCV therapeutic regimens.

References:

Figure 1: Representative serum HCV RNA decline from baseline during the first week of treatment with silibinin monotherapy (red squares), RG7128 1500-mg BID (blue circles; manuscript in preparation), daily 10MIU IFN (black triangles) and telaprevir+PegIFN (gray triangles). Solid lines were used to emphasize plausible phases of viral decline.

Conflicts of interest: The authors disclose no conflicts.

Acknowledgments: This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-06NA25396, and supported by NIH grants RR06555-19, P20-RR1875-6, AI065256-5 and AI28433-20, the National Science Foundation under Grant No. NSF PHY05-51164, and by the University of Illinois Walter Payton Liver Center GUILD.
Copyright Assignment, Authorship Responsibility, NIH Funding, Financial Disclosure, Institutional Review Board/Animal Care Committee Approval, and Sponsorship

Copyright Assignment. In consideration of the American Gastroenterological Association (AGA Institute) (the "AGA Institute") taking action to review and credit the below-identified submission (the "Manuscript"), and for other valuable consideration, the receipt and sufficiency of which is hereby acknowledged, the undersigned authors and/or creators (the "Authors") hereby transfer, convey, and assign to the AGA Institute, free and clear of any liens, licenses or encumbrances, the entire right, title, and interest in and to the Manuscript throughout the world, including without limitation in and to any and all copyrights for the Manuscript (including but not limited to rights to copy, publish, excerpt, collect royalties and make derivative works) in print, electronic, Internet, broadcast, and all other forms and media now or hereafter known, and for any and all causes of action heretofore asserted in Authors' favor for infringement of the aforesaid copyrights, to have and to hold the same unto the AGA Institute, its successors and assigns, for and during the existence of the aforesaid copyrights, and all renewals and extensions thereof. At any time and from time to time hereafter, the Authors shall upon the AGA Institute's written request take any and all steps and execute, acknowledge and deliver to the AGA Institute any and all further instruments and assurances necessary or expedient in order to vest the aforesaid copyrights and causes of action more effectively in the AGA Institute. The Authors retain the nonexclusive permission to use all or part of the Manuscript in future works of their own in a noncompetitive way, provided proper copyright credit is given to the AGA Institute. Should the AGA Institute finally determine that it will not publish the Manuscript, the AGA Institute agrees to assign its rights therein back to the Authors.

Authorship Responsibility. I, the undersigned Author, certify that I have participated sufficiently in the intellectual content of the Manuscript, and have reviewed the final version of the Manuscript, believe it represents valid work, and approve it for publication. As an Author of this Manuscript, I certify that, except to the extent expressly credited to others in the Manuscript, the entire Manuscript is an original creation of the Authors, and none of the material in the Manuscript has been published previously, is included in another manuscript, or is currently under consideration for publication elsewhere. I also certify that this Manuscript has not been accepted for publication elsewhere, and that I have not assigned, licensed, or otherwise transferred any right or interest in the Manuscript to anyone. Moreover, should the AGA Institute or the editors of GASTROENTEROLOGY request the data upon which the Manuscript is based, I shall produce it. Authors are responsible for applying for permission for both print and electronic rights for all borrowed materials and are responsible for paying any fees related to the applications of these permissions.

Institutional Review Board/Animal Care Committee Approval. I, the undersigned authors, certify that my institution has approved the protocol for any investigation involving humans or animals that all experimentation was conducted in conformity with ethical and humane principles of research.

Sponsorship. I, the undersigned author, certify that I had full access to all of the data in this study, and I take responsibility for the integrity of the data and the accuracy of the data analysis.

Manuscript title: Silibinin made (milking) against HEV: A controversy yet to be resolved

Signatures: Each Author must sign and date this statement and assignment. In the case of a work made for hire, the employee(s) must also sign. For example, for any Manuscript including any portion created in the course of employment for another (whether as a regular employee or as an independent contractor) requires the signature of the relevant employee(s).

Print Name: Alan S. Perelson Date: 2/15/10

Print Name: Harel E. Dahari Date: 2/15/10

Print Name: Jere Z. Enøy Date: 2/23/10

Print Name: Date:

Employer signature(s) as Author (required for works made for hire):

(Employer)

By: ___________________________

Date: _________________________

(Employer)

By: ___________________________

Date: _________________________

If this Manuscript exists in the public domain because it was written as part of the official duties of the Authors as employees of the U.S. government, check this box.

National Institutes of Health (NIH) Funding. My manuscript was supported in part, or in whole, by NIH. In accordance with the NIH Public Access Policy, I would like to request that my manuscript, should it be accepted for publication, be submitted to PubMed Central (PMC). I understand that any manuscript will therefore be freely accessible by the public via PMC twelve months from the date of its publication. I would like my manuscript to be automatically submitted to PMC, should it ultimately be accepted. My NIH grant number is ____________________________.

Financial Disclosure. Check the appropriate box and sign where indicated. All Authors must sign one of the statements below.

☐ I, the undersigned Author, certify that I have no financial arrangements (e.g., consultancies, stock ownership, equity interests, patent-licensing arrangements, research support, major honoraria, etc.) with a company whose product figures prominently in the submitted manuscript or with a company making a competing product except as disclosed on a separate attachment. All funding sources supporting the work are acknowledged on the title page.

☐ I, the undersigned Author, certify that I have included on the title page of the manuscript any financial arrangements (e.g., consultancies, stock ownership, equity interests, patent-licensing arrangements, research support, major honoraria, etc.) that I have with a company whose product figures prominently in the submitted manuscript or with a company making a competing product. All funding sources supporting the work are acknowledged on the title page.