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A knowledge of stellar ages is crucial for our understanding of 
many astrophysical phenomena, and yet ages can be difficult to 
determine. As they become older, stars lose mass and angular 
momentum, resulting in an observed slowdown in surface 
rotation1. The technique of ‘gyrochronology’ uses the rotation 
period of a star to calculate its age2,3. However, stars of known 
age must be used for calibration, and, until recently, the approach 
was untested for old stars (older than 1 gigayear, Gyr). Rotation 
periods are now known for stars in an open cluster of intermediate 
age4 (NGC 6819; 2.5 Gyr old), and for old field stars whose ages 
have been determined with asteroseismology5,6. The data for 
the cluster agree with previous period–age relations4, but these 
relations fail to describe the asteroseismic sample7. Here we report 
stellar evolutionary modelling5,6,8–10, and confirm the presence of 
unexpectedly rapid rotation in stars that are more evolved than the 
Sun. We demonstrate that models that incorporate dramatically 
weakened magnetic braking for old stars can—unlike existing 
models—reproduce both the asteroseismic and the cluster data. 
Our findings might suggest a fundamental change in the nature 
of ageing stellar dynamos, with the Sun being close to the critical 
transition to much weaker magnetized winds. This weakened 
braking limits the diagnostic power of gyrochronology for those 
stars that are more than halfway through their main-sequence 
lifetimes.

There are two approaches to the calibration and testing of gyrochro-
nology. The first is a purely empirical approach, which uses a sample 
of stars with independently measured ages and rotation periods to 
construct period–age relationships. These relationships are gener-
ally simple power laws that take into account age, period, and some 
mass-dependent quantity; they have seen wide usage1,2,4,5,7. The sec-
ond, model-based approach uses stellar models and a prescription 
for magnetic braking to account for the functional dependence of the 
rotation period on all relevant stellar quantities, but relies on calibra-
tors to determine the magnitude of the angular momentum loss. For 
this reason, the model-based approach is well suited to calibrating 
samples that cover parameter space only sparsely; it also provides a 
method for attaching physical meaning to observed braking behaviour.

Magnetic-braking prescriptions are typically scaled from the solar 
case; for example, the Skumanich relation1 yields angular momentum 
loss of the form dJ/dt ∝ ω3, where t is time, J is angular momentum, 
and ω is the angular rotation velocity11. These relations often use the 
dimensionless Rossby number—defined as the ratio of the rotation 
period to the convective overturn timescale, Ro = P/τcz—to character-
ize departures from this simple power law. Rossby-number thresholds 
and scalings are routinely invoked to parameterize the magnetic-field 
strength12,13; the dependence of the spin-down on stellar mass and 

composition2,14; the observed saturation of magnetic braking in rapid 
rotators; and the sharp transition from slow to rapid rotation that 
occurs in hot stars (of greater than 6,250 K) because of their thinning 
convective envelopes14. Under traditional prescriptions, stars undergo 
braking throughout their main-sequence lifetimes, regardless of rota-
tion rate. Observations of stellar clusters of young and intermediate 
ages have indicated that such treatments are reasonable4,15. However, 
there is a dearth of old stars with which to test such relationships, 
owing to the long-period, low-amplitude signatures of rotation in such 
stars, and to the challenge of age measurements in field stars. Data 
from the Kepler telescope provide a first test of these prescriptions in 
stars that are older than the Sun.

The high-precision, long-baseline light curves from Kepler make 
such investigations possible. The rotation of a star manifests itself in 
Kepler data as a periodic modulation in the intensity, as dark starspots 
rotate into and out of view. Intensity variations due to stellar oscilla-
tions are likewise present in the light curve, on shorter timescales. 
Low-degree modes of oscillation probe the conditions of the deep 
stellar interior and internal structure of the star, providing ages that are 
precise to better than 10% in stars for which many oscillation modes 
are detected at high signal-to-noise ratios16.

The first efforts to calibrate the gyrochronology relations using 
Kepler seismic targets uncovered tension between the cluster and 
seismic samples7. Although the form of the mass–period–age relation 
used in this study7 was similar to those in previous studies2,4, the range 
of ages and more sophisticated treatment of observational uncertain-
ties made it possible to determine that the sample did not obey a sin-
gle power-law period–age relation. However, even this approach has 
limitations: it does not account for metallicity or for changes in the 
stellar moment of inertia, and it relied on a sample for which detailed 
seismic modelling and spectroscopic data were lacking for some stars, 
biasing the seismic ages.

