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Dorsal hippocampal neurons fire at elevated rates in restricted regions 
of space1,2 when subjects forage randomly in a two-dimensional 
space, termed a spatial rate code. Distal visual cues are thought to 
reliably determine this spatial selectivity because changing or rotating  
them causes corresponding large changes in the spatial tuning of 
place cells2,3. However, the activity of place cells is also influenced 
by other sensory and motor cues, including specific and nonspe-
cific proximal cues, such as olfactory and somatosensory cues4–10, 
and locomotion cues such as optic flow and proprioception, which 
together with vestibular cues are thought to provide self-motion infor-
mation for path integration11–13. Consistently, lesions of vestibular 
nuclei disrupt angular tuning of head-direction cells14 and spatial 
tuning of hippocampal place cells15, although lesions of the head-
direction cell network, which is thought to provide vestibular input 
to the hippocampus, do not substantially alter hippocampal spatial 
selectivity16. Additionally, the output of vestibular nuclei suppresses 
self-motion signals and depends on multisensory stimuli17. Indeed, 
in all the experiments described above, it is difficult to dissociate the 
contribution of distal visual cues from the contributions of other cues. 
Thus, the contribution of distal visual cues alone—which are the only 
spatially informative stimuli in typical human and primate studies 
of hippocampal activity—to the spatial selectivity of place cells in 
normal rats remains to be fully explained.

Neural activity is also modulated jointly by theta rhythm and the rat’s 
position within the place field, called theta-phase precession or tem-
poral code18–21, which is thought to be linked closely to hippocampal  
spatial selectivity18. Nevertheless, phase precession is also seen when 

rats run in a running wheel without any systematic change in visual 
cues22. Hence, to understand the mechanisms of the hippocampal 
spatial rate and temporal codes, it is important to determine whether 
the two can be dissociated during spatial exploration. In addition, 
dorsal hippocampal neurons are typically active for sustained periods 
lasting more than 1 second1,2, even under a variety of conditions22–25, 
and this sustained nature of activity has received little attention.

These questions are particularly important to address, as neural 
mechanisms of navigation in humans and nonhuman primates are 
studied in stationary subjects for the most part, often in VR26–28, with 
only distal visual cues and no vestibular or proximal cues. Under these 
conditions, hippocampal neurons show only weak spatial selectiv-
ity27–29, an observation that is at apparent odds with the high spa-
tial selectivity seen in studies in freely behaving rodents. Further, an 
increasing number of functional imaging studies in rodents are being 
done in head-fixed animals in VR30.

VR allows for the elimination of spatially informative multisen-
sory, nonspecific cues and minimization of vestibular cues, leaving 
only distal visual cues to provide reliable spatial information21,31–33. 
All previous neurophysiological studies in rodents in VR have been 
done in one-dimensional mazes and have found largely intact spatial 
selectivity. In these environments, visual cues are paired repeatedly 
with the same set of locomotion cues, such as speed of optic flow and 
proprioception, which have been hypothesized to have a major role 
in driving neural responses11–13,21,34, as evidenced by disto-coding  
in one-dimensional VR paths21. This consistency is removed in  
random foraging in two-dimensional VR environments where the 
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During real-world (RW) exploration, rodent hippocampal activity shows robust spatial selectivity, which is hypothesized to be 
governed largely by distal visual cues, although other sensory-motor cues also contribute. Indeed, hippocampal spatial selectivity is 
weak in primate and human studies that use only visual cues. To determine the contribution of distal visual cues only, we measured 
hippocampal activity from body-fixed rodents exploring a two-dimensional virtual reality (VR). Compared to that in RW, spatial 
selectivity was markedly reduced during random foraging and goal-directed tasks in VR. Instead we found small but significant 
selectivity to distance traveled. Despite impaired spatial selectivity in VR, most spikes occurred within ~2-s-long hippocampal 
motifs in both RW and VR that had similar structure, including phase precession within motif fields. Selectivity to space and 
distance traveled were greatly enhanced in VR tasks with stereotypical trajectories. Thus, distal visual cues alone are insufficient to 
generate a robust hippocampal rate code for space but are sufficient for a temporal code.
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same physical location in space can be approached from multiple 
different directions at different speeds. We thus investigated the  
contribution of distal visual cues only in determining selectivity in 
such an experimental setup.

RESULTS
Nature of spatial selectivity of hippocampal responses
We measured hippocampal activity during a two-dimensional random- 
foraging task in RW and VR35–37 with similar distal visual cues (Fig. 1a).  
In VR, the rats were body-fixed, i.e., their bodies were held in place, 
with a harness on a floating ball, allowing for head movements but 
precluding full-body turns, thus minimizing vestibular cues (Online 
Methods)21,36. Rats quickly learned to avoid the virtual edges entirely 
on the basis of visual cues36 and spent a similar amount of time away 
from the edges and in the center of the platform (Fig. 1a) compared 
to in RW. We measured the activity of 1,066 and 1,238 principal 
neurons in RW and VR, respectively, in the dorsal CA1 of four rats 
under a variety of conditions (Online Methods). Neurons fired vig-
orously in restricted regions of space in RW, as expected (Fig. 1b,c, 
Supplementary Fig. 1a and Supplementary Video 1)1. In contrast, 
the neurons showed little spatial selectivity in VR during random 
foraging (Fig. 1b,d and Supplementary Fig. 1b).

Across the ensemble, neurons had moderately reduced (25%) 
mean firing rates but greatly reduced (68%) peak firing rates in 
VR (Fig. 2a and Supplementary Fig. 2a). Neurons in VR also had 
greatly reduced spatial information content (75%), stability (59%), 
sparsity (42%) and coherence (40%) (Fig. 2b–d and Supplementary 
Fig. 2b,c) compared to spatially localized, stable and sparse RW rate 
maps (Fig. 2c). Although the mean firing rate was inversely cor-
related with information content (Supplementary Fig. 2d), this 

large reduction in spatial selectivity cannot be accounted for by  
differences in mean firing rates in VR and RW, as neurons with similar 
firing rates had substantially lower spatial selectivity and stability in 
VR (Supplementary Figs. 2d,e and 3). Analysis of relative spatial 
dynamics between cells measured simultaneously showed that neu-
rons did not maintain consistent spatial relationships with each other 
in VR, in contrast to in RW (Online Methods and Supplementary 
Fig. 4a–d). We further confirmed this observation using analysis of 
the cross-covariance of firing rates in time and in distance, which 
showed little evidence of coactivation or reliable pairing of groups of 
neurons in VR, in contrast to in RW (Supplementary Fig. 4e). These 
results demonstrate that in VR, neurons did not have place fields that 
drifted together, nor were they activated in a sequential fashion, in 
some unknown reference frame.

