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Abstract

We consider the problem of finding the largest m-dimensional cube (or m-
cube) which fits into an n-dimensional cube of unit side. Let the side of this
maximal m-cube be denoted by f(m, n). We solve the problem completely for all
cases where m divides n, as well as for m = 2, with all odd values of n. The
solution is essentially unique for these cases, and for m divides n, f(m, n) =
V(n/m), while for m = 2, n odd, f(m, n) = V[(4n-3)/8]. We also show that f(3, 4) =
VXo, Where X is the (unique) real root of 4x*-28x>-7x%+16x+16=0 such that 1 < xg
< 4/3; thus Vxo = 1.007435. We derive some inequalities involving f(m, n) in
general. We describe two general methods for attempting to solve the general
problem, and we discuss some unanswered questions, including the relationship

to Prince Rupert’'s problem.

These results were all obtained by 1996; only the Table of Contents, the
Preface and the Appendices were added in 2013, and this abstract was modified

slightly.

" Current official name: Kay R. Shultz
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Preface

The paper that you hold in your hands (or perhaps all you're holding is a retinal
pattern) has been a long time in coming. On the surface, it is the revision of a
1996 manuscript containing a long and detailed proof. This itself is the
incarnation of work that goes back some 15 years earlier. In fact, since as far
back as | can remember, Kay Pechenick (as she was then known, before she
became Kay Pechenick DeVicci, before she became Kay Pechenick DeVicci
Shultz) has been fascinated by the problem of determining the largest cube that
would fit inside a tesseract. The question was first posed by Martin Gardner in his
November 1966 Scientific American column, but the roots of the problem go back
centuries. My tongue was only lightly planted in cheek when | wrote the following

talk abstract for a 2013 conference in honor of Gregory Galperin on his 60th
birthday:

The De Vicci Cube, and other mysteries from the fourth dimension
(and beyond)

There is a secret cube that lives in four dimensions called the De Vicci
Cube. "Surely you mean a ‘hypercube' or a 'tesseract'?" you might be
forgiven to ask. No, | mean a regular three-dimensional cube. But this is no
ordinary cube. Leonardo Da Vinci didn't know of its existence, nor did the
Freemasons, and nor does Dan Brown (for, if he did, there would surely be
another bestseller and movie out). It was first foreshadowed by the
Babylonians long ago. Then, in the seventeenth century, a certain Prince
Rupert of the Rhine wagered on the outcome an optimization problem. He
got his answer, and he won his bet, but he didn't solve the problem. The
problem wasn't solved until Pieter Nieuwland examined it over 100 years
later. The solution was

1.06066017177982128660126654315...

which, a la maniere egyptienne,

=1+ 1/17 + 1/545 + 1/561804 + ...

Nieuwland was getting close to the Cube, but soon after his discovery, he
died under very mysterious circumstances. And still the De Vicci Cube
remained a secret, lurking in the sea of undiscovered things. What is the De
Vicci Cube? We know that De Vicci's Cube has linear dimension
1.00743475688427937609825359524...

=1+ 1/135 + 1/36564 + ...

This was calculated by at least six people (all dead now) before K. De Vicci
discovered it. The Cube has acquired De Vicci's name because she
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supplied an actual proof. Erdos knew about the Cube, but soon after
learning of it, he died too. There is much more to say. More than this, you
must attend the talk, as | have written too much already.

The history reads like a screenplay: It's got Babylonians, ne'er-do-well princes
and kings, untimely death, Latin manuscripts, and the 4th dimension -- all in one
package. Add to this the mystery of a little-known mathematical genius who lives
in Cherry Hill, New Jersey... what more could one want? But unlike a Hollywood
movie, the DeVicci Cube story is actually true.

Some historical notes and corrections are in order. The phrase "DeVicci Cube”
derives from Steven R. Finch's coinage "the DeVicci Constant” (= 1.0074347...)
in his book Mathematical Constants. Also, a study of Martin Gardner's extensive
correspondence reveals that only three others had calculated the DeVicci
Constant before DeVicci. They are Eugen Bosch (1966), G. de Josselin de Jong
(1971), and Hermann Baer (1974). In addition, although his solution for the 3-
cube in a 4-cube is incorrect, Andrew L. Clarke (in 1967) had already formulated
the correct inequalities and other results for the m-cube in an n-cube generalized
Rupert problem.

| first got involved with the problem when, after first hearing from Kay about her
work, | was able to calculate the DeVicci Constant to six decimal places. Later |
found a proof for the statement f(m, m+1) > 1 (in the notation of the present
paper), and more recently, Terry Ligocki and | have used techniques from
computational physics to deeply probe the full f(m,n) problem. It is true that both
Paul Erdos (and Raphael Robinson) looked at the f(m,n) problem, but neither of
them made any inroads into the problem.

In one of his earlier collections of columns, Mathematical Carnival, Gardner
claimed that he had received seven solutions to his four-dimensional Rupert
problem, but that it was difficult for him to evaluate them as none of them agreed
with each other. Gardner re-reviewed the situation in 2001, in his The Colossal
Book of Mathematics, where he devotes a page (page 172) to his generalization
of the Rupert problem. He corrects himself there, but then goes on to mention
two people, Kay R. Pechenick DeVicci and Kay R. Pechenick, not realizing that
these are one and the same person.

Finally, many people are familiar with the generalized Prince Rupert problem
from the one-page description in the book by Croft, Falconer and Guy Unsolved
Problems in Geometry, which is both fortunate in terms of publicity, but
unfortunate in terms of scholarship. Their entry on this problem was selectively
paraphrased from personal letters sent to Richard Guy, they credit neither
Pechenick DeVicci Shultz nor myself, and they get important details wrong -- a
flawed reference.

The present manuscript is also not perfect: first and foremost, its length is
daunting. But it is a primary reference, and it should be viewed as a source for
future work on the Rupert problem.



Introduction

In a discussion of hypercubes of all dimensions [1], Martin Gardner
posed the problem of finding the largest square which fits into a unit cube
(i.e., a cube of unit side), as well as the largest cube in a unit tesseract.
He gave the solution to the largest square in a cube, but he stated that the
problem of the largest cube in a tesseract was still unsolved. Seven
people had sent him solutions, all different, and since none of these proofs
had been published or checked by mathematicians, he regarded the problem
as still unsolved. Even in a later edition of his book [2], Gardner wrote
that nothing had been published on the problem.

Soon after | started thinking about these problems, | started
wondering about the largest square in a tesseract. This led me to
generalize the problem to finding the largest m-cube (that is, an m-
dimensional cube) in an n-cube, for all m and n for which the problem
makes sense: 1 <m =n.

| found the solution for all (m,n) where m divides n, and also for all
n when m = 2. | have a candidate for (m,n) = (3,4), but | have not yet been
able to prove that it is the largest cube in a tesseract.*Letting f(m,n)
denote the side of the largest m-cube in an n-cube of unit side, | have a
lower bound for f(3,4). | have proved several inequalities involving f(m,n),

and | have done additional workonm=3,n=4, andforn=m + 1 in

*Yes, | have. See Appendix A, pA1.



general.

Method of Solution

Instead of thinking about the largest m-cube in an n-cube, we will
consider a unit m-cube in an arbitrary orientation in Euclidean n-space,
and try to find the smallest n-cube that contains the m-cube, where the n-
cube is in a "standard orientation": i.e., all of its edges are parallel to
Cartesian coordinate axes.

We may assume that one of the vertices of the m-cube is at the

—
point Po, and that the m orthonormal vectors in n-space, vi,i=1,2,

. —_— ~> — —>
m, are such that the 2m vertices of the m-cube are at Po, Potvi, Potv2, . .

i S R JES SR g S < -> .
PotVm, PotVv1+Vv2, . .. Potvi+v2+...+vm. We need to determine how far the

m-cube extends in each of the n coordinate directions. Since the m-cube
is the convex hull of its vertices, we need only consider the vertices. We
let vij represent the jth component of Vl , j = 1 through n. A little thought
leads to the conclusion that R; , the range in the jth direction in n-space,
is given by

m
Rj =2 Ivijl
i=1

Then the smallest n-cube in a standard orientation which contains the m-



cube has a side equal to
R=maxRj, j=1,2,...,n

Thus we want to minimize R, where

m
R=max( Elvijl) ,J=1,2,...,n, where
i=1
n
2 Vik Vik = bij
k=1

(where &ij = 1 fori = j, and O otherwise.)

Then f(m,n) is the reciprocal of the minimum value of R. We know that R
really has a minimum and not just an infimum, because R is a continuous
function of the vij, and the vij satisfying the above equation form a
compact set in an mn-dimensional Euclidean space.

