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Abstract 
 
    We consider the problem of finding the largest m-dimensional cube (or m-

cube) which fits into an n-dimensional cube of unit side. Let the side of this 

maximal m-cube be denoted by f(m, n). We solve the problem completely for all 

cases where m divides n, as well as for m = 2, with all odd values of n. The 

solution is essentially unique for these cases, and for m divides n, f(m, n) = 

√(n/m), while for m = 2, n odd, f(m, n) = √[(4n-3)/8]. We also show that f(3, 4) = 

√x0, where x0 is the (unique) real root of 4x4-28x3-7x2+16x+16=0 such that 1 < x0 

< 4/3; thus √x0 ≈ 1.007435. We derive some inequalities involving f(m, n) in 

general. We describe two general methods for attempting to solve the general 

problem, and we discuss some unanswered questions, including the relationship 

to Prince Rupert’s problem.  

 
    These results were all obtained by 1996; only the Table of Contents, the 

Preface and the Appendices were added in 2013, and this abstract was modified 

slightly. 
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Preface 
 
The paper that you hold in your hands (or perhaps all you're holding is a retinal 
pattern) has been a long time in coming. On the surface, it is the revision of a 
1996 manuscript containing a long and detailed proof. This itself is the 
incarnation of work that goes back some 15 years earlier. In fact, since as far 
back as I can remember, Kay Pechenick (as she was then known, before she 
became Kay Pechenick DeVicci, before she became Kay Pechenick DeVicci 
Shultz) has been fascinated by the problem of determining the largest cube that 
would fit inside a tesseract. The question was first posed by Martin Gardner in his 
November 1966 Scientific American column, but the roots of the problem go back 
centuries. My tongue was only lightly planted in cheek when I wrote the following 
talk abstract for a 2013 conference in honor of Gregory Galperin on his 60th 
birthday: 
 

 The De Vicci Cube, and other mysteries from the fourth dimension 
(and beyond) 

 
 There is a secret cube that lives in four dimensions called the De Vicci 

Cube. "Surely you mean a 'hypercube' or a 'tesseract'?" you might be 
forgiven to ask.  No, I mean a regular three-dimensional cube. But this is no 
ordinary cube. Leonardo Da Vinci didn't know of its existence, nor did the 
Freemasons, and nor does Dan Brown (for, if he did, there would surely be 
another bestseller and movie out). It was first foreshadowed by the 
Babylonians long ago. Then, in the seventeenth century, a certain Prince 
Rupert of the Rhine wagered on the outcome an optimization problem. He 
got his answer, and he won his bet, but he didn't solve the problem. The 
problem wasn't solved until Pieter Nieuwland examined it over 100 years 
later. The solution was 

 
 1.06066017177982128660126654315... 
 
 which, à la manière égyptienne, 
 
 = 1 + 1/17 + 1/545 + 1/561804 + ... 
 
 Nieuwland was getting close to the Cube, but soon after his discovery, he 

died under very mysterious circumstances. And still the De Vicci Cube 
remained a secret, lurking in the sea of undiscovered things. What is the De 
Vicci Cube? We know that De Vicci's Cube has linear dimension  

 
 1.00743475688427937609825359524... 
 
 = 1 + 1/135 + 1/36564 + … 
 
           This was calculated by at least six people (all dead now) before K. De Vicci 

discovered it. The Cube has acquired De Vicci's name because she 
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supplied an actual proof. Erdös knew about the Cube, but soon after 
learning of it, he died too. There is much more to say. More than this, you 
must attend the talk, as I have written too much already. 

 
The history reads like a screenplay: It's got Babylonians, ne'er-do-well princes 
and kings, untimely death, Latin manuscripts, and the 4th dimension -- all in one 
package. Add to this the mystery of a little-known mathematical genius who lives 
in Cherry Hill, New Jersey... what more could one want? But unlike a Hollywood 
movie, the DeVicci Cube story is actually true. 
 
Some historical notes and corrections are in order. The phrase "DeVicci Cube" 
derives from Steven R. Finch's coinage "the DeVicci Constant" (=  1.0074347… ) 
in his book Mathematical Constants. Also, a study of Martin Gardner's extensive 
correspondence reveals that only three others had calculated the DeVicci 
Constant before DeVicci. They are Eugen Bosch (1966), G. de Josselin de Jong 
(1971), and Hermann Baer (1974). In addition, although his solution for the 3-
cube in a 4-cube is incorrect, Andrew L. Clarke (in 1967) had already formulated 
the correct inequalities and other results for the m-cube in an n-cube generalized 
Rupert problem. 
 
I first got involved with the problem when, after first hearing from Kay about her 
work, I was able to calculate the DeVicci Constant to six decimal places. Later I 
found a proof for the statement f(m, m+1) > 1 (in the notation of the present 
paper), and more recently, Terry Ligocki and I have used techniques from 
computational physics to deeply probe the full f(m,n) problem. It is true that both 
Paul Erdös (and Raphael Robinson) looked at the f(m,n) problem, but neither of 
them made any inroads into the problem. 
 
In one of his earlier collections of columns, Mathematical Carnival, Gardner 
claimed that he had received seven solutions to his four-dimensional Rupert 
problem, but that it was difficult for him to evaluate them as none of them agreed 
with each other. Gardner re-reviewed the situation in 2001, in his The Colossal 
Book of Mathematics, where he devotes a page (page 172) to his generalization 
of the Rupert problem. He corrects himself there, but then goes on to mention 
two people, Kay R. Pechenick DeVicci and Kay R. Pechenick, not realizing that 
these are one and the same person. 
 
Finally, many people are familiar with the generalized Prince Rupert problem 
from the one-page description in the book by Croft, Falconer and Guy Unsolved 
Problems in Geometry, which is both fortunate in terms of publicity, but 
unfortunate in terms of scholarship. Their entry on this problem was selectively 
paraphrased from personal letters sent to Richard Guy, they credit neither 
Pechenick DeVicci Shultz nor myself, and they get important details wrong -- a 
flawed reference. 
 
The present manuscript is also not perfect: first and foremost, its length is 
daunting. But it is a primary reference, and it should be viewed as a source for 
future work on the Rupert problem. 
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