We also characterized the activity of 258 neurons recorded in both 
worlds on the same day (Fig. 1b). Of these neurons, only 109 (42%) 
had a mean firing rate above a minimal activity threshold of 0.2 Hz 
in both worlds. For these neurons, there was a significant correlation  
between the mean firing rates (r = 0.21, P = 0.03), but not the peak 
firing rates (r = 0.12, P = 0.23), in RW and VR (Supplementary  
Fig. 5a,b), although they showed spatial selectivity in RW but not in 
VR and had uncorrelated rate maps (Supplementary Fig. 5c,d).

Contribution of task type and locomotion cues
In RW, rats might use a goal-directed strategy to navigate to a food 
pellet, whereas in VR, there are no reward-predicting cues; such a 
difference in task type could influence hippocampal activity12. To 
control for this difference, we did a separate experiment in which we 
measured the activity of 195 neurons from three rats while they ran 
toward a reward-indicating suspended pillar appearing at random 

Figure 1  Similar rat behavior but different 
neural rate maps in two-dimensional RW and 
VR. (a) Top left, top-down schematic view of the 
RW and VR mazes showing a 200-cm-diameter 
elevated platform centered in a 300 cm × 300 cm  
room with distinct visual cues on the walls.  
Top right, mean running speed at the time  
of occurrence of spikes (excluding speeds  
<5 cm s−1) was slightly reduced (3%, P = 0.0005) in 
VR (22.40 ± 0.13 cm s−1, red, n = 719 cells from  
4 rats) compared to RW (23.27 ± 0.16 cm s−1,  
blue, n = 1,066 cells from 4 rats). Bottom, 
percentage of time spent in all parts of the  
maze averaged across all rats, showing that  
rats spent comparable time away from  
the edges in RW (left) and VR (right).  
(b) Top, scatter plots of the peak amplitude  
of a spike (gray dots) measured simultaneously 
on two channels (channels 3 and 4) of a  
tetrode in RW and VR. Colored dots are  
spikes from the same isolated neuron  
recorded on the same day in the two worlds. 
Bottom, position of the rat in RW and VR at  
the time of occurrence of the spikes (darker  
dots) from the corresponding neurons (top)  
overlaid on the trajectory of the rat (lighter  
trace). (c) Spatial rate maps of four neurons  
in RW. (d) Same as c but in VR. All data  
throughout all figures and figure legends  
are expressed as the mean ± s.e.m., unless  
otherwise noted. Throughout all figures,  
dashed vertical lines in histograms indicate  
the mean values of the corresponding distributions. In all figures, blue indicates RW and red indicates VR, numbers above images indicate the ranges, 
and lighter shades indicate higher values. In all figures, statistical significance was calculated by Wilcoxon rank-sum test, unless otherwise noted.
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locations in VR (Fig. 3a and Online Methods)36. The excess path 
length of the rats’ trajectory between rewards was significantly shorter 
during this random-pillar task (69%, P = 6.1 × 10−4) than during the 
random-foraging task, which is indicative of a goal-directed strategy  
(Supplementary Fig. 6a,b). There was no substantial difference 
in spatial selectivity between the two types of task in VR (Fig. 3b 
and Supplementary Video 2), which argues that the loss of spatial 
selectivity was not due to differences in task type. Hence, for subse-
quent comparisons between RW and VR, we combined data from the  
random-foraging and random-pillar tasks.

The loss of spatial selectivity in two-dimensional VR is in stark 
contrast to not only that in two-dimensional RW but also to that in 
previous studies in one-dimensional VR21,31–33 in which clear spatial 
selectivity was found. To test whether spatial selectivity could exist 
in the same two-dimensional VR environment without the vestibular 
cues present in RW, we did another experiment in which the task 
type was similar to the random-pillar task but the reward-indicating  
pillars appeared systematically at fixed locations (Fig. 3c,d and  
Online Methods). In the first variant, pillars appeared at two fixed but 
alternating positions in VR (Supplementary Fig. 6a). Because rats 

ran in more stereotyped trajectories, locomotion cues—such as step 
counting from the previous reward and speed of optic flow—were 
made spatially informative, as the same cues occurred repeatedly at 
the same positions across the task. Consequently, unique locomotion 
cues were paired repeatedly with distinct distal visual cues at each 
position (Fig. 3c). Spatially selective neural responses appeared in this 
systematic-pillar task with significantly enhanced spatial information 
content and rate map sparsity compared to random foraging in VR 
(Fig. 3e,f). Although some neurons had a focused place field in only 
one direction of movement, or arm, similarly to place cells in RW, 
others spiked on both arms (Fig. 3e and Supplementary Fig. 7a), 
which we investigated in detail and describe below.