If all of the Ri are equal, then we call the m-cube "snug-fitting" --
it fits snugly into the n-cube in the sense that it cannot undergo any
translation and remain within the n-cube.

In some of our calculations, we will find it convenient to use a

different normalization, such that the n-cube does have unit side, instead



of the m-cube; thus, all the vi will still have equal lengths but they will
(usually) not have unit length.

We will describe embeddings of m-cubes in n-cubes by m x n
matrices such that each row of a matrix represents the components of

one of the Vvi. Thus the matrix element in the ith row and the jth column

will be vij. The rows of the matrix will be mutually perpendicular and
have equal lengths as vectors. We want to minimize the maximum of the
"column-sums" (the sum of the absolute values of the numbers in each
column) while keeping the row vectors mutually perpendicular and leaving

their lengths unchanged.

These vij matrices, which we shall also call V matrices, have the
property that the lengths of the row vectors, the maximum range, and the
orthogonality of the rows are unaffected by certain trivial

transformations: the interchange of any two rows or columns, and the

multiplication of the elements of any row or column by -1.

When does f(m,n) = + (n/m) ?

For m = 1, an m-cube is a line segment. The longest line segment in
an n-cube of unit side is the main diagonal, so f(1,n) = /n . If an m-cube

is inscribed in an n-cube, then the longest line segment in the m-cube



cannot be longer than the‘longest line segment in the n-cube, so that
f(m,n) < +/(n/m). When does equality occur, besides m = 17

Assume m = 2. For f(m,n) = 4/(n/m) , each main diagonal of the m-
cube must be a main diagonal of the n-cube. Thus,

+V1 Ve t...tVm=(21,+1,...,£1)

for all combinations of + and - signs on the left-hand side. Now, change
the sign in front of one of the Vi , and subtract and divide by 2. Then

vi = (combination of 1's, -1's, and 0's)

Since all of the Vi have length «/(n/m) , there are (n/m) *1's among the
components of each of the Vi . Thus n/m must be an integer. Each row of
the matrix of Vi components has (n/m) x1's and the rest zeros.

The V matrix has m rows and n columns, so the entire matrix
contains n +1's . There cannot be a column of all zeros, so each column
contains exactly one 1 . By making trivial transformations, we can
transform the matrix into n/m copies of the m x m identity matrix placed
side by side. Thus equality occurs if and only if m divides n, and the
maximal m-cubes are unique up to trivial transformations. These maximal

m-cubes are snug-fitting, and they have the property that all of the



vertices of the m-cube are also vertices of the n-cube.

The V matrix for the largest square in a tesseract, for example, may
1010}
0101

[1100]
0011

A projection of it is shown in Figure 1.

be written as

or as

(Please insert Figure 1 here.) \:{g‘aum ,

The largest 4-cube in a 12-cube may be written as

p—

——

111000000000 |
000111000000
000000111000
1000000000111 |

Looking for the Largest Cube in a Tesseract

To try to find the largest cube in a tesseract, | computed formulas for the
components of three orthonormal vectors Vi , in 4-space, which were
functions of 6 angles (similar to the 3 Euler angles used to specify the
orientation of a rigid body in 3-space). For each orientation (with the
angles varying in steps of 5° ), the computer computed R, and we printed

the cases in which R < 1. The results suggested that the smallest value of



R occurs when the cube is snug-fitting (R1 = R2 =R3 =R4 ) and the V

matrix has a triangle of zeros:

We shall prove that, of all matrices with orthonormal rows and zeros as
above, the minimum value of R occurs when all "column-sums" are equal,
and we find this value of R.

The above matrix can be parametrized in terms of 3 angles (where

sa = Sin o, Ca = COS a, etc.) :

| -sa -Ca 0 0 ]
-Ca. SB sa Sp ~-CP 0
-Ca CPp Sy Sa CP Sy SP Sy -Cy _|

——

We want to find the values of a, B, and y which minimize R.
From the above matrix,

R1 = Isal + lca sl + lca cB syl, etc.

If we let o' be the angle (in the first quadrant) such that sina' = Isinal,

cos a' = lcosa |, and similarly for § and y, then we may write

R1 =sa' +ca'sp'+ ca'cp'sy’



R2 = ca' + sa'sp' + sa'cp'sy’
R3 =cp' + sp’sy’

R4 =cy'

with 0 <a',B'y' < 90°.
Since R = max Ri, i = 1 to 4, is a continuous function of o', ', and y', on a

compact set, there must be a minimum value. We can prove that this

minimum value is strictly less than 1, by showing that we can choose the

angles so that R is less than 1.

First, choose o' sothat 0 <a' < 90°. Then sin a' and cos o' are < 1.
Next, choose §' such that sa'+ca'sp' and ca'+sa'sp' and cp' are < 1. Finally ,
choose y' so that R1, R2, R3, and R4 are all < 1.

We will now prove that the minimum of R occurs at values of o', g,
and y' which make all of the Ri equal.

First we show that the minimum does not occur on the boundary
(where at least one of ', g',y' isO0or 90° ). Ifa' =0, thenca' =1 so
that R2 = 1. Similarly, if p'=0,thenR3 2 1, and ify' = 0, thenR4 > 1.

If o' =90°, then ca' = 0 so we have zeros at least in the following

places:
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X000
0XXO0
OXXX

Then in the upper left corner we must have a 1, soR 2 1. If ' = 90°, then

cos ' = 0, so we have

XX00
XX00
00XX

The upper left 2 x 2 matrix now corresponds to the largest square in a
square, so that max (R1,R2) 2 1,s0R 2 1. Finally, if y' = 90° then we
have cos y' = 0, so the matrix looks like this:

XX00
XXXO0
XXX0

and now we have the largest cube in a cube, so max (R1, R2, R3) 21, soR
2 1. Thus the minimum does not occur on the boundary, so we can now
assume that 0 <a', p', ¥y <90°.

Suppose R = R1 > R2, R3, R4. (We say that the only "maximal column" is
the first column.) Then we can decrease R1 slightly by decreasing y'.
This decreases R.

Similarly, if R = Rz and the only maximal column is column 2, then
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we decrease y' , thus decreasing R. This also works if the maximal

column is column 3, or even if there are 2 or 3 maximal columns among

the first three columns.

If instead R4 is largest, we increase y' slightly, which decreases R.

Next, suppose R1 and R4 are largest. Note that 02R1/0a'2 < 0, while R4
is independent of o' . Thus, if OR1/0a' > 0, we decrease o' slightly,
decreasing R1 and leaving R4 unchanged. If OR1/0a' < O, we increase o'
to decrease R1. If OR1/0a' happens to be zero, then since the second
derivative is negative we can decrease R1 by changing o' slightly in either

direction. This reduces this case to the case in which only R4 is equal to

R. (We could have changed g' instead.)

If R2 and R4 are largest, a similar argument applies. If R3 and R4
are largest, a similar argument shows that we can decrease R3 by
changing g' slightly.

If R1, R3, and R4 or R2, R3, and R4 are largest, then we change o'
slightly, reducing it to the case in which only R3 and R4 are largest.

The last case to consider is the one where R1, R2, and R4

are largest. Since R1 =R2,

(sa')(1-sp'-cp’ sy') = (ca')(1 - sp' - cB' sy').
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Thus either o' = 45° orsp'+cp' sy' =1, or both.

If o' = 45° ,then we can change B' slightly so that R1 and R2 both

decrease, while R4 is unchanged.

If sp'+cp'sy'=1,thenR1 =sina'+ cosa', but thenR1 > 1, so this
is not a maximal cube. (Also, then R1 cannot be equal to cos y' .)

We have thus found that the minimum R occurs when o', ', and y'

are chosen such that R1 =R2 =R3 =R4 = R. This will give us the largest
cube in a tesseract with the triangle of 3 zeros in its V matrix. The 3
equations in o', g, and y', with cos y' = R, can be reduced to an equation for
R alone (after doing a lot of algebra):

4R4 - 6+/2R3 +11R2-6+4/2R+2=0.

We can get rid of the square roots, which occur because o' = 45°, and we

obtain
16 R8 + 16 R6 - 7R4-28R2 +4=0.
Finally, letting x = 1/R2 , we get

4x4 - 28x3-7x2+16x+16 = 0.

There may be extraneous roots, but we know that at least one root is

genuine, because of our previous work, and corresponds to the largest cube
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in a tesseract with the triangle of zeros in its V matrix.

Using the quartic equation formula, we find that there is only one
root in the appropriate range (that is, between 1 and 4/3): we call this
root xo. The side of this cube in a unit tesseract is 4/xo , where
xo= 7/4 +r/2 - d/2 where
d=+(105/4-y +90/r), r=4/(14+y), y=a+b-7/12,
a=[184841/1728 + (5/2) +/1290 ]A(1/3)
andb=[184841/1728 - (5/2) «/1290 ]A(1/3)

(where A denotes exponentiation)

These formulas yield +/Xo=~ 1.00743475688.