To address the limitations of previous work and to take full advan-
tage of precisely determined stellar parameters, we utilize a subset 
of 21 Kepler stars—selected to have detailed asteroseismic modelling 
and high-precision ages, measured rotation periods, and measured 
metallicities5,6,8–10—and couple these observations to stellar evolu-
tionary models. Sample selection, details of the modelling to derive 
asteroseismic ages, and extraction of rotation periods are described 
in the Methods. Figure 1 shows the surface—in terms of period, age 
and effective temperature (Teff, a proxy for mass)—upon which the 
stars are expected to lie2,4. Actual cluster and seismic data are over- 
plotted; while the clusters and young asteroseismic targets lie close to 
the plane, the intermediate-age and old asteroseismic stars are strik-
ingly discrepant and nearly all lie below the surface, owing to the fact 
that they are rotating more rapidly than expected. When we account 
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for uncertainties in the ages, masses, and compositions (see Methods) 
and predict the rotation periods that we should have observed given 
existing period–age relations2,14 (Pexpected), we find that the systematic 
offset persists; stars of roughly solar age and older are rotating more 
rapidly than predicted, regardless of the chosen period–age relation. 
Figure 2 highlights the systematic offset by plotting the ratios of the 
expected to observed periods for each star in the sample, where the 
expected periods are calculated using stellar models with a braking 
law calibrated on the Sun and on open clusters14 (a similar plot is 
provided in Extended Data Fig. 3 for the empirical relation2). The 
theoretical models14 fit the data with a χ2 value of 54.9, whereas the 
empirical relation2 yields a χ2 of 155.6. In both cases, the systematic 
offset towards short rotation periods is an indication that the models 
predict more angular momentum loss than actually occurs.

We therefore conclude that magnetic braking is weaker in these 
intermediate-age and old stars. We extend our model by postulating 
that, in addition to the Rossby scaling already present in the theoretical 
models14, effective loss of angular momentum ceases above a critical 
Rossby threshold12. We modify the prescription for angular momen-
tum loss14 to conserve angular momentum above a specified Rocrit. 
Graphs showing the effects of varying Rocrit values on the models are 
provided in Fig. 3. The inclusion of the threshold has the desired effect: 
it reproduces the existing gyrochronology relations and cluster data 
at young ages, when Ro is smaller because of more rapid rotation, 
but allows stars to maintain unusually rapid rotation periods at late 
times. Furthermore, it reproduces the trend in mass that is apparent 
in Figs 2 and 3 (and the trend in the zero-age main-sequence (ZAMS) 
Teff, which selects stars with similar rotational histories; we perform 
all fits using the seismic mass, but use ZAMS Teff for display to sim-
plify the figures). Hotter, more massive stars reach the critical Rossby 
threshold at younger ages, and we therefore see discrepancies between 
the fiducial gyrochronology relationships and the observations at 

earlier times as ZAMS Teff increases. The best-fit value for the Rossby 
threshold, given our sample, is Rocrit = 2.16 ± 0.09 (χ2 = 13.3) for the 
modified models. The shaded grey regions in Figs 2 and 3 denote the 
full range of period ratios (PRocrit/Pfiducial), and the period–age com-
binations allowed for a model with Rocrit = 2.16, given the ranges of 
ZAMS Teff that are represented in each panel. These regions encom-
pass all combinations of mass (0.4–2.0 solar masses) and metallicity 
(−0.4 < [Z/H] < +0.4) that together produce a star within the appro-
priate ZAMS Teff range for each panel of Figs 2 and 3, on both the 
main-sequence and the subgiant branch.