To rule out the possibility that spatial selectivity arose simply 
from alternating contexts in two movement directions or that the 
rat did not traverse a large portion of the maze, we did another vari-
ant of the systematic-pillar task in which the reward-indicating pil-
lars appeared sequentially at the vertices of an equilateral triangle 
(Online Methods). Here the rats walked repeatedly along the same 
paths while covering a greater fraction of the two-dimensional maze,  
and because adjacent arms were rotated 120° with respect to each 
other rather than 180°, the visual scene was more similar along dif-
ferent arms than in the two-pillar task (Supplementary Fig. 6a). 
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Figure 2  Reduced activity, spatial selectivity and stability of rate maps 
in VR. (a) The peak firing rates of neurons were 68% (P = 1.1 × 10−161) 
smaller in VR (3.19 ± 0.07 Hz, n = 719 cells from 4 rats) compared  
to RW (9.90 ± 0.18 Hz, n = 1,066 cells from 4 rats). (b) The spatial  
information content in VR (0.33 ± 0.01 bits) was 75% (P = 1.1 × 10−183) 
lower than that in RW (1.35 ± 0.02 bits). (c) Rate maps of a neuron  
during the first and second halves of a session in RW and VR. (d) The  
stability of rate maps in VR (0.26 ± 0.01) was significantly reduced  
(difference = 0.37, P = 1.2 × 10−124) compared to in RW (0.63 ± 0.01). 
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Figure 3  Dependence of spatial selectivity on task type and locomotion 
cues. (a) Schematic of a maze in which the reward location is indicated by 
a pillar suspended in VR (VR random pillar). (b) The spatial information 
content in VR random pillar (0.39 ± 0.02 bits, n = 195 cells from 3 rats) 
was only slightly (16%, P = 1.6 × 10−4) larger than in VR random  
(0.33 ± 0.01 bits) and was still substantially smaller (71%, P = 1.1 × 10−55) 
than in RW (1.35 ± 0.02 bits). (c) Top, trajectory of the rat (light green 
trace) and position of the rat at the time of occurrence of spikes (darker 
dots) for two example neurons during consistent paths between two fixed 
reward locations on a two-pillar task. Bottom, rate maps corresponding to  
the neurons shown above. (d) Same as c but on a three-pillar task. Gray 
regions indicate positions the rat did not sample for a sufficient amount 
of time. (e) The spatial information content in VR with systematic pillars 
(1.11 ± 0.03 bits, n = 324 cells from 3 rats) was significantly larger than 
in VR random (70%, P = 1.0 × 10−101) and was only slightly smaller than 
in RW (17%, P = 5.3 × 10−8). (f) The spatial sparsity in VR systematic 
pillar (0.63 ± 0.01) was significantly greater (34%, P = 4.7 × 10−63) than 
in VR random (0.42 ± 0.01) and was close (12% less, P = 4.6 × 10−20) to 
that in RW (0.72 ± 0.01).
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Spatially selective, stable responses also 
appeared in this task, which were significantly 
greater than those in the two-dimensional  
random-foraging tasks in VR but were  
comparable to those in two-dimensional random foraging in RW  
(Fig. 3d–f and Supplementary Figs. 6c and 7b). Here too, some neu-
rons spiked on only one arm of the triangle (Supplementary Video 3),  
similarly to RW place cells, whereas others spiked along multiple 
arms (Supplementary Fig. 8a,b and Supplementary Video 4).

In both of the systematic-pillar experiments, vestibular cues 
remained minimal and spatially uninformative during turns, yet 
spatial selectivity was comparable to that in random foraging in 
RW. Further, in systematic-pillar tasks and the random-pillar task, 
the path between two successive reward locations was not always 
direct but instead often deviated from the optimal, straight-line 
path (Supplementary Fig. 6a). This departure, or excess path 
length, was comparable in both the systematic- and random-pillar 
tasks (Supplementary Fig. 6b), indicating similar levels of goal-
directed behavior and demonstrating that differences in departure 
from the shortest paths do not underlie the observed differences 
in spatial selectivity. Thus, task type cannot explain the differ-
ences in spatial selectivity observed under different conditions in  
RW and VR.

The presence of firing on multiple arms in the systematic-pillar tasks 
(Fig. 3c and Supplementary Fig. 8a) suggests that neurons might be 
coding for the distance traveled along the paths. If this is the case, it 

raises the possibility that neurons in the random-pillar task might also 
exhibit similar coding despite their lack of two-dimensional spatial 
selectivity (Supplementary Fig. 8a). The fact that the beginning and 
end of a trial were clearly delineated by the visible pillars in all goal-
directed tasks allowed us to test these possibilities by quantifying the 
activity of neurons as a function of normalized distance traveled along 
each path, subsequently referred to as distance (Online Methods).

In the random-pillar task, many but not all neurons exhibited random  
firing both on linearized paths and in two-dimensional space  
(Fig. 4a and Supplementary Fig. 8a). In contrast, a majority of neurons  
in the systematic-pillar tasks often fired at the same distance (Fig. 4a 
and Supplementary Fig. 8a). Linearized rate maps in the random-pillar 
tasks had lower information content (49%), sparsity (36%) and peak 
rate (36%) compared to those in the systematic-pillar task (Fig. 4b),  
although a small number of neurons in the random-pillar task had 
measures comparable to those in the systematic-pillar task (Fig. 4b). 
We further characterized this selectivity on a population level by 
computing the population vector overlap (PVO) between the fir-
ing rates of two groups of randomly selected paths for each cell  
(Online Methods). Whereas the significant overlap in the random- 
pillar task was limited to regions near the beginnings and ends of trials, 
it was present at all distances in the systematic-pillar tasks (Fig. 4c).
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Figure 4  Selectivity to distance traveled in VR 
goal-directed tasks. (a) Firing rate (FR) of cells 
as a function of normalized distance traveled 
across trials. In the VR random-pillar task, many 
cells exhibited random firing (top left), whereas 
some had elevated firing at the beginnings and 
ends of trials (bottom left). In the VR systematic-
pillar task, neurons had focused firing at specific 
distances along the different arms (right).  
AU, arbitrary units. (b) Left, information content 
in linearized paths in the VR random-pillar task 
(0.24 ± 0.01 bits, n = 127 cells from 3 rats) 
was significantly lower (49%, P = 1.2 × 10−17) 
than in the VR systematic-pillar task (0.47 ± 
0.02 bits, n = 310 cells from 3 rats). Center, 
similarly, sparsity of the linearized firing rate 
maps in the VR random-pillar task (0.23 ± 0.01) 
was significantly reduced (36%, P = 5.9 × 10−16) 
compared to in the VR systematic-pillar task 
(0.36 ± 0.01). Right, peak firing rates were 36% 
(P = 3.1 × 10−15) smaller in the VR random-pillar 
task (2.89 ± 0.14 Hz) compared to in the VR 
systematic-pillar task (4.55 ± 0.15 Hz). (c) PVO in 
the VR random-pillar (top left) and VR systematic-
pillar (top right) tasks. The range of overlap is 
indicated by the numbers at the top left corners. 
The bottom row depicts the significance levels for 
the corresponding PVO presented in the top row. 
The significant diagonal area indicates selectivity 
to distance on an ensemble level. (d) Top, for 
different arm pairs with minimal activity on at 
least one arm (mean rate >0.5 Hz, n = 625 arm 
pairs from 3 rats), the arm selectivity index  
(0.37 ± 0.01) quantifies the likelihood of firing 
on one arm (index >0.5) compared to on multiple 
arms (index ≤0.5). X and X′ refer to distinct arms 
in the arm pair of interest. Bottom, PVO for  
arm pairs with arm selectivity index below  
0.5 (n = 431 arm pairs from 3 rats).
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We additionally tested whether the neurons spiked at the same 
distance on two different arms of the triangle located in different parts 
of the maze. We quantified the number of cells that fired on multiple 
arms by calculating the arm selectivity index (Fig. 4d and Online 
Methods). For cells that were active on multiple arms (index <0.5), 
which constituted a majority of the cells, PVO analysis between the 
rate maps of the two arms revealed significant overlap at all distances, 
indicative of a robust disto-code, notably on nonoverlapping paths 
(Fig. 4d and Supplementary Fig. 8b,c). These results, together with 
the differences in two-dimensional spatial selectivity presented above, 
suggest that repeated traversals along the same path, such as in the 
systematic-pillar task, are crucial for generating robust spatial selec-
tivity and selectivity to distance, a generalization of the disto-code.