Thus we now have a rigorous proof that f(3,4) > /xo where xo is the

root of 4x4 - 28x3 - 7x2 + 16x + 16 = O which is between 1 and 4/3.

Other cases wheren=m + 1

Similar arguments apply when m = 1, 2, 4, and 5; the number of

angles is equal to m . The matrices have the forms

[- siha - cosa]l (m=1) which becomes [ -4/2/2, -y/2/2 ]

- Sina - COS « 0
- Ca SP sa SB - cp




(for m = 2) which becomes

- J2/2 —J2/2 0
- \/2/6 \J2/6 ~(2/3)/2

or, with a different normalization:
3/4 3/4 O
1/4 -1/4 1

and for m = 4, the triangle of zeros looks like this:

XXXX00
XXXXXO0
XXXXXX

— ~1

(In the next section we will give a procedure for computing the sines and

cosines in the matrix elements, for all m.)

Although | have not given a rigorous inductive proof, it seems clear that
f(m,m+1) is always strictly greater than 1. For m = 2, we obtain Martin
Gardner's square in a cube. However, we have not yet proved that it is

optimal.
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By considering these matrices for n = m+1, with the triangles of
zeros and the parametrizations in terms of sines and cosines of m angles,
we can derive a lower bound for f(m, m+1) which is larger than 1. We
shall not describe the proof here, but the result is that, for m > 1,

f(m, m+1) > {1-(1 = v2/2) A[3A(m-1)]/ (32) A ([3A(m-1) = 11/2)} A (1)

where A denotes exponentiation.

In deriving this lower bound, | actually used a formula from special
relativity! | needed a "nice" function of two variables to use in place of
the "max" function. Both variables were less than 1, and | wanted the
function to be less than 1, and at least as large as both of them. So | used
the velocity addition formula from special relativity (with c, the velocity
of light, set equal to 1) !

Plane (2-dimensional) rotations

For any V matrix, we can obtain a new one by a rotation involving 2
columns, where, say, column i becomes (column i) cos 8 + (column j) sin 6,
and column j becomes (column j) cos 8 - (column i) sin 6 . In fact, the

matrices in the previous section can be obtained by starting with a matrix

such as
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0100 (form = 3)

or

01000 (for m = 4)

o
o
o
coudd
Q

and performing m rotations through different angles, in which the ith

rotation involves columns i and m+1.

Using small rotations to decrease Ri (or "column-sums")

In this section we shall prove two useful theorems, although we will
discuss specific cases to make the proofs less abstract and easier to

understand.

Suppose that (A, B, C)T and (D, E, F)T are the ith and jth columns,

respectively, of a V matrix. Let a = sign of A, b = sign of B, etc. Assume

that the ith column contains no zeros. Let us make a rotation: col. i —
(col. i) cos 8 + (col.j)sin® ,col.j — (col. j)cose® - (col.i) sin 6 .
Then, A — Acos6 +Dsine ,sothatlAl - IAcos8 +Dsin6 |=a (A

cos 6 + Dsin@), for 6 sufficiently near zero. We find that dIAl/do at o

= 0 is aD, while d2lAl/de2 at 6 =0 is - |Al. Thus dRi/d6 at® =0isaD +
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bE + cF, while d2Ri/d62 at 6 = O is - |Al - [Bl - ICl, which is always
negative.

This shows that we can always decrease Ri by making a small
rotation. This theorem, which we shall call Theorem 1, can often be used
to decrease R in particular situations to show that a particular V matrix
is not optimal. For instance, if a V matrix with no zeros is not snug-
fitting, then one can make small rotations to decrease R, so the m-cube
cannot be optimal.

Even if the ith column contains zeros, we may still decrease its
column-sum if the jth column contains a zero in every row in which the
ith column contains a zero (unless, of course, the ith column contains all
Zeros).

Theorem 1 can be used, in most places, instead of our arguments
about increasing or decreasing the angles o', ', and y' , to show that we
can decrease R for our cube in the tesseract. One has to be careful
sometimes to perform the small rotations in a particular order, since
rotating columns i and j may change a zero in column j to a nonzero

number, which may make prevent some other rotation from decreasing R.

Another useful theorem about two columns is especially useful
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where Ri =Rj , and shows that sometimes we can decrease Ri and R;

simultaneously. Let the ith and jth columns be (A, B, C)T and (D, E, F)T
as before. Suppose that A, B, C, and D are positive and E and F are

negative. Then dRi/dé at 6= 0 is aD + bE + cF, while dRj/d6 at 6 =0 is -
dA -eB-fC. SodRi/déeate =0isD + E + F =D - IEl - IFl while dR;j/de

at 6 = 0is - A + B + C. Assuming that neither derivative is zero, the two
derivatives have the same sign if A - B - C and D - I|El - IFl have opposite
signs, and then Ri and Rj can both be reduced by the same small rotation.
We shall call this Theorem 2.

Both of these theorems will be used in the next section, in order to find
the largest square in an odd-dimensional cube.

The Largest Square in an Odd-Dimensional Cube

To find the largest square in an n-dimensional cube for all odd n, we
shall find it convenient to distinguish two possibilities:
(1) f(2,3)>1
(2) f(2,3) =1
We may already know that f(2,3) >1, but we will pretend we don't know
that, to show that we can prove it and derive the largest square in any odd-

dimensional cube, without being clever enough to guess it first.
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Consider possibility (1). We normalize the V matrix so that the
largest column-sum is 1. If f(2,3) >1, then we can append a 2x2 identity

matrix to the 2 x 3 V matrix to obtain a valid V matrix for n = 5, so that

[f(2,5)]2 = [f(2,3)]2 + 1. We can continue this process indefinitely, to
show that if f(2,3) >1, then f(2,5) > /2, f(2,7) > /3, and so on.

We will first prove that, for maximality, all column-sums are equal.
That is, the square is snug-fitting: it touches all hyperfaces of the n-
dimensional cube.

First of all, the optimal V matrix cannot have any columns which
have both entries equal to zero. For if it had an all-zero column, the
matrix would correspond to the largest square in an (n-1)-cube, and we
would be in possibility (2). Thus, each column of the V matrix either has
both entries nonzero (we will call this type 1), or has a zero in the second
row (type 2) or in the first row (type 3), but not both. The idea of the
proof is to attempt to use Theorem 1 to show that, for each of the three
types of columns, all maximal columns can be "shrunk" (have their R
values decreased), by performing small rotations with other columns of
the same type. So we have to determine when this will not work. If this
procedure were always possible, we would know already that the maximal

square in any odd-dimensional cube must be snug-fitting, if possibility (2)
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is correct. Actually, columns with no zeros can be made smaller by
rotating them with any type of column. The only difficulty occurs if there
are maximal columns with a zero, with no corresponding non-maximal

columns to rotate them with. We may assume that all columns with both
elements nonzero have been shrunk and are non-maximal. Thus, the

matrix looks like this:

all equal
| |
Nonzero| nonzero } 00...0
part (00...0 /] nonzero
(all non- t
maximal) all equal

Because the two rows of the matrix are or;chogonal, the shorter rows of
the nonzero part are also orthogonal. Then we can reduce the nonzero
elements of type 3 by some constant factor, and multiply the second row
type 1 elements by a common factor to increase them slightly, so that v»
remains the same length. We can do a similar thing for the type 2
columns. This reduces R. This will work unless there are no type 1

columns; that is, every column has a zero. So we will show that such a V

matrix cannot be maximal.
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If the maximum column-sum is normalized to 1, then for n odd, since

all elements are < 1, then [f(2,n)]2 is at most (n-1)/2. But then we have
case (2), a contradiction. This completes the proof that any optimal
matrix is snug-fitting.

We will also need to show that neither v1+v2 nor Vi-V2 can have
any zero components. Either one of these would represent a line segment
in a unit (n-1)-cube, which is the diagonal of the inscribed square. To
obtain the side of the square, we divide +/(n-1) by /2. Thus, f(2,n)

cannot be greater than +/[(n-1)/2] , which is possibility (2).

Therefore, the V matrix can be written as
a1 az... by ... 0....0]
1-a1 1-a2 .. | -(1-b1).. 1....1

where none of the aj or bi are equal to 1/2.

1...1
0...0

Next, we assume, with no loss of generality, that one of the aj is

greater than 1/2. Then, by Theorem 2, each of the bi must be greater than
1/2; otherwise we could reduce at least two column-sums. Applying this

theorem again, we find that all of the ai must also be greater than 1/2.