We emphasize that our result—that old stars are rotating anom-
alously rapidly—persists regardless of the choice of period–age 
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Figure 1 | The period–age plane as predicted by gyrochronology, 
compared with observed periods. The empirical gyrochronology 
relation2,4 is shown as a plane. Data from open stellar clusters are shown 
as small squares (NGC 6811 cluster; 1 Gyr) and triangles (NGC 6819 
cluster; 2.5 Gyr). Large circles represent the seismic sample of 21 stars that 
are detected in the Kepler data; this sample falls systematically below the 
plane. The solar symbol (⊙) marks the Sun, which falls on the plane by 
design. The effective temperature, Teff, is a proxy for mass.
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Figure 2 | Ratios of the predicted rotation period14 to the observed 
period. Predicted rotation periods are derived from existing period–
age relations; observed periods are as detected by the Kepler telescope. 
These ratios are plotted against stellar age. Stars are divided according to 
decreasing ZAMS Teff: a, 5,900–6,200 K; b, 5,600–5,900 K; c, 5,100–5,400 K. 
Period ratios for open clusters are shown as black symbols, as follows: 
diamonds, M37; circles, Praesepe; squares, NGC 6811; triangles, NGC 
6819. The Sun (⊙) is also marked. Coloured circles represent seismic 
targets; coloured triangles represent known planet hosts; coloured squares 
represent the binary stars 16 Cygni A and B. All errors are shown to 1σ. 
Stars are coloured according to ZAMS Teff, with blue representing the 
hottest stars and red the coolest stars. Shaded regions represent the period 
ratios permitted in each Teff bin for a model in which Rocrit = 2.16.
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relationship, asteroseismic modelling pipeline, or model uncertain-
ties from the literature (see Methods). The period-detection algo-
rithms17 and seismic ages have been well tested8. The tight rotational 
sequences observed in intermediate-age open clusters4 suggest that 
we are not simply detecting the rapidly rotating tail of a population 
with a wide distribution of rotation rates, and it is unlikely that our 21 
stars with detected rotation rates are atypical (see Methods for further 
discussion).

Our model represents the limiting case in which the braking is so 
ineffective that the star ceases to shed angular momentum. If we instead 
allow the exponent, α, of the period–age relation P ∝ t1/α to vary, while 
fixing Rocrit to the solar Ro value of 2.16, we do not obtain a comparable 

fit in the old stars until α is greater than ∼20, suggesting that the braking 
is indeed drastically reduced. However, we do observe spot modulation 
in these stars, which implies at least small-scale magnetic activity. The 
starspot properties may or may not directly reflect changes in the large-
scale magnetic field that governs spin-down. A change in field geometry 
from a simple dipole to higher-order fields could produce weakened 
braking18,19, as could a change in the distribution of spots on the stellar 
surface20. It could also be the case that the large-scale field strength 
undergoes a transition at high Rossby numbers12. Abrupt changes in 
the efficiency of angular momentum loss have been proposed in order 
to explain the rotational distributions in young clusters21, and there is 
evidence for a Rossby-number-governed shift in field morphologies in 
low-mass M dwarfs22. Observations of detailed magnetic-field mor-
phologies and corresponding simulations are lacking for stars at higher 
Rossby numbers than the Sun, and both are critical to understanding 
the source of the observed anomalous rotation.

Regardless of the mechanism that governs the spin-down, the 
observation that existing rotation–age relationships do not predict the 
observed rotation rates has immediate implications for gyrochronol-
ogy. The rotation periods of the middle-aged stars that have passed this 
Rossby threshold represent only lower limits on the age. The empir-
ical calibrations must be modified, and the weakened relationship 
between period and age will result in substantially more uncertain 
rotation-based ages for stars in the latter halves of their lives. The pres-
ence of such a Rossby threshold defines boundaries in mass–age space, 
past which gyrochronology is incapable of delivering precise ages.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 3 | The effects of a Rocrit threshold on rotational evolution. Panels 
are divided according to decreasing ZAMS Teff: a, 5,900–6,200 K; b, 5,600–
5,900 K; c, 5,100–5,400 K (as in Fig. 2). Black symbols represent open 
stellar clusters, as follows: diamonds, M37; circles, Praesepe; squares, NGC 
6811; triangles, NGC 6819. The Sun (⊙) is also marked. Model curves 
are shown for solar metallicity and ZAMS Teff 6,050 K (a), 5,750 K (b), 
and 5,250 K (c). Curves are colour-coded by Rocrit: black, no Rocrit cut; 
dark blue, Rocrit = 1.0; light blue, Rocrit = 1.5; green, Rocrit = 2.0; orange, 
Rocrit = 2.5; red, Rocrit = 3.0; dashed black, Rocrit = 2.16. Successive curves 
are offset by +0.1 Gyrs to improve readability. Seismic (cluster) targets 
are overplotted in solid (open) symbols with 1σ errors. Shaded regions 
represent Rocrit = 2.16 models for each Teff range.
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METHODS
Sample selection. Our sample can be divided into two principal target types: 
Kepler Asteroseismic Science Consortium (KASC) targets, and Kepler Objects 
of Interest (KOIs). We focus on those stars with (modelled) ZAMS Teff values 
(defined as the point at which hydrogen fusion dominates the stellar luminosity) 
below 6,200 K, where magnetic braking should be most important. We show the 
positions of the selected stars on a Hertzsprung–Russell diagram in Extended Data 
Fig. 1, and period–age plot in Extended Data Fig. 2.