Hippocampal motifs and phase precession
In RW, neurons generated long spike sequences lasting about 2 sec-
onds as rats traversed through well-defined place fields (Fig. 5a 
and Supplementary Fig. 1a). Surprisingly, despite having no 
clearly defined place fields, neurons in VR also fired similarly long 
spike sequences, which appeared as streaks of spikes (Fig. 5b and 
Supplementary Fig. 1b). We term these long spike sequences hippo
campal motifs, identified as time periods in which a neuron achieved 
a peak firing rate of at least 5 Hz and maintained a firing rate above 
10% of that peak for at least 300 ms. We aligned all individual motifs 
from a cell around their center of mass and aggregated them to obtain 
the cell’s motif field (Fig. 5c,d and Online Methods).

Motif properties, including mean motif duration, fraction of 
spikes contained in motifs, mean firing rate and peak firing rate, 
were comparable in the two worlds (Fig. 5e and Supplementary 
Fig. 9a,b) and were far greater than expected by chance, particularly 
when accounting for the lower mean rates in VR (Supplementary  
Fig. 9c,i,j). Although for any given cell, the motif durations were 
quite variable in either world, (Fig. 5e), mean motif durations across 
all cells displayed small variability (Fig. 5e). Whereas the variability 
in motif durations in RW could be due to a varying amount of time 

spent within the place field in each traversal, the motif durations were 
equally variable in VR (Fig. 5e), with little spatial selectivity, suggestive  
of an intrinsic, network-wide mechanism for motif generation. 
Neurons with a larger fraction of spikes within motifs had greater 
information content (Supplementary Fig. 9d) and mean firing rates 
(Supplementary Fig. 9c), which is in contrast to the inverse correla-
tion between information content and mean firing rate seen across all 
cells when all spikes were included (Supplementary Fig. 2d). Spiking 
within motifs, as opposed to isolated spiking, may therefore serve 
to group otherwise random and noninformative spikes into more 
informative clusters.

Analysis of motif fields (Fig. 5c,d) showed similar results, with 
motif fields having similar durations, mean rates and peak rates in 
RW and VR (Fig. 5f and Supplementary Fig. 9e,f), in contrast to the 
smaller peak rates in spatial rate maps seen in VR (Fig. 2a). Neurons 
active in RW and VR on the same day also had motif fields with  
similar durations and peak firing rates (Supplementary Fig. 9g,h).

In spite of the impaired rate code, do the motifs show a temporal 
code18–21,31,33? Because of the absence of clear place fields in VR, 
we quantified the quality of phase precession within motif fields by 
computing the circular linear correlation (Online Methods) between 
the time spent within the motif field and the theta phase of spikes. 
In RW, 80% of neurons showed significant phase precession within 
motif fields (Fig. 6a,b). This number was reduced to 40% in VR but 
was still far greater than expected by chance (Fig. 6a,b and Online 
Methods). For cells with significant precession, the quality of preces-
sion was comparable in both worlds, although it was slightly reduced 
in VR (Fig. 6b). For all cells, we also computed the difference between 
the period of theta modulation of spikes and the local field potential 
(LFP) theta period18,20,38. A majority of cells in RW (83%) and VR 
(78%) had a longer LFP theta period than their spike theta period, 
which is indicative of intact temporal coding in VR (Fig. 6c). This is 
especially notable because the LFP theta had greater peak theta power 
and reduced theta frequency in VR (Supplementary Fig. 10a–c). The 
preferred theta phase of neurons was also significantly different and 

Figure 5  Similar hippocampal motifs and  
motif fields in RW and VR. (a) Spike positions 
of an example motif from a cell overlaid on a 
segment of the rat’s trajectory (left) and firing 
rate map (right) in RW. (b) Similar plot as those 
in a but in VR. (c) Left, motif firing rate as  
a function of time and individual spike times 
(vertical lines) for the same motif as in a.  
Right, motif-field firing rate as a function  
of time. Spikes from individual motifs are 
depicted in the raster plot, aligned around  
the centers of mass of the motifs to form the 
motif field. In other words, each row of the 
raster plot represents an individual pass through 
the motif field. (d) Same as c but in VR.  
(e) Left, mean motif durations of cells with  
at least five motifs (1,064 out of 1,066 in  
RW and 911 out of 914 in VR, comprising  
719 cells from VR random from 4 rats and  
195 cells from VR random pillar from 3 rats) 
were comparable in RW (1.82 ± 0.02 s) and  
VR (1.63 ± 0.02 s) but were slightly smaller  
in VR (7%, P = 2.2 × 10−12). The shortest 
allowed motif duration (dashed vertical black line) was much smaller than the ensemble average. Center, the coefficients of variation (CV) of motif 
durations within each cell were comparable in RW (0.69 ± 0.00) and VR (0.63 ± 0.01) but were slightly lower in VR (8%, P = 5.7 × 10−20); both were 
much greater than the CV of the distributions in the plot to the left (solid vertical lines). Right, although a majority of spikes were contained within 
motifs in RW (75.90 ± 0.47%) and VR (64.99 ± 0.63%), there was a small reduction these numbers in VR (14%, P = 1.2 × 10−51). (f) The peak firing 
rates of motif fields in VR (8.85 ± 0.10 Hz) were only slightly smaller (13%, P = 2.1 × 10−17) than those in RW (10.22 ± 0.11 Hz).
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more variable in VR compared to RW (Fig. 6d), yet neurons showed 
similar degrees of theta-phase locking in both worlds (Fig. 6e).

DISCUSSION
These results provide the first measurements, to our knowledge, of 
rodent hippocampal CA1 neuronal activity during random foraging 
in a two-dimensional body-fixed VR environment in which only distal  
visual cues provide reliable spatial information. We found five key 
results: a profound loss of spatial selectivity during random foraging 
in VR; intact spatial selectivity when both location-specific locomo-
tion cues and distal visual cues were repeatedly experienced together 
during the systematic-pillar tasks; weak but significant selectivity to 
distance traveled in the random-pillar task and strong distance selec-
tivity in the systematic-pillar tasks; comparable motif dynamics in RW 
and VR; and intact temporal code within motif fields in VR.