So we can now write the matrix as

172 + ¢ 1/2+cz...1/2+d1...S1..1)0...o]
1/2-¢c1 1/2-c2..-(1/2-d1)...]o..0/1.. .1
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All ci anddi are strictly between O and 1/2. In the above matrix we now

have 4 possible types of columns, and the numbers of columns of each type

will be called i+, i-, i1, and i0, from left to right.

Now we can use the method of Lagrange multipliers to find possible

maximal V matrices. There are two constraints: the two rows of the

> ->
matrix, v1 and vz , are orthogonal and have equal lengths. We want to

- o 4 o
maximize, say, Ivil2 . The constraints are
m— '

21(1/2+c|)(1/2-c|) -2(1/2+d.)(1/2-d.) 0

“+
E(1/2+c|)2 + 2(1/2+d.)2 +il = 2(1/2—c.)2 + 2(1/2-d|)2 + i0

V=

where we wish to maximize
\+ .

2(1/2+c|)2 + 2(1/2+dc)2 +i1.
These equations simplify to
vt

(1/4)[(i+) -(i-)] - 2 ci2 + 2 di2=0

L= (=)
+ =
22ci+22di+i1-i0=0

ST

where we want to maximize
V=

2 (ci24ci) + Z(duz +di) + (1/78)[(i+) + (i-)] +i1.

V=
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However, there is a theorem which will tell us that none of the "points"
we find by using Lagrange multipliers will be maxima. This is the second
derivative test for constrained relative maxima. The proof of this
theorem is given as a homework exercise in [3]. This theorem is a
generalization of the second derivative test used when maximizing an
unconstrained function of several variables, to determine whether a
particular critical point is a maximum, a minimum, or a saddle point. The
unconstrained theorem tells us to look at the matrix of second partial
derivatives of the function: if this matrix is negative definite, then the

point is a local maximum, and if the point is a local maximum then the

matrix is negative semidefinite.
In the constrained version of the theorem, the test is the same,
except that in place of the function to be maximized, we use this function

plus the sum of the Lagrange multipliers multiplied by the corresponding

constraints.

In our particular optimization problem, the variables are the ¢j and
di , and there must be at least one ci and at least one di . This is because,

as we have already shown, we never obtain a maximal square in an odd-

dimensional cube when every column of the V matrix contains a zero, and,

since the rows are orthogonal, the existence of a ci requires at least one
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di, and vice versa.

The matrix of 2nd partial derivatives in our constrained problem is
very simple: It is a diagonal matrix, and the diagonal elements consist of
2(1-\1) for every ci and 2(1+A1) for every di, where A1 is the Lagrange
multiplier corresponding to the first (orthogonality) constraint. Since
2(1 +21 )+ 2(1 - A1 ) is positive, it follows that 2(1 + A1 )or2 (1 -11)
or both must be positive, so we never have a maximum.

Therefore, the only possible maxima occur in cases for which
Lagrange multipliers cannot be used. There are 2 constraints. If there are
3 or more variables, then Lagrange multipliers can be used provided that

the matrix of first partial derivatives of the constraints with respect to

the cj and di has rank 2. This matrix is:

2 2

-2c1 -2¢C2 ...
2 2

2d1 2d2... ]

Since the cj and di are all positive, there are always 2 linearly independent

rOWS.

The only other possibility is that Lagrange multipliers cannot be

used because there are at least as many constraints as variables. That is,

(i+) + (i-) £ 2. We have already seen that there must be at least one c;
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and one di . Thus optimality occurs when i+ = i- =1,

For n = 3 (the square in the cube), since 11/2+c1l>11/2-c1l

and 11/2+d11>11/2-d1l, we must have il =0 and i0 = 1. We obtain the V

matrix
3/4  3/4 o]
1/4 -1/4 1

so we now know that f(2,3) = 1/(9/8) , and the optimal square is unique up
to trivial transformations. Now we know that possibility 1 is indeed

correct, so we need not consider possibility 2.

For n 2 5 and odd, the V matrix has the form

| 1/2+c1 1/2+d1 1.1 o...o]
_1/2-c1 -(1/2—d1)1 0..01...1

Since l\71| = V2l , the first row must have more zeros than ones. Thus i0
> (n-1)/2andilt < (n-3)/2.
Now, f(2,n) < f(2,n+ 1) =+/[(n+1)/2] . From the ones in the second

row we have i0 < [f(2,n)]2 . Combining these, i0 must be less than

(n+1)/2.

The only possibility is that i0 = (n-1)/2, so that i1 = (n-3)/2. So the

nonzero elements in the V matrix are the same as form =2, n = 3.
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We have thus shown that for all odd n,

f(2,n) = 4/[(n-1)/2 + 1/8] =+/[(4n-3)/8]

and the optimal square is both snug-fitting and unique up to trivial

transformations.

Thus, for example, when n = 5, the optimal V matrix may be written

as
3/4 3/4 0 0 1
1/4 -1/4 1 1 0
Inequalities involving f(m,n)

It is geometrically evident that f(m,n) < f(m,n+1). This inequality
can also be derived by adding a column of zeros to a V matrix. Similarly,
it is obvious that f(m,n) =< f(m-1,n), which may be derived by deleting a
row from a V matrix.

Because we can put an m-cube in an n-cube and then a k-cube in the
m-cube, we see that f(km) x f(m,n) < f(k,n).

However, we have also shown that f(m,m+1) > 1. Using this fact, we
can strengthen our other inequalities to f(m,n) < f(m,n+1) and f(m,n) <
f(m-1,n).

If we start with a V matrix with the maximum column-sum equal to
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one, then we can adjoin an m x m identity matrix to one side, which shows
that [f(m,n+m)]2 2 [f(m,n)]2 + 1.

From a diagram such as Figure 2, we can show that f(km,kn) >
f(m,n), where k is a positive integer.

(Please insert Figure 2 here.) Rgm 9]

More generally, we can show that
f(m1+m2+...+Mmk, N1+ ...+ nk) 2 min[f(m1,n1), ..., f(mk,nk)]
The inequality f(k,m) f(m,n) < f(k,n) can be rewritten as
f(m,n) < f(k,n) / f(k,m).
Setting k = 1, we obtain

f(m,n) £ +/(n/m),

as we found earlier (with equality if and only if m divides n).

Setting k = 2, we find that

f(m,n) < f(2,n) / f(2,m).

We now know that if j is even, then f(2,j) = \/(j/2) , whereas if j is odd,
then f(2,j) = «/[(4j-3)/8] . If mis even and n is odd, we obtain

f(m,n) < f(2,n)/f(2,m) = \/[(4n-3)/(4m)],

which is a better bound than +/(n/m) except when m = 2. Thus, for
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example, if n =m + 1, we have f(m, m+1) <+/[(4m+1)/4m]. So, for m = 4,
= 5, the new bound gives f(4,5) <4/(17/16), whereas the earlier bound
gave f(4,5) < 1/(5/4).
When does f(m,n) = f(2,n)/f(2,m) ?
For m even and n odd, we shall investigate when equality occurs in

f(m,n) </[(4n-3)/(4m)] .

For m = 2, it is trivially true that f(2,n) = f(2,n) / f(2,2), so we will only
consider m 2 4. When is a largest square in an m-cube also one of the
largest squares in the n-cube, with the m-cube in the n-cube? We shall

use normalization appropriate for a unit n-cube. Then,
m/2 m o
> Vi =wi, 2 Vi=wW2
V= = m/2+ 0

-
where w1 = something like (3/4, 3/4,0,0, 1) and w2 = something like

(1/4,-1/4,1, 1, 0).
(Thatis, fori=1,2,j=1ton, wij =0, 1, £1/4, *3/4, with + 3/4

and +1/4 appearing exactly twice, etc.) so that Iwiil + Iw2il=1 foralli =

1 to n. Thus,

m/2

| 2 vij | +|2v.,l =1forallj=1,2,.
= =m/2+
~/2 m/2

But lZVljl ZIle

1= 1= |
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| &d] ™M
and .|ZVij|S,Z|v|j|
1S/ =M+

™M
and ,Z‘|Vij| <1, so
‘:..

mM
I | vijl =1
=\ ~/2 m
Now, X vij =wi1j and 2 vij =w2j

y = 1= My 4|

If wij2 0 for some j, then vij2 0 for all i <m/2
If wij< 0 for some j, then vij <0 for all i <m/2.
Similarly for wzj andi> m/2.
However, the \_;. are all all orthogonal, so that if some vij = O for

some i £ m/2, then all other vij = O for the same j and other i < m/2.

Similarly for i > m/2.

Therefore, for every i < m/2, if one of the vij is equal to wij , then
for all other j, vij = 0. Similarly for i > m/2 and wzj.