As described elsewhere9, the asteroseismic sample is drawn from a magnitude- 
limited sample of 2,000 Sun-like stars that were selected for a one-month 
period of short-cadence (∼1-minute) Kepler observations on the basis of their 
properties in the Kepler Input Catalog (KIC). Of these stars, roughly 500 dis-
played evidence of solar-like oscillations. A subset of targets with detections of 
oscillations that show high signal to noise ratio detections of oscillations were 
selected for continued monitoring over Kepler quarters 5–17. Of this sam-
ple, the mode frequencies for a subset of 61 high-signal-to-noise stars were 
extracted; there are high-resolution spectroscopic data for 46 of these. We 
modelled 42 of these 46 stars with the asteroseismic modelling portal (AMP, 
described below), excluding 4 targets whose spectra contained a complicated 
pattern of mixed modes. Of the 42 modelled targets, 11 were both detected in 
spot modulation and classified as ‘simple’ solar-like oscillators that did not show 
the seismic hallmarks of F-stars and evolved subgiants. A further three (non-  
overlapping) targets were added7. Of this sample of 14, 12 targets have AMP ZAMS 
Teff values of less than 6,200 K, yielding a total of 12 stars in the KASC sample.

The KOI sample9 was selected from the 77 KOIs observed in short cadence that 
displayed signatures of solar-like oscillations. Of these, 35 power spectra were of 
sufficient quality to extract individual mode frequencies to be modelled, 33 of which 
represent unevolved main-sequence stars. A subset of 11 have periods detected via 
spot modulation6, 7 of which have an AMP ZAMS Teff of less than 6,200 K.

Finally, we add the two well studied stars from the 16 Cygni binary to our sam-
ple; for these stars, asteroseismic ages16 and rotation periods have been inferred 
from asteroseismic mode splittings23. In total, 21 stars are addressed in this analysis. 
Where available, we use the updated asteroseismic frequencies of ref. 24. Extended 
Data Table 1 shows the seismic (mass, age) and spectroscopic (Teff, [Fe/H]) values 
and rotation periods for these stars.
Age and period measurements. Asteroseismic ages are determined using two 
methodologies: AMP, which provides the ages used in most of this paper; and the 
Bayesian stellar algorithm (BASTA) pipeline, used to verify that the discrepancies 
in predicted and observed rotation periods are not the result of pipeline choice. 
AMP uses a genetic algorithm to perform a search for the global χ2 minimum 
between the stellar observables and stellar model values9. The algorithm uses the 
Aarhus stellar evolution code (ASTEC) and adiabatic pulsation code (ADIPLS) to 
compute oscillation frequencies. The BASTA pipeline uses a Bayesian approach 
to model stars with a grid of models produced with the Garching stellar evolution 
code (GARSTEC). The input physics of the stellar models used in each method 
are detailed in refs 8–10.

Both methods use frequency spacings and spectroscopic constraints to identify 
the optimal stellar properties, but AMP also uses the individual frequencies by 
employing an empirical correction for surface effects. There are two main dif-
ferences between the models used by BASTA and those used by AMP. BASTA–
GARSTEC uses a fixed relationship between the initial helium and metallicity, 
anchored to zero metallicity at the primordial helium abundance and assuming 
∆Y/∆Z = 1.4 to reproduce the solar values (Y is the mass fraction of helium and 
Z is the mass fraction of all other elements excluding hydrogen and helium). It also 
uses a single solar-calibrated value of the mixing-length parameter for all mod-
els. AMP–ASTEC allows the initial helium to float independently of metallicity, 
and searches a wide range of values for the mixing-length parameter. Both sets 
of models include diffusion, although BASTA–GARSTEC includes both helium 
and heavy-metal diffusion, while AMP–ASTEC considers only helium diffusion.