We speculate that the motif-generation mechanisms are intrinsic 
to the entorhinal-hippocampal network because, unlike most afferent 
sensory cortices showing punctate neural responses, hippocampal 
neurons showed ~2-s-long sustained responses in both RW and VR, 
despite the absence of spatial selectivity in the latter world. These 
sustained responses could enable the entorhinal-hippocampal system 
to predict the rat’s future location on the basis of recent experience39 
by exploiting the continuity of space and locomotion, thus reducing 
computational load.

The motif generation mechanism is probably network-wide rather 
than cell specific, as the variability in motif durations on a population  
level is small compared to the individual neuronal level, motif-field 
properties are correlated between RW and VR, and theta-scale dynam-
ics are intact in VR motif fields. Whereas previous studies have shown 
intact phase precession without a change in position-defining cues 
in a working memory task22, our results demonstrate instead that  
phase precession can exist without a rate code when spatially inform-
ative cues are changing with minimal memory demand. Increased 
preferred theta-phase variability could arise through a rate-phase 
transformation19 and a reduced excitatory drive in VR due to a lack 
of repeatedly paired sensory and motor cues, as described below.  
The underlying network mechanism could thus generate motif-like 
activity under a variety of conditions, including hippocampal place 
cells from normal subjects21,31,33 and transgenic mice with taupathy40, 
entorhinal cortical grid cells38, episode or time cells during wheel or 
treadmill running22,23, neural activity during rapid eye movement 
sleep41 and neural activity during free recall in humans42.

Motifs could originate from several parts of the entorhinal- 
hippocampal network. The recurrent CA3 network could generate  
motif-like activity, which might cause the observed ~2-s delayed 
responses of the hippocampal ensemble activity pattern to sudden 
changes in visual cues24. Alternatively, the motifs could arise in the 
medial entorhinal cortex, where neurons show motif-like activity  
lasting several seconds and robustly driving the CA1, even in  
anesthetized or sleeping animals43. Accordingly, sustained spiking 
in consecutive theta cycles was reduced, indicative of diminished 
motifs, in a GluA1 transgenic mouse with diminished distal dendritic 
inputs, which typically originate in the entorhinal cortex44. Motif-field  
durations could also be modulated by the temporal integration  
properties of the h current45 to generate a dorsoventral gradient of 
field sizes.

Although intact motifs and phase precession are present in VR with 
distal visual cues alone, we found a large reduction in spatial selectivity  
during two-dimensional random-foraging and random-pillar tasks 
in a body-fixed VR. This finding demonstrates that distal visual cues 
alone are not sufficient to generate spatially localized place fields2,3. In 
contrast, spatial selectivity was present in the systematic-pillar tasks 
but not the random-pillar task. Although diminished vestibular cues 
during random foraging in VR might account for reduced spatial selec-
tivity compared to during random foraging in RW, it is inconsistent 
with the presence of spatial selectivity in the systematic-pillar tasks, in 
which the nature of paths and resulting vestibular cues are similar to 
those in the random-pillar task. Further, vestibular lesions caused sub-
stantial behavioral deficits, reductions in theta power and unaltered 
peak firing rates15,46, all of which are in contrast to our data. These 
results suggest that the repeated pairing of cues, or lack thereof, is the 
key reason for the difference in two-dimensional spatial selectivity.  
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Figure 6  Intact but variable phase coding in VR. (a) Left, sample  
LFP theta traces filtered in the theta band (4–12 Hz) in RW (top)  
and VR (bottom) recorded from the same electrode on the same day.  
Spikes from the same cell (vertical lines) in RW and VR occur at earlier  
phases on subsequent theta cycles. Right, motif fields in RW and VR  
show clear phase precession. (b) 80.03% and 40.52% of cells showed  
significant phase precession in RW and VR, respectively. For these cells,  
the quality of phase precession in VR cells (0.185 ± 0.004, n = 365 cells 
from 4 rats) was slightly reduced (13%, P = 1.9 × 10−11) compared to  
in RW (0.221 ± 0.003, n = 852 cells from 4 rats). (c) Difference in  
LFP theta period and spiking theta period computed from the  
autocorrelation of LFP and spikes shows comparable but reduced  
(11%, P = 4.6 × 10−9) and more variable temporal coding in VR  
(11.38 ± 0.46 ms (mean ± s.d.)) compared to RW (12.85 ± 0.23 ms 
(mean ± s.d.)). (d) The preferred theta phase of spikes was shifted closer 
to the theta peak (6%, P = 0.001, Kuiper’s test) in VR (−103.70 ± 2.29°) 
and was also more variable (s.d. 61.40°) compared to in RW (−110.58 ± 
1.72°, s.d. 56.15°). (e) The degree of phase locking (depth of modulation) 
was similar in VR (0.15 ± 0.09) and RW (0.16 ± 0.09), although was  
slightly reduced (8%, P = 8.5 × 10−5) in VR.
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The difference in spatial selectivity between the random-pillar and 
systematic-pillar tasks is also consistent with previous studies dem-
onstrating that the precise nature of paths (random or systematic) can 
strongly affect the hippocampal spatial representation12,47.

Whereas two-dimensional spatial selectivity was equally poor in 
the random-foraging and random-pillar tasks in VR, the beginnings 
and ends of trials were well defined for the rats in the latter task, thus 
allowing for an analysis of selectivity to distance traveled. Neurons 
in the random-pillar task showed a small but significant degree of 
selectivity to the beginnings and ends of trials. In the systematic- 
pillar task, when we paired locomotion and visual cues repeatedly, this 
selectivity was strengthened and extended to the middle of the paths. 
Restricting the analysis to cells that fired on at least two nonoverlap-
ping arms on the three-pillar task revealed that these cells exhibited 
a disto-code21, which is a specific case of the more general distance 
selectivity observed in the goal-directed tasks.