But the V. all have equal squared length. The squared lengths cannot
be equal unless for each i < m/2 there is a vij = +£3/4 and for each i > m/2
there is a vij = £1/4, or vice versa. There are only two vij = +3/4 and
only two vij = +1/4, so m can only be 4. The only possibility is that for
each i £ m/2, the vij consist of one +3/4 and (n-3)/4 <+1's, and the rest

zeros, and for each i > m/2 the vij consist of one *1/4 and (n-1)/4
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+1's, and the rest zeros (or vice versa).
However, (n-3)/4 and (n-1)/4 cannot both be integers, a
contradiction. This proves that for m even and 2 4, and n odd, f(m,n) is

strictly less than +/[(4n-3)/(4m)] .

General Infinitesimal Rotations

We now consider a general method of finding the largest m-cube(s)
in an n-cube, by applying an arbitrary infinitesimal rotation to
the '\7. . This technique reduces the problem to a system of polynomial
equations and inequalities. We will illustrate this method for m = 3, n =
4. but it can be applied to any m and n.

In 4-dimensional space, an infinitesimal rotation matrix has the

form

{1 )
e12 €13 eil4
14+E= -e12 1 €23 e24 (1)
-e13 -e23 1 €34
_-e14 -e24 -e34 1 |

Let the matrix 1 + E in (1) be multiplied by the transpose of the V

matrix:



Then

Y A+Be12+Ce13+De14, ... “
[1+E][VT]= | -Ae12+B+Ce23+De24, ...

(a 4x3 matrix).
If we take absolute values and assume for now that the matrix V
contains no zeros, we find that the infinitesimal rotation converts Rj to

R1', Rz to R2', etc., where

R1'-R1 = a(Be12+Ce13+De14) + f( .. ..

R2'-Rz2=b( ..... )+ ... (etc.)
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(where a = sign A, b = sign B, etc.; that is, a = 1 if A is positive and a = -1

if A is negative, etc.). This may be written as

Y R1'-R1
R2'-R2

R3'-R3
R4'-R4

where T is the following 4 x 6 matrix:

-bA-gF-IK
0
o)

Now, suppose that that the original V matrix has only one maximal

column: the first. Then we can decrease R if there is some choice of the

eij's for which R1' - R1 < 0. This is possible provided that T11, T12, and

0
~cA-hF-mK
0

€23
€24
€34

YaB+fG+kL aC+fH+kM aD+fJ+kP

| e12 )

¥ €13
= ITJ €14

g

0

0 0 ]

0 bC+gH+IM bD+gJ+IP 0

0 -cB-hG-mL

-dA-jF-pK

0

0 cD+hJ+mP
-dB-jG-pL -dC-jH-pM |

T13 are not all zero. In general, if V has any number of maximal columns,

we can decrease R if the matrix Tmod consisting of the corresponding

rows of T has maximum rank. So, to find all possible cube orientations

which might be locally optimal, we need to determine when Tmod has less

than maximum rank.

The procedure is slightly more complicated if V contains zeros in
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any of its maximal columns. For instance, if A = 0, then we have to deal

with absolute values such as | Be12+Ce13+De14 | in the expression for
R1'-R1. We can proceed as follows: if A = 0, then we consider the

inequality

Be12 + Ce13+De14>0

and replace a by 1 in the equation for R1'-R.

Including this equation with the others corresponds to adding
another row to Tmod:

[BCDOOO]

Then, if we cannot make Tmod applied to (or multiplied by) [ e12 |

€13
€14
€23
€24
€34

equal to anything we like, it must be that Tmod has less than maximum

rank.

We may also consider the effects of | Be12 + Ce13+De14l =0 and

IBe12 + Ce13 +De14) < 0. But these lead to matrices of the same rank and
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need not be treated separately.

We have been assuming that Tmod has no more rows than it has
columns. If this condition is not satisfied, then, instead of using a Tmod
matrix, we need to solve a system of equations; for instance, we could be
considering the case in which V is snug-fitting (R = R1 =R2=R3 =R4 )
and the matrix elements A, G, and M are zero, in addition to the
orthonormality of the rows of V. This leads to 9 polynomial equations in 9
unknowns. Not surprisingly, we have not been able to solve these
equations and find out whether we can obtain a larger cube in a tesseract
than the one we have already discussed. However, there are algorithms
for doing this, which are described in [4].

Now consider a cube in a tesseract with R = R1 > R2, R3, R4 , with

no zeros in the first column of V. For possible optimality, Tmod must
have rank zero, where
Tmod = [ aB+fG+kL, aC+fH+kM, aD+fJ+kP, O, 0, O ].

This implies that the first three elements of Tmod are zero. Thus,

a(B,C,D) + f(G,H,J) + k(L,M,P) = (0,0,0)
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. - —> > ]
This means that tvitvztv3 contains 3 zero components for some

combination of signs. However, it is impossible for 171 5/’2.{\73 to contain
even one or more zero components for any combination of signs, by a
generalization of Phil DeVicci's Theorem. For if it does, then a main
diagonal of the cube fits into a unit cube parallel to one of the hyperfaces
of the unit tesseract. Therefore, the cube has a side less than or equal to
1 and is not optimal. (Philip DeVicci proved that form = 2, n = 3,71 +:72

could not have any zero components.)

Next, let us consider R = R1 =R2 > R3, R4 with no zeros in the first

2 columns of V. Then

Tmod = | aB+fG+kL, aC+fH+kM, aD+fJ+kP, 0O 0 0
-bA-gF-IK, O 0 bC+gH+IM, bD+gJ+IP, 0

has rank 1 or less, so some linear combination of the two rows of Tmod is
zero. This is obviously impossible by GPT (generalization of Phil's
theorem). In fact, the same thing happens when there are 3 maximal
columns containing no zeros. An optimal V matrix with no zeros must be
snug-fitting, as we proved previously.

Next, we consider the case in which only the first column is

maximal, with A = 0 and no other zeros in this column. Thus we have
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B+fG+kL C+fH+kM  D+fJ+kP O 0 O |
Tmod =

B C D O O O

or, more simply,

S

| fG+kL  fH+kM  fl+kP O
0

B C D

L

0 0
0 0
must have rank 1 or less. This implies that (B,C,D) and f(G,H,J)+k(L,M,P)
are parallel.

Recall that in this case
\oBCD ~

V= FGHJ
LKLMP“J

Since V1 _L.-\?Z , (B,C,D) L (G,H,J) and (B,C,D) L (LM,P). Also, f and k are
each 1 or -1. So (B,C,D) L f(G,H,J) + k(L,M,P). But the only way that two
vectors can be both parallel and perpendicular is if one or both are zero.

If (B,C,D) were zero, then Iyﬂ would be zero, which is impossible. Thus,
(G,H,J) £ (LM,P) must be zero, which implies that —\72 + 73 must contain
three zeros. But'\jz i—\;3 cannot contain two or more zeros by GPT. For if s
is the side of the cube in the unit tesseract, then 7253 has length s\/2 .

This must fit parallel to one of the coordinate planes inside the tesseract,

and cannot be longer than the diagonal of a square of side 1, so sy/2<+/2.
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Thus s £1 and the cube cannot be optimal.

Similar proofs can be used to show that A = O is also impossible if
the first 2 or the first 3 columns are the only maximal ones and do not
contain any additional zeros. Again we find that only the snug-fitting
case can be optimal.

Similar proofs also apply to 2 zeros either in the same row or the
same column of V. That is, if A and B are the only zero elements in the
first 2 columns, and only these columns are maximal, then V cannot be
optimal, nor can it be optimal if there is a third maximal column
containing no zeros; also, if A and F are the only zero elements in the first
column, and only this column is maximal, then V cannot be optimal, nor
can it be optimal if there are one or two other maximal columns
containing no zeros.

However, if the 2 zeros are in neither the same row nor the same
column, then the problem is more difficult. If A and G are zero and are the
only zero elements in the first two columns, and the first two columns
are the only maximal columns, then we can prove that V is not optimal,

and because of the difficulty of the proof, we shall describe it here in

detail. Tmod is shown below:



o

o ¢

38

kL  fH+kM fJ+kP 0 0 0
B C D 0 0 0
~IK 0 0 bC+IM bD+IP 0
i = 0 0 H J o) N

Assume that some linear combination of the rows of Tmod is zero, with
coefficients ai, a2, a3, a4, respectively.

If only a1 is nonzero, then f(H,J)+k(M,P)=0, so V cannot be optimal
by GPT. Similarly if only a3 is nonzero.

If only a2 is nonzero, then B, C, and D are all zero, which is
impossible. Similarly if only a4 is nonzero.

If only a1 and a2 are nonzero, then
a1[f(G,H,J)+k(L,M,P)]+a2(B,C,D) = 0.
Thus f(G,H,J)+k(L,M,P) = —(az/a1)(B,C,D). (2)
But f(G,H,J)+k(L,M,P) L (B,C,D).
Taking the dot product of both sides of (2) with (B,C,D) yields B=C =D =
0, which is impossible.