We extract rotation periods using techniques5 that we summarize briefly here 
(full period-extraction diagrams are available at http://irfu.cea.fr/Phocea/Vie_
des_labos/Ast/ast_technique.php?id_ast=3607). For the corrected light curve of 
each Kepler star, the autocorrelation function (ACF) and a wavelets decomposition 
(period-time) are calculated. We collapse the wavelet decomposition on the period 
axis to obtain the global wavelet power spectrum (GWPS), and the peaks of this 
GWPS are fitted with gaussian functions. In parallel, we identify the peaks of the 
ACF. The derived surface rotation period is the result of the comparison of the ACF 
and GWPS analyses and is confirmed by a visual inspection of the light curves.
Stellar rotation models. We use a theoretical model grid14 (using OPAL rather 
than OP opacities; all other inputs are unchanged), utilize the same loss-law cali-
bration and form as in ref. 14, and assume solid-body rotation. The model grid is 
expanded to cover a wider range of metallicities and masses, namely [Z/H] = −0.4 
to [Z/H] = +0.4, assuming a helium enrichment of ∆Y/∆Z = 1.0 and no diffusion 

or gravitational settling. We use the ‘fast launch’ conditions14 for modelling the 
rotation, but have validated that our results are insensitive to the choice of initial 
conditions. Changing the launch conditions typically shifts the period ratio (in 
sense of expected/observed) by less than 50% of the quoted errors, and shifts the 
fitted critical Rossby number to Rocrit = 2.15 ± 0.08. The model τcz is the local 
convective overturn timescale, defined as the ratio of the typical mixing length to 
the convective velocity at one pressure scale height above the base of the convective 
envelope in the mixing length theory of convection. Under this definition, the solar 
rotation period (P⊙) is 25.4 days, τcz,⊙ is 1.015 × 106 s, and Ro⊙ = 2.16.

The weakened magnetic braking is modelled by modifying the braking law such 
that a star with P/τcz > Rocrit is evolved under the assumption of conservation of 
angular momentum, such that the rotation period depends only on the changing 
moment of inertia of the star as it evolves. The modified loss law is given by the 
following equations (based on equations (1) and (2) in ref. 14):
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where fK is a constant factor used to scale the loss law during the empirical fitting; 
ωcrit is the saturation threshold (important only at young ages); τcz is the convective 
overturn timescale; Pphot is the pressure at the photosphere; R is the radius; M is the 
mass; L is the luminosity; and ⊙ refers to the Sun. The term c(ω) sets the centrifu-
gal correction; because our stars are slowly rotating and the correction should be 
small, we set c(ω) to a constant value of 1. This braking law is fit to open-cluster 
data and the Sun, where the initial rotation period, disk-locking timescale, ωcrit, 
and fK were allowed to vary, and all other parameters were determined using stellar 
evolutionary models14. When fitting for an optimal Rocrit, we keep the parameters 
of the magnetic braking law calibrated on the Sun and open clusters fixed, and 
vary only the Rocrit at which braking is allowed to cease. Rocrit is optimized using 
a χ2 figure of merit (valid under the assumption of independent observations and 
Gaussian uncertainties): χ2 =  Σi

N(Pobs,i−mod,i)2/(σobs,i
2 + σmod,i

2), where σobs,i is 
the observational uncertainty on the extracted period, and σmod,i represents the 
uncertainty on the model period given the uncertainties on the input masses, ages, 
and compositions. We derive uncertainties on Rocrit using bootstrap resampling, 
drawing a 21-star sample with replacement from the original data 50,000 times, 
and recalculating the best-fit Rocrit for each realization. Cluster data and the Sun 
are not used in this fit. An alternate fit allowing parameters important for late-time 
braking to vary ( fK, Rocrit) and including intermediate-age and older rotation data 
from the seismic sample, NGC 6819, and the Sun (52 stars in total) yields a best-fit 
Rocrit of 2.1 ± 0.1, with fK = 8.4 ± 0.2.