We conjecture that repeated pairing of different streams of input 
could generate robust associations between them through rapid 
Hebbian synaptic plasticity, resulting in stable spatial representa-
tions48 and increased firing rates19,48–50. Under this model, during 
random foraging in RW, distal visual cues are paired repeatedly with 
the same constellation of proximal cues at each location, resulting in 
a place code. In contrast, in two-dimensional random foraging in VR 
with or without pillars, the distal visual cues are not paired repeatedly 
with any other cue, leading to a lack of spatial selectivity. Contrary 
to our VR system and results, a recent study found that during two-
dimensional random foraging in a VR system allowing full, 360° body 
rotation35,37, hippocampal neurons showed intact spatial selectivity37. 
This result could arise solely from the presence of a larger range of 
vestibular cues, which were diminished in our study; however, this 
explanation is incompatible with the presence of spatial selectivity in 
our tasks involving systematic paths. Two alternate possibilities are 
provided by our repeated pairing model. First, as rats turned their 
entire bodies in that study, they rotated with respect to both VR vis-
ual cues and RW multisensory cues, leading to a consistent pairing 
between the two. In agreement with this hypothesis, the activities of a 
large number of cells were influenced by the RW frame of reference in 
that study37. Second, consistent pairing between vestibular cue-based 
signals, such as the activity of head-direction cells, and visual cues 
could be sufficient but not necessary to generate spatial selectivity 
in VR. Once such a multisensory pairing–induced representation 
of space is established, it can then be governed by visual cues2,3,37. 
Further studies will be needed to dissociate these possibilities.

According to our model, spatial selectivity arises both in systematic- 
pillar tasks and on one-dimensional VR tracks because of the repeated 
pairing between distal visual cues and locomotion cues along  
systematic paths. Neurons with stronger inputs from distal visual cues 
would exhibit a place code, whereas those with stronger inputs from 
locomotion cues would exhibit a disto-code21. Further, the overall 
reduction in the number of sensory and motor cues that are systemati-
cally paired could contribute to the large reduction in neural activity 
in VR21. Alternatively, instead of pairing across multiple modalities, 
pairing in linear paths could potentially occur between adjacent  
elements within a repeated sequence of cues from a single modality. 
Consistently, systematic acceleration and deceleration at the begin-
nings and ends of linearized paths in the random-pillar task could 
give rise to selectivity in those regions.

Although we characterized distance selectivity as a function 
of position along the path, neural firing might be influenced by 
other factors as well. Selectivity near the end of the path could 

be driven by reward expectancy or the pillar; selectivity near the 
beginning of the path might be modulated by the recent delivery of 
reward. These salient episodes associated with entering or leaving 
a reward zone are present and repeated in all goal-directed tasks, 
which could result in selectivity to the beginnings and ends of paths 
even in the random-pillar task. We speculate that these episodes 
might become linked together by Hebbian synaptic plasticity in the 
systematic-pillar task by the same mechanism discussed above, thus 
extending selectivity to the entire length of the path. Further studies  
will be needed to fully determine the role of episodic memory in 
these tasks.

Our results may raise the concern that spatial selectivity is impaired 
during random foraging in VR because the rats are not paying atten-
tion to the visual cues present in VR. Although this factor cannot be 
ruled out entirely, we find it to be unlikely for a number of reasons. 
First, in both RW and VR, the rats are not required to pay attention 
to the distal visual cues, yet there is spatial selectivity in RW. Second, 
rats in VR avoid the edges of the virtual table, which is defined only 
visually. Third, many neurons in the systematic-pillar tasks fire in only 
a small portion of one segment of the path, which is differentiated 
from the other segments only by the direction-specific constellation 
of distal visual cues. Further, in the same virtual maze apparatus with 
qualitatively similar visual cues, the rats were able to navigate to a 
hidden reward zone from multiple starting locations, analogous to 
in the water maze navigation task36, using only distal visual cues, 
showing that rats could see the stimuli and navigate based on them. 
Additional studies will be needed to determine the nature of spatial 
selectivity in this task.

The repeated pairing model is compatible with many findings, 
including place cell remapping after a change in the relationship 
between locomotion cues and distal visual cues12, altered spatial  
selectivity after changes in distal3,6 or proximal cues4–9 and instability 
of place fields after maze cleaning between sessions7. In each of these 
cases, place cells remap but spatial selectivity remains intact, presumably  
because new associations are formed as cues are paired repeatedly in 
new configurations. It will be important for future studies to deter-
mine whether different pairings are equally viable or whether there 
is a hierarchy such that certain inputs are more or less effective at 
contributing to spatial selectivity.

In summary, internally generated and temporally coded motifs 
represent activity patterns on behavioral timescales and are local-
ized by the repeated experience of multiple location-specific sensory 
and motor cues. Some selectivity to distance traveled exists near the 
beginnings and ends of paths even in the absence of spatial selectiv-
ity, but repeated pairing strengthens this selectivity and extends it 
to the entire length of the path. The impaired spatial selectivity in 
rats in two-dimensional VR is similar to the weak spatial selectivity  
seen in human studies, in which such pairings are absent as 
well. Recent studies have shown that a sufficiently large pool of  
hippocampal neurons can provide accurate spatial information despite 
impaired spatial selectivity in one-dimensional environments44; such a  
distributed coding mechanism might also allow rodents and humans 
to solve spatial tasks in two-dimensional VR. Our results suggest that 
in human and primate studies in VR, repeated pairing of a rich variety 
of stimuli, especially between motor and visual cues, could enhance 
neural activity and spatial selectivity. These results bridge the gap 
between rodent and human studies by showing that distal visual 
cues alone are insufficient to generate robust spatial selectivity, but 
even with an impaired rate code, temporally coded motifs are intact,  
probably generated by intrinsic network mechanisms.

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



128	 VOLUME 18 | NUMBER 1 | JANUARY 2015  nature NEUROSCIENCE

a r t ic  l e s

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Methods summary. The materials and methods used were similar to those 
described recently21,36. In brief, four adult male Long-Evans rats were trained 
to on a variety of tasks in RW and VR. All rats foraged for randomly scattered 
rewards in two-dimensional RW and VR environments. Additionally, three of 
these rats were trained to follow a goal-directed strategy by running toward  
randomly located reward-indicating pillars in VR. Further, the same three rats 
were trained to run toward consistently positioned reward locations in VR. There 
were either two or three fixed reward locations. The environments had identical 
dimensions (200-cm diameter circular platform at the center of a 300 cm × 300 cm 
room) and distal visual cues. Electrophysiological data from the dorsal CA1 were 
obtained using hyperdrives with 22 independently adjustable tetrodes21. Spike 
extraction and sorting were done offline using custom software. Spatial selectivity 
and phase precession were quantified using measures described previously21. Motifs 
were detected using custom analyses described in the main text. Further details 
are described below. Only data measured during locomotion (speed >5 cm s−1)  
were used for all analyses to ensure consistent hippocampal state51.