If only a1 and a3 are nonzero, then f(H,J)+k(M,P) = O (non-optimal by
GPT).

If only a1 and a4 are nonzero, then H and J are 0 (non-optimal).

Only a2 and a3 nonzero -- C and D are O (non-optimal).
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Only a2 and a4 nonzero -- C and D are O (non-optimal).
Only a3 and a4 nonzero -- this is similar to a1 and a2 nonzero.

If exactly 3 of the ai are nonzero, similar situations occur. Thus we
now assume that all four ai are nonzero.
We have ai[f(H,J)+k(M,P)] + a2(C,D) =0
and a3[b(C,D)+l(M,P] + a4(H,J) = 0.
—>
Let Um(CD), va (HJ), and W = (MP).
Then a1(f3+k'v3) + azﬁ= 0, and a3(b3+h7v) +a4v=0.
: - = , . -
Neither u nor v is zero (either would make V non-optimal). Also, if w = 0
> . —> —
then u and v are parallel. But u and v are also perpendicular (because A = G
= 0) and nonzero, which is a contradiction. So W is also nonzero. Thus,
U = C1(fv+kw)
— - -
v = C2(bu+iw),

with C1 and Cz nonzero. Substituting each of the last 2 equations into the

other yields
(1 - C1C2fb)u = C1 (fIC2+k)W (3)
(1 - C1C2fb)v = C2(bkC1+I)w (4)

If fIC2+k =0, then C1C2fb = 1. Since f, b, and | are 11, we have C1C2 = b,

and C2 = -kfl, so C1 = -kbl. Thus
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Similarly, if bkCi+l =0, then C1C2fb = 1, so C1C2 = fb, and C1 = -Ibk,

C2 = -lfk, so v = xutw, so V is non-optimal. Thus the right-hand sides of

: - — -
(3) and (4) are nonzero. This shows that u and w are parallel, and so are v

- —> .
and w. Since 3, v, and w are all nonzero, it follows that U and Vv are
[ .’ 9 [

parallel. Since u and v are also perpendicular to each other, we have a
contradiction, which proves that a1 through a4 are all zero and thus Tmod
cannot have less than rank 4 in this case, so V is non-optimal.

If A and G are zero and are the only zero elements in the first three
columns, which are the only maximal columns, then it is trivial to show
that a5 must be zero. Then this case reduces to the previous case. Thus
we have shown that if A = G = 0 and the first 2 columns (at least) are

maximal and A and G are the only zeros in the maximal columns, then V

must be snug-fitting to be optimal.

To illustrate an even more difficult case, consider the case of A = G

=M=0, withR=R1 =R2=R3>R4 . Thus V looks like this:
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kL fH fl+kP O 0 o
-IK O 0 bC bD+IP 0
Tmod = 0 -hF O -cB 0 cD+hJ
B C D 0 0 0
-F O O H J 0
0 -K O -L 0 P )

Then we will have 9 equations in 9 unknowns: 6 equations for

orthonormality: CH + DJ = 0, B24C24D2 = 1, etc.; also, R1 =Rz , and R2 = R3
and finally det(Tmod) = 0. With no loss of generality, D, J, and P may be
assumed positive (we shall show later that a maximal cube in a tesseract
cannot have more than 3 zeros in its V matrix). Also, we may assume that
C > 0, which makes H < 0; and assume L > 0O, which makes B < 0, and assume
F>0,sothat K< 0. Thusin Tmod, k=-1,f=1, b = -1, etc.; there is only
one set of signs to consider. But we still have a horrible set of 9
polynomial equations in 9 unknowns.

In general, we always get a system of polynomial equations with
integer coefficients (including the setting of subdeterminants to zero),
together with inequalities suchas C>0,H<0,andC-H>D +J +P.

The snug-fitting case with exactly two zeros in the same row, and
all other elements non-zero, can be shown to be non-optimal, but we omit

the proof.
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We have seen that an optimal V matrix with no zeros must be snug-
fitting. We shall derive equations for one of these sub-cases. There are
more than one sub-case because each element of V may be positive or
negative. Many of these sub-cases can be eliminated as equivalent to
others, because we may change all the signs in any row or column, or
permute rows or columns. Other sub-cases can be eliminated by the
constraint that the rows of V are orthogonal. Still other sub-cases can be

shown to be non-optimal by Theorem 2 in the section on plane rotations,

together with GPT. Here is an example:

ABCD | V4 +44
FGHJ | = ++--
_KLMP__J + -+ -

We use the normalization here in which all column-sums are equal to 1.

Thus a cube cannot be maximal unless A2+B2+C2+D2 (or F2+G2+H2+J2,

etc. -- they are all equal) is greater than 1. [In fact, it must be at least
(1.007434...)2.]

By GPT, no matrix element may be * 1/2. Then, by Theorem 2
applied to columns 1 and 2, either IKl and IL| are > 1/2 and IAl + IFl and IBI +
IGl < 1/2, or IKl and ILI are < 1/2 and lAl + IFl and IBI + IGl > 1/2. Next we

apply the theorems to columns 3 and 4, obtaining an analogous result. We
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can eliminate two of the "sub-sub-cases" because they lead to one or more
row vectors with a length less than 1. Then we can apply Theorem 2 to

columns 1 and 3, and then to 2 and 4, and similar arguments will eliminate

the entire sub-case.

Now let us consider Tmod, which, with no non-maximal columns and
no zeros, is identical with the 4x6 matrix T.

For an optimal cube, T must have rank less than 4. This is equivalent
to the property that all 4x4 subdeterminants are zero; but it is easier in

this case to consider linear combinations of the rows of T, with

coefficients a1, a2, a3, and a4, and set the linear combinations equal to

Z€r0.

From GPT, no element of T such as aB+fG+kL can be equal to zero.

in

I ABCD
V= FGHJ
KLMP J

-

let us assume that J, M, and P are negative, with all other elements of V

positive. We now set
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a1 (B+G+L)+ a2 (-A-F-K) =0
a1 (C+H+M) + a3 (-A-F+K) =0
a1 (D+J+P) + a4 (-A+F+K) =0
a2 (C+H+M) +a3 (-B-G+L) =0
a2 (D+J+P) + a4 (-B+G+L) =0

a3 (D+J-P) + a4 (-C+H+M) =0

However, the cube is snug-fitting, so that A+F+K = B+G+L = C+H-M = D-J-
P. We may normalize V so that these sums and differences are all equal to

1. We find that a1 = a2 , so the equations simplify. Note that if any one

of a1, a2, a3, and a4 is zero, then they are all zero. So we may assume
that they are all nonzero.
Also, -A-F+K = -1+2K, etc.
a1 / a3 = (A+F-K)/(C+H+M) = (1-2K)/(1+2M)
a1 / a4 = (1-2A)/(1-2D)
a2 /a3 (=a1 /a3 )=(1-2L)/(1+2M)
a2z /a4 (=a1 /as )= (1-2B)/(1-2D)

a3 /a4 =(1-2H)/(1+2J)
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From these equations we see that A = B and K = L. In fact, since R1 =Ry,

the first 2 columns of V are identical. Thus we have only 9 unknowns

instead of 12. In addition, we get another equation: since

(a1/a3)(a3/a4)(as/a1) =1,

we obtain (1+2M)(1+2J)(1-2A) = (1-2K)(1-2H)(1-2D). We end up with 9

equations in 9 unknowns.

Zeros in the V matrix form =3, n =4

Here we show that there cannot be more than 3 zeros in the V matrix
for a maximal cube in a tesseract, and we prove some other restrictions
as well, which are necessary for optimality.

We previously found that if V contains either 0, 1, or 2 zeros in its
maximal columns, and is optimal, then the cube must be snug-fitting.

If there are 3 zeros all in different rows and different columns, then
the cube is either snug-fitting or there are 3 maximal columns -- the
columns containing the zeros.

If there are 3 zeros in one column, the cube is not optimal. The same

applies to 3 zeros in one row. If there are 3 zeros in a triangle:
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XX00
XXXO0
XXXX

where the X's may be zero or non-zero, the cube must be snug-fitting.
This is our candidate for optimality. There cannot be any additional zeros.

There are 2 other cases to consider with 3 zeros. One is

OXXX
OXXX
X0XX

(case 1) and the other is

00XX
XX0X
XXXX

(case 2).