Predicted model periods are obtained by using the mass and age from the 
asteroseismic pipelines coupled with the spectroscopic metallicity8–10,16. Model 
uncertainties are estimated by generating 50,000 (20,000 for Rocrit + fK fit) reali-
zations of the input parameters (M, t and [Fe/H]), where values are drawn from a 
Gaussian distribution centred on the observed value, with 1σ errors defined by the 
observational uncertainties. While we search in the fundamental space of mass, 
age and composition, we select only models which fall within 5σ of the observed 
Teff. This constraint has little or no effect for unevolved stars, but ensures that 
stars at the turnoff (KIC 6196457 and KIC 8349582 in particular) are not assigned 
artificially long rotation periods due to mass–age combinations that fall on the 
subgiant branch. 1σ uncertainties on the model periods are defined as the values 
that enclose 68% of the resulting models.
Empirical gyrochronology relations. We verify that the unexpectedly rapid rota-
tion in old, solar-like stars is independent of the spin-down prescription by repeat-
ing our exercise with an empirical literature gyrochronology relation2. We replicate 
Fig. 2 in Extended Data Fig. 3 with predicted periods drawn from an empirical 
gyrochronology calibration, based on equation (32) in ref. 2:
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where t is the age, τ is the convective overturn timescale, P is the period, and P0 is 
the initial period. We adopt values for kC of 0.646 million years (Myr) per day and 
for kI of 452 days per Myr; P0 = 1.1 days, and the global τ−Teff relation is as used in 
refs 2,4. 50,000 realizations of the combination (Teff, t) are drawn from a Gaussian 
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distribution centred on the measured values, with a 1σ width defined by the quoted 
observational errors on the central values. These empirical relationships do not 
account for the physical expansion of stars as they evolve (particularly near the end 
of the main sequence) and therefore tend to predict somewhat more rapid rotation 
than do full theoretical models near the main sequence turnoff.
Cluster data. To provide comparison with the typical gyrochronological calibra-
tors, we draw cluster data from a variety of literature sources. For the cluster M37 
we adopt the following cluster parameters15: extinction, E(B−V) = 0.227 ± 0.038 
mag; total metal abundance [M/H] = 0.045 ± 0.044 dex; age = 550 ± 30 Myr. 
Rotation data and cluster parameters25 for Praesepe (M44) are included, with 
E(B − V) = 0.027 ± 0.004, [Fe/H] = 0.11 ± 0.03, and log(age) = 8.77 ± 0.1. For 
NGC 6811, we adopt the g-r colours, E(B−V) value of 0.1, and rotation periods 
as in ref. 26, as well as the [M/H] value of −0.1 ± 0.01 and age of 1.00 ± 0.05 Gyr 
from ref. 27. Finally, for NGC 6819 we use the rotation periods and B−V colours 
from ref. 4, with the age (2.5 ± 0.2 Gyr) and adopted metallicity (0.09 ± 0.03) from 
ref. 28. B−V colours are converted into temperatures and stellar masses using Yale 
rotating stellar evolution (YREC) isochrones29. We model cluster stars in the same 
manner as the seismic targets, with 10,000 mass–age–composition realizations 
for each star. We display the mean cluster rotation periods for all stars within the 
ZAMS Teff bins, with errors representing the 16th and 84th percentiles. In M37 and 
Praesepe in particular, the rotational distribution displays a range resulting from 
spread in the initial rotation periods.
Sample biases. We demonstrate that our results are unlikely to be a consequence of 
selection bias in our sample. The sample is subject to two sources of selection bias: 
asteroseismic detectability, and the detectability of spot modulation.

Detailed asteroseismic analysis requires a high signal-to-noise detection 
of the power excess from oscillations. Oscillation amplitudes scale roughly as 
Amax ∝ (L/M) (Teff)−2 (equation (7) from ref. 30, referring to l = 0 radial modes); 
seismic samples are therefore strongly biased towards more-massive stars. There 
is also a bias towards bright targets, where lower noise levels contribute to detect-
ability. Our sample is drawn from two subsets of stars: the one-month survey stars 
from the seismic sample, and the KOIs. We expect the one-month survey seismic 
detections at magnitudes of Kp of less than ∼10, while the roughly 1,000-day time 
series in short cadence collected for the KOI sample allow detections out to Kp ≈ 12, 
which well describes the actual magnitude distribution of our sample (see Fig. 6 
in ref. 30). The strong trends with magnitude and mass are well predicted by basic 
scaling arguments, save for the dependence on activity: active stars are less likely 
to be detected in oscillations30. Our sample is selected seismically, and we do not 
expect the well understood seismic biases to favour rapid rotators (apart from the 
obvious mass dependence).