Subjects. Data were collected from four adult male Long-Evans rats (approxi-
mately 3.5 months old at the start of training) individually housed on a 12-h 
light, 12-h dark cycle and food restricted (15 g of food per day) to maintain 
body weight. The rats were allowed an unrestricted number of sugar-water 
rewards in VR but a restricted amount of water (~40 ml of water per day) 
after the behavioral session to maintain motivation. All experiments and data 
collection were performed during the light cycle. All experimental proce-
dures were approved by the University of California Los Angeles Chancellor’s  
Animal Research Committee and were conducted in accordance with US  
federal guidelines.

Random foraging in RW and VR. The experimental room, the VR apparatus 
and basic behavioral training were identical to those described recently21,36. In 
RW, a 200-cm-diameter and 50-cm-high platform was placed at the center of a 
300 cm × 300 cm room with distinct visual cues on the four walls (Fig. 1a). Rats 
were trained to forage for randomly scattered food rewards on the platform.  
The VR room had an identical size and distal visual cues as the RW room, and 
rats foraged for randomly located rewards on a platform of the same size as that 
in the RW room. Rewards in VR were in the form of sugar water dispensed 
through reward tubes placed directly in front of the rats. The reward locations 
were hidden and were 40–60 cm in diameter. Entry into the reward locations 
triggered the appearance of a white dot of the same size on the platform in  
addition to a reward tone and sugar-water delivery. At each reward location, rats 
could receive a maximum of five sugar-water rewards. Motion parallax between 
the virtual elevated table and the floor underneath indicated the virtual edge 
of the platform. Movement beyond the platform edge resulted in no change in 
visual scene. Rats quickly learned to avoid or turn away from the virtual edges 
(Fig. 1a). It took about 3 weeks of handling and pretraining and 2 weeks of VR 
training for rats to do the random-foraging task efficiently. Rats were trained on 
the RW task after implantation. Three rats were run in both RW and VR every 
day. To verify that exposure to both worlds on the same day did not have a role 
in neural responses, a fourth rat never ran in both RW and VR on the same day. 
Further, the order of running in VR and RW on the same days was randomized. 
No qualitative differences were found between these conditions, and hence all 
data were combined.

Goal-directed tasks in VR. We trained three rats to run in three different goal-
directed tasks: random pillar, two pillar and three pillar. In all of these tasks, the 
reward zone in VR space was indicated by a pillar suspended 50 cm above the 
table and a white dot on the table (Fig. 3a). All other variables, including the VR 
room, were identical to the one used for the random-foraging tasks. When rats 
reached the reward zone, the reward was dispensed, the pillar disappeared, and 
another pillar appeared elsewhere in the maze. Rats learned this task readily and 
ran toward the pillars reliably36. In the random-pillar task, a pillar appeared at 
a pseudorandom place in the two VR worlds. No qualitative differences were 
found between neural activity patterns in the random-pillar task and the random- 
foraging task, and hence these data were combined for subsequent analyses.  
In the two-pillar task, a pillar appeared alternately at one of two fixed places 
160 cm apart in the middle of the VR table. In the three-pillar task, the  

reward-indicating pillar appeared sequentially at the vertices of an equilateral 
triangle with 138-cm-long sides centered on the VR platform.

Surgery, electrophysiology and spike sorting. These procedures were identical 
to those described earlier21. Briefly, once the rats reached performance criterion, 
they were anesthetized using isoflurane. Custom-made hyperdrives containing up 
to 22 independently adjustable tetrodes that targeted both the left and right dorsal 
CA1 were implanted. Rats were allowed to recover from surgery for 1 week, after 
which the tetrodes were gradually advanced to area CA1, detected online by the 
clear presence of sharpwave-ripple complexes. Spike and LFP data were recorded 
at 40 kHz using the Neuralynx acquisition system. Spikes were extracted and 
sorted into individual units using custom software. Classification of single-unit 
cell type was performed using the same methods as described previously21. When 
rats ran in both VR and RW on the same day, the same cells were identified by 
overlaying cluster boundaries from both sessions and identifying clear overlaps. 
If cell identities were unclear because of electrode drift, the data were discarded 
from the same cell analysis.

Statistics. Offline analyses were performed using custom MATLAB codes. Tests 
of significance between linear variables (circular variables) were done using the 
two-sided nonparametric Wilcoxon rank-sum test (Kuiper test). Tests of sig-
nificance for the mean values of distributions being different from zero were 
performed using the two-sided nonparametric Wilcoxon signed-rank test.  
To compute circular statistics, the CircStat toolbox was used52. Tests of significance 
of correlation between two variables were done using a t test for correlation coeffi-
cients. All ensemble averages are in the form mean ± s.e.m. unless stated otherwise.  
All correlation values are reported as the linear correlation coefficient, r.  
A small number of single units were present in two different sessions, which could 
potentially inflate our estimate of the number of independent samples, thus alter-
ing the significance level of the statistical tests. Hence, as a conservative estimate, 
we did all tests of significance using only half as many cells in VR and RW. All 
significant results were still highly significant. No statistical methods were used 
to predetermine sample sizes, but our sample sizes are similar to those generally 
employed in the field. Data collection and analysis were not performed blind to 
the conditions of the experiments.

Quantification of rate maps. Theta rhythm is interrupted51 and behavior is 
uncontrolled when rats pause to consume rewards or to groom. Hence, these peri-
ods were excluded, and only data recorded during periods of active locomotion 
(running speed >5 cm s−1) were used. The durations of recording sessions were 
matched between RW and VR to remove possible sources of variability. A cell 
was considered active if its mean firing rate exceeded 0.2 Hz and it fired at least 
100 spikes during locomotion, and such cells were thus included in the analysis.  
Spatial firing rates were computed using occupancy and spike histograms with  
5 cm × 5 cm bins smoothed with a 7.5-cm two-dimensional Gaussian smoothing  
kernel. Bins with very low occupancy relative to the experimental session were 
excluded to avoid artificially high firing rates. The spatial information content, 
sparsity and coherence of the rate maps were computed using methods described 
previously21. To determine the stability of rate maps, firing rates were computed 
in the first and second halves of the session separately. The bin-by-bin correlation 
between the rate maps in the two halves provided a measure of rate map stability. 
To obtain the similarity of rate maps of the same cell in RW and VR, we computed 
the correlation of firing rates and computed statistical significance by comparing 
it against correlations when the cell identities were shuffled.