In both cases above, the X's may be zero or non-zero. In case 1, V can be

parametrized as follows:

0 sin B -cos B sin y -cos g cosy |
0 cos f sin f sin y sinf cos vy
L COS a 0 -sin a COoSy sinasiny

We see that R2 = Isin gl + Icos gl , which is 2 1 for all 8 , so that such a

cube cannot be optimal.
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— —> .
Finally, in case 2, for vi 1 vz, either vi4 or v24 (or both) must be

zero. If via = 0, we have a row of 3 zeros, so this is not optimal. If v24

= 0, we may parametrize V as follows:

\’ 0 0 sin a COS a ]
sinp cos f 0 0
COS yCOS B -cos y sin Sin y COS a -sin y sin a _

We introduce primed angles with 0 < a',',y' £90°. Then

R1 = sinp' + cos y' cos '
R2 = cos B' + cos y' sin B°
R3 =sina' + siny' cos o'

R4 = cos ' + sin ¥' sin a'

Assume first that O < o',p',y' < 90° . If there is only one maximal column,
we may increase or decrease y to decrease R.

If columns 1 and 2, or 3 and 4, are the only maximal columns, we
may change y to decrease both maximal column-sums.

If columns 1 and 3, or 1 and 4, or 2 and 3, or 2 and 4 are the maximal

columns, we may change a or § slightly so that one column-sum
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decreases and the other is unchanged.

If columns 1, 2, and 3, or 1, 2, and 4 are maximal, then we change «

slightly. If columns 1, 3, and 4, or 2, 3, and 4 are maximal, we change 8
slightly.
If ' orp' are O or90°, thenR 2> 1.

If y' is 0 or 90° , then one of the column-sums will be sin a' + cos

a' orsinp' +cosp',soR=1.

Thus an optimal cube with this form must be snug-fitting, with 0 <
a',B'y < 90°. By doing some simple algebra we find that o', ', and y'
are all 45°, so that R = 1/2 + \/2/2 > 1, so that even this is not optimal.

The above also shows that for m = 3, n = 4, V may not have 4 or more
zeros. Thus the only possibilities are those shown below (where the X's
represent non-zero matrix elements):

XXXX 0XXX 0XXX OXXX XXO00
XXXX XXXX 0XXX XO0XX XXXO
XX XX XX XX XXXX XXXX XXXX
which must be snug-fitting to be optimal, and
0XXX

X0XX
XX0X

for which at least the first three columns must be maximal for possible
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optimality. Notice that we have eliminated almost all non-snug-fitting

cases!

Lagrange Multipliers (again)

For general m, n, an alternative technique to the method of
infinitesimal rotations is Lagrange multipliers. For instance, consider

. ABCD |
FGHJ
KLMP

L

with columns 1, 2, and 3 maximal, and A = G = M = 0. Then with no loss of
generality we may assume that D, J, P, C, L, and F are positive, and that B,
H, and K are negative.

We want to maximize A2+B2+C2+4D2, with A24B2+C24D2-F2-G2-H2-)2

= 0, A2+B2+C24D2-K2-1 2-M2-P2 = 0, AF+BG+CH+DJ= 0, etc.; also, |IAl+IFI+IK|
=1, etc. sothat F-K = 1, L-B = 1, and C-H < 1, and D+J+P < 1. However, we
may eliminate A, G, and M from the problem entirely, since they are all
zero. Thus we want to maximize B2+C2+D¢, etc. Let the Lagrange
multipliers be A1, A2, etc. We want to apply the constrained 2nd

derivative test in [3], and the diagonal elements of the matrix of 2nd
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partial derivatives include 2(1+A14A2) (3 times, for B, C, and D), -2x;

(3 times), and -2),2 (3 times). These add up to 2, which is positive, so at
least one diagonal element is positive. So none of the "points" which we
get from Lagrange multipliers are maxima. The only possibility is that
the matrix of first partial derivatives of the (equality) constraints with
respect to B, C, etc., has less than maximum rank; that is, since there are
now 8 equality constraints and 9 variables, all 8 x 8 subdeterminants can
be set to 0 simultaneously. So again we get a system of polynomial
equations with integer coefficients, together with a set of strict
inequalities of a similar form.

The matrix of first partial derivatives is

—

2B 2C 2D -2F-2H-2) 0 O O
2B2C2Db O O O -2K-2L-2P
O H J O C DO O O
L O P O 0 0 0 B D
0 0 O K O P F O J
0O 0 O 10 0 -1 0O
-1 00 O 00 O 10
0O 1 O Oo-10 O 0O |

Instead, we may use the other normalization in which IAI+IFI+IK] =

IBI+IGI+ILI, with A2+B24C24D2 = 1 , etc., and minimize IAI+IFI+IKl. This also
leads to the same sorts of polynomial equations and inequalities with

integer coefficients.
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Further Comments and Unsolved Problems

We have seen that the problem of the largest m-cube in an n-cube
can be reduced to a finite number of systems of simultaneous polynomial
equations and inequalities with integer coefficients, either by using
Lagrange multipliers or by using our earlier method. In [4] it is shown how
to solve such systems of equations, even with arbitrary coefficients,
using an algorithm which eliminates the variables one by one. If there are
only a finite number of complex solutions, then one could test each real
solution to find which one maximizes the function to be maximized, of
those which satisfy the inequalities. Then one could also prove that the
maximum value is an algebraic number if the coefficients are integral,
rational, or even arbitrary real algebraic numbers. However, this
argument breaks down if there is a continuous infinity of complex
solutions. It would be nice to be able to prove that, even in this case, the
optimal value is algebraic [i.e., that f(m,n) is algebraic for all m, n], and
if it is, there remains the question of whether there is an algorithm which
produces the exact value of f(m,n) (by finding a polynomial equation

which it satisfies, and describing it as, say, the 47th smallest real root
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of that equation).

It would not be surprising if we do sometimes get a continuous
infinity of solutions, since if the V matrix has 2 or more non-maximal
columns, these columns could be rotated into each other to produce a
continuous infinity of solutions, all with the same value of R.

Many other geometry problems can be put into the form of
optimization problems in which the function to be optimized is a
polynomial function of several variables, with polynomial (equality and
inequality) constraints, all with coefficients that are either integers or,
in some cases, real algebraic numbers. These include the unsolved
problem of finding the largest regular dodecahedron in a regular
icosahedron (and vice versa); it would be interesting to be able to know
immediately that the ratio of the edges or volumes must be an algebraic
number. Even the kissing sphere problem in any number of dimensions can
be reduced to problems of this form. (These problems are discussed in [5,

6]. See also [7, pp. 52, 53], where the vertices of the coordinates of

regular dodecahedra and icosahedra are given.)
At this time, we still do not know whether our candidate for the
largest cube in a tesseract is optimal. Perhaps a computer-assisted proof

will finally settle this question, unless there is a more elegant way to
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prove it. It would also be interesting to know if the largest m-cube in an
n-cube is snug-fitting for all m and n, as it is for the cases for which we
have solved the problem. Perhaps future work will find additional simple

patterns in f(m,n), as we found for m = 2. For instance, one of our general

inequalities was [f(m,n+m)]2 2 [f(m,n)]2 + 1. It seems entirely possible at
this time that the equal sign always applies. In my opinion, either a proof

or a counterexample would be interesting.

Prince Rupert's Problem

Prince Rupert is discussed in [8, 9], and Prince Rupert's problem and
a generalization of it are discussed in [9,10].

Prince Rupert (1619-1682) was born in Prague and educated in the
Netherlands. He was also called Rupert of the Rhine or of the Palatinate,
and he was a nephew of King Charles | of Great Britain and Ireland. He was
a royalist cavalry commander in the English civil war. He also dabbled in
scientific experiments and became a member of the Royal Society. Not
only did he have a geometry problem named after him, but he also had an

alloy named after him (still called Prince’s metal), and he studied the

properties of quickly cooled drops of glass, known as Rupert drops, in the
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laboratory which he had built for himself.

Prince Rupert proposed, but apparently did not solve, the following
problem: "To perforate a cube in such a way that a second cube of the
same size may pass through the hole" [9, p. 73]. Pieter Nieuwland (1764-
1794) not only found that this was possible, but he also found the size of
the largest cube which could pass through such a hole.

Many authors seem to assume, without proof, that this problem is
equivalent to finding the largest square in a cube. The reader may enjoy
investigating this question (the problems do seem to give the same
numerical result for m = 2, n = 3) for an arbitrary number of dimensions
[that is, is the problem of finding the largest m-cube in an (m+1)-cube
equivalent to finding the largest (m+1)-cube which can pass through a
"hypercubical” hole in another (m+1)-cube?]. For the most trivial case,
that of passing a line segment through a hole in a square, the square
breaks up into 2 pieces, and for the limiting size, the area of the square
disappears completely.
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Here we complete the work on the largest cube in a tesseract,
proving that the previously found candidate is, in fact, the largest cube in
a tesseract of unit side; this cube has a side of 1.0074 . . ., as shown
previously.