Computation of dynamic rate maps. The dynamic rate map53 for a pair of coac-
tive cells was constructed as follows: for each spike from the first cell, the rat 
trajectory and spikes from the second cell within the next 200 cm traveled were 
aggregated relative to the spike positions from the first cell. We used 15 cm ×  
15 cm spatial bins and computed the occupancy time and number of spikes in 
each bin. Dividing the number of spikes by the occupancy time in each spatial bin 
provided the dynamic rate map. The information content and sparsity of these 
rate maps were quantified as described above.

Computation of coactivation of cell pairs. To determine the degree of coactivity 
of pairs of cells active in a session, we first constructed the firing rate of neurons 
as a function of both time elapsed and distance traveled (200 ms (5 cm) time 
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(distance) bins, smoothed with a 400 ms (10 cm) Gaussian smoothing kernel). 
We then computed the cross-covariance of firing rates for pairs of active cells 
within a session. To obtain an estimate of chance level, we generated control 
data by time reversing the spike train of one of the cells in the cell pair and time 
shifting both of them by random amounts between 10 and 100 s. This procedure 
was repeated ten times. We detected the peak value in the cross-covariance of 
the original cell pairs and the control data in both distance and time domains  
peak , peakactual

distance
control
distance( ) and peak , peakactual

time
control
time( )  that occurred within  

50 cm or 2 s from 0. A peak was considered significant if it satisfied the  
following condition:

peak mean peak standard devactual
distance

control
distance≥ ( ) + ×2 iiation peakscontrol

distance( )

peak mean peak standard deviation peactual
time

control
time≥ ( ) + ×2 aakscontrol

time( )
We then calculated the fraction of cell pairs whose firing rate cross-covariance 
had a significant peak.

Characterizing selectivity to distances traveled in VR goal-directed tasks. 
To investigate the degree of selectivity to distance traveled in the goal-directed 
tasks (VR systematic-pillar and VR random-pillar tasks), we linearized the paths 
by measuring the distance traveled between two consecutive rewards. These  
distances were normalized to unity. To control for variability in the path lengths,  
we considered only trials for which the distance traveled was around the median 
path length (median ± 0.4 × median). This threshold value of 0.4 ensured that 
the number of trials and path-length variability were similar in the random-pillar 
and systematic-pillar tasks. The following analysis was also repeated when con-
sidering all trials regardless of the path lengths, and the results were qualitatively 
similar. For each cell, we constructed a linearized rate map as a function of the 
normalized distance traveled. For cells with a mean firing rate above 0.5 Hz, 
we then computed the information content, sparsity and peak value of the rate 
maps to quantify this selectivity. To examine the nature of this selectivity on an 
ensemble level, for each cell we partitioned the selected trials into two random 
groups. We computed the firing rate for each partition separately. The population 
vector overlap for the two partitions was calculated, and the significance values 
were obtained using methods described previously26.

Computation of disto-code in the VR three-pillar task. Here, a one-dimensional  
linearized rate map was constructed (distances were normalized to unity) for each 
arm separately. A given arm pair was used for analysis if the mean firing rate was 
higher than 0.5 Hz on at least one arm. We then computed the arm selectivity 
index for each two-arm combination as

Dij
l
L

l
i

l
j

l
L

l
i

l
j=

∑ −

∑ −

( )

( )

l l

l l

where ll
i  and ll

j  are the rates in the lth bin along arms i and j. For the arm pairs 
with D < 0.5 (pairs with firing along both arms), we computed the population 
vector overlap, its significance level and disto-coding index similarly to methods 
described previously26.

Detection of motifs. To detect motifs, a method similar to the one used for 
detecting place fields on a one-dimensional track was used. We constructed a 
spike train, a vector of data whose length spanned the period of the experimental  

session, by binning the spikes for which the running speed was greater than  
5 cm s−1. This spike train was smoothed using a 200-ms Gaussian smoothing 
kernel and transformed to firing rate by dividing by the bin duration. Peaks where 
the firing rate exceeded 5 Hz were detected and marked as candidate motifs. 
The boundaries of a motif were defined as the points where the firing rate first 
dropped below 10% of the peak rate (within the motif) for at least 250 ms (two 
theta cycles). If the time lag between the first and last spike in the putative motif, 
called the duration of the motif, exceeded 300 ms, this sequence was considered 
a valid motif and was included in the analysis.

Construction of motif fields. The center of a motif was defined as the center 
of mass of the firing rate as a function of time within the motif. This value was 
subtracted from the spike times within the motif to center them around zero. This 
procedure was repeated for all motifs, and the centered motifs were aligned to 
obtain a motif field for a given neuron. The firing rate as a function of time within 
the motif field was calculated as the number of spikes within each temporal bin 
divided by the total amount of time in that bin, smoothed by a 200-ms Gaussian 
smoothing kernel. Motif-field duration was defined as twice the weighted s.d. of 
the motif firing rate, i.e., the width of the distribution.

Theta period and phase precession. Similar to the methods described pre-
viously21, each LFP was filtered between 4 and 12 Hz using a fourth order 
Butterworth filter. Theta period was computed by detecting the peak between  
50 and 200 ms in the filtered LFP autocorrelation for epochs during which 
the running speed was above 5 cm s−1. Spiking theta period was calculated by  
computing the spike train autocorrelation, smoothing by a 15-ms-wide Gaussian 
kernel and detecting the peak. Quality of phase precession within a motif field 
was defined as the circular linear correlation coefficient (CLCC)21 between spike 
phases and the latency of spike timing with respect to the motif center.

Control analysis for motifs. To estimate which motif properties can arise purely 
by chance, surrogate motifs for each neuron were generated as follows. The mean 
firing rate during locomotion and the depth of theta modulation were computed 
for each neuron. Surrogate activity was generated using a Poisson-distributed 
and theta-modulated spike train with the same mean firing rate and depth of 
theta modulation as the experimentally measured neuron. Motifs, motif fields 
and their properties were computed using the procedures described above. This 
procedure was repeated 50 times for each neuron to generate a null distribution.  
The mean value and s.d. of this null distribution were used to compute the  
z-scored values for each cell.

Control analysis for spatial selectivity. To determine the statistical significance 
of spatial selectivity, we generated control data by shifting the experimentally 
observed spike train with respect to behavioral data by random amounts between 
10 and 100 s. All of the measures used to quantify the spatial selectivity were 
expressed in the units of z score or s.d. around the control data.

A Supplementary Methods Checklist is available.
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