We have to show that the remaining possibilities in the previous
paper cannot be optimal. Fortunately, we can do this without having to
solve large systems of simultaneous polynomial equations, so that a
computer-assisted proof is not necessary.

Previously we found that an optimal cube in a tesseract had to be
one (or more) of the following cases:

(1) No zeros in the V matrix

(2) Exactly one zero

(3) Exactly 2 zeros in the same row

(4) Exactly 2 zeros in the same column

(5) Exactly 2 zeros in neither the same row nor the same column

(6) Exactly 3 zeros in a diagonal

(7) Exactly 3 zeros in a triangle
Furthermore, in cases 1 through 5, and case 7, the cube must be snug-
fitting. In case 6, the cube must either be snug-fitting or have 3 “column-
sums” equal - the ones for the 3 columns containing a zero - and the
remaining “column-sum” less than the others. (Recall that what we call a
“column-sum” is actually a sum of absolute values.) In all of these cases
except 7, we shall assume that the cube is optimal and derive a
contradiction.

We shall find i t convenient to normalize the V matrix so that the
maximum column-sum is 1. Thus the 3 rows of V will all have squared

length £2, where £ is the side of the cube inscribed in a tesseract of unit
side.

We will need the following theorem:
The identical column theorem: For a cube in a tesseract, ifany 2
columns pf V are identical, then the cube is not optimal.

Proof: Assume that Vis normalized as above. Assume that, say,
columns 1 and 2 are identical. That is, if V is
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ABCD
FGHJ
KLMP

then A = B, F = G, and K = L. We have already shown that an optimal cube
cannot have a column of all zeros in V. Thus the inner product of the first
two columns is positive. Now, let us add another row to V, such that the
resulting 4x4 matrix, which we shall call W, is the scalar £ times an
orthogonal matrix. Thus W can be written as

AACD
FFHJ
KKMP
WXYZ

Since columns 1 and 2 of W must be orthogonal and of equal squared
length, w and x must be nonzero and w = -x. However, column 3 of W must
be orthogonal to both columns 1 and 2. This is possible only if y = O.
However, the squared length of each column is £2, which must be greater
than 1 for optimality. Thus C2+H24MZ2 = 2. But ICI+IHI+IMI < 1, and C2 < ICI,
and similarly for H and M. Thus £2 < 1, so the cube is not optimal.

Case 1: All matrix elements of V are nonzero.

The V matrix is: ABCD
FGHJ
KLMP

With no loss of generality, the first row and first column may all be
assumed positive. (A, B, C, D, F, and K are all > 0.) First we consider the
case in which at least 2 columns have the same pattern of signs. Thus we
may assume that G and L are also positive. H and J may not both be
positive, for rows 1 and 2 must be orthogonal. The same applies to M and
P. Similarly, H and J cannot have the same pattern of signs as M and P.
The only possibilities to consider, then, are: J, M, and P negative, all
others positive; and just J and M negative, the rest positive. So we have:

++++ ++++
++ +- + 4+ +-
++- - ++4+- +



If in the second of these sub-cases, we multiply column 4 by (-1), and
then interchange rows 1 and 2, we get the first sub-case. Thus the second
is essentially equivalent to the first. This first case was considered in
Part 1 of this paper (pages 43 to 45), where it was proved that, for
optimality, columns 1 and 2 must be identical. The identical column
theorem then shows that it cannot be optimal.

We still have the sub-case to consider in which no two columns have
the same pattern of signs:

++++
++- -
+- +-

On pages 42 and 43 (Part 1) we showed how to rule out this case. Here we
clarify the previous discussion. The idea is to show that, if this is snug-
fitting (so that all “column-sums” are equal to 1), then two columns can
be rotated into each other such that both column-sums decrease. Then
this shows that this cube is the same size as a cube with only 2 maximal
columns, and all such cubes were shown in Part 1 to be non-optimal. We
use Theorem 2 (Part 1) to show that 2 column-sums can be decreased
without affecting any of the others. It is convenient to put a circle or
square around a + or - sign, where a circle means that the absolute value
of the matrix element is < 1/2, while a square means > 1/2. If any matrix
element were 1/2 or -1/2, then by GPT, £ < 1 and it would not be optimal.
Then, using squares and circles, we can use rules such as: each row must
contain at least one square, or £2 would be < 1. No column may contain

C) more tggn 1 square, or the column-sum would be > 1. (Remember that a

column-sum means a sum of absolute values, not a sum of the matrix
elements themselves.)

In the above matrix of + and - signs, by comparing columns 1 and 2,
we see that v31 and v32 have opposite signs, whereas v11 and v12, as

well as v21 and v22, have the same sign. Thus row 3 is the “different”
row, so that v31 and v33 must have either both circles or both squares.

Similarly, comparing columns 3 and 4, row 3 again is different from the
others, so v33 and v34 have either both circles or both squares. Two of

these sub-sub-cases are then no good, because by applying the rules for
circles and squares, we end up with 4 circles in at least one row. Then, by
comparing columns 1 and 3, or 2 and 4, the entire sub-case is ruled out.
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We have now proved that a matrix with no zeros cannot be an
optimal square in a tesseract. To rule out more cases, we have to
investigate when we can simultaneously reduce two column-sums when
exactly one of the two columns contains exactly one zero. This is a little
harder. When we consider dRi/d6 we find that if column i contains a zero,
we have different one-sided derivatives for positive and negative 6. This

is because when the zero gets rotated, the absolute value always
increases. |f we have, say,

OD
BE
CF

then if BE and CF have opposite signs, and R1 = R, then the rule is that if

the cube is optimal and B gets a circle, then E must also get a circle,
while if C gets a circle then so does F. Otherwise either £ would be < 1 by
GPT or it would be possible to decrease R1 and R2 simultaneously. |If

instead, R1 > R2 above, then, in order that Ry cannot be decreased by

rotating these 2 columns into each other, and still assuming that BE and

CF have opposite signs, and again applying GPT, we must have IDI + IEIl > |FI
and IDI + IFI > IEl. These rules will be proved in detail later.

Now we can rule out the 2 cases with 3 zeros in a diagonal. (Both
snug and non-snug.) The V matrix is:

OBCD
FOHJ
KLOP

We may assume D, J, and P to be all positive. We have IFl + IKI = 1, while
from orthogonality IFI IKlI = JP. We now find an expression for F2+K2.

We have F24K2 = (IFI+IK1)2 - 2IFl IKI = 1-2JP. Similarly, B2+.2 = 1-2DP, and
C24H2 = 1-2DJ. Since each row of V has a squared length of £2, the sum of
the squares of all of the matrix elements is 322 Thus, 322 =

F24K24+B24 24C2+H24D2+J24P2 = 3-2JP-2DJ-2DP+D2+J2+P2

= 3 + D(D-J-P) + J(J-P-D)+P(P-D-J). We will soon prove that D, J, and P
satisfy the triangle inequality, so that D-J-P, J-P-D, and P-D-J are all
negative, so it will follow that 322 <3s022 < 1 (not optimal).

To prove the triangle inequality, first we consider the snug-fitting
case. Suppose that IFI<1/2, so that F gets a circle around it. Then J also

6!



gets a circle, by our new theorem applied to columns 1 and 4 (and using
the fact that FJ and KP have opposite signs). But row 2 cannot have all
circles and zeros, so H must get a square. Thus C must be a circle.
Applying the new theorem now to columns 3 and 4, since C and H have
opposite signs, D gets a circle. Since row 1 cannot have all circles and
zeros, B must be a square, so L must be a circle, and applying the new
theorem again, P must be a circle. Since D, J, and P are all < 1/2 and their
sum is 1, the triangle inequality is thus proved. (We also have to consider
IFl > 1/2, but the proof is similar.) S
Proving the triangle inequality for the non-snug case, where
R1=R>=R3>R4, is slightly different since it uses the second part of our
theorem. The idea is to assume that the cube is optimal, so that we
cannot decrease R1, R2, or R3 by rotating the corresponding column with

the 4th column. We again obtain the same inequalities: D+J>P, etc.

This shows that for the snug case, i f we assume that 2 column-sums
cannot be simultaneously decreased without affecting the others, then it
is not optimal. Thus for optimality, it is possible to find a cube with only
2 maximal columns, which has the same size. But in Part 1 such cubes
were shown to be non-optimal. For the non-snug case, if we assume that
no maximal column-sum can be decreased slightly, then it is not optimal,
so again there is a cube of the same size with only 2 maximal columns.

Another easy case is 2 zeros in a diagonal, and snug, with all other
elements of V nonzero. The V matrix is:

OBCD
FOHJ
KLMP

We may assume that D, J, K, L, M, and P are positive:
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