Variability owing to starspots scales with the rotation period, in the sense that 
more rapid rotation is associated with higher amplitudes of variability15. One could 
imagine that we are detecting the rapidly rotating tail of a distribution of rotation 
periods, or detecting objects spun up by binary/planetary interactions or mergers.

This first case is at odds with what we know from open clusters: as late as 2.5 Gyr, 
there is a converged, well defined rotational sequence that shows very little scatter 
at fixed mass4. If we are in fact detecting a rapidly rotating subset of the population, 
the dispersion in rotation and spin-down rates must set in after several billion 
years, or it would be visible in the open-cluster data. If there is dispersion in the 
rotation periods, it represents a serious challenge to the validity of gyrochronology 
for old stars, regardless of its source.

The pipeline used to extract the rotation periods for this work has been tested 
with an injection and recovery exercise17. Our recovery fraction is shown in 
Extended Data Fig. 4, and demonstrates that we should be able to detect stars that 
are substantially less active than the Sun at longer periods. However, this exercise 
does not account for stars that simply cease to have spots to detect on their sur-
faces; under this scenario, slow rotators could exist but be undetectable. We cannot 
directly combat this concern given our current data set, although we can examine 
the case of 16 Cygni (16 Cyg). 16 Cyg A and B are not detected in spot modulation; 
their periods are derived from asteroseismic frequency splittings, which yield peri-
ods that probe the envelope rotation23. If we assume that these stars have solar-like 
rotation profiles, then the seismic rotation periods are directly comparable to the 
surface periods. This pair displays the same anomalously rapid rotation as objects 
detected in spot modulation, providing evidence against the argument that stars 
undetected in spot modulation are simply more slowly rotating. It is also worth 
noting that our own Sun would be undetectable during the minimum of its activity 
cycle (see ref. 17). Our non-detections could equally be the result of the normal 
variations in the activity of Sun-like stars, rather than a period bias.

Finally, we examine the possibility of interactions or mergers with other bod-
ies. In our sample, 16 Cyg A and B, and KIC 3427720 and KIC 9139151, are 

known or suspected binaries5. In each case, the components are well separated, 
and the binary orbits are estimated well in excess of 10,000 years. In order for a 
companion to affect rotation considerably, it must be at orbital periods compa-
rable to the rotation period, and will therefore be unresolved. The KOI sample 
has undergone the extensive vetting that is associated with planet detection; 
all planets are confirmed, and there is no evidence of transit timing variations 
that would accompany a close stellar companion. System stability is unlikely 
for binary orbits of the order of 30 days that contain even a low-mass stellar 
companion31. Likewise, there is no evidence for interaction between the planets 
and the host stars in the KOI sample6, and no known hot Jupiters. In the case of 
the seismic sample, there is no evidence for double-lined binaries,  photometric– 
spectroscopic temperature disagreements, multiple oscillating components, 
or unusual dilution of the seismic power spectra, and no evidence of eclipses. 
Finally, if mergers (planetary or stellar) were responsible for all detections of 
rapid rotation, then the 50% detection rate of the ‘simple stars’7 in spot modula-
tion implies an uncomfortably high merger rate.
The asteroseismic age scale. We carry out two tests to demonstrate that the dis-
crepancy between the expected and observed rotation periods is not due to a sys-
tematic bias in the ages with roots in the asteroseismic age scale. We show that 
ages derived with the BASTA pipeline display the same trend in rotation period, 
and that systematically shifting the asteroseismic ages, while improving the fit, is 
inferior to instituting a Rossby threshold.

Extended Data Fig. 5 provides period ratio plots using the BASTA ages and 
BASTA ZAMS Teff determinations. The systematic trend in the period ratios sur-
vives. The Barnes relation2 fits with χ2 = 184.3, and the fiducial models14 with 
χ2 = 68.4. A fit for Rocrit using the BASTA ages yields Rocrit = 2.67 ± 0.50. Bootstrap 
resampling demonstrates that this number is sensitive to whether KIC 8349582 is 
drawn; if KIC 8349582 is excluded, the fit becomes Rocrit = 2.12 ± 0.12.

We also investigate the possibility that the seismic age scale is systematically 
shifted relative to the true ages. We perform model fits with the fiducial braking 
law with an extra parameter that allows for a systematic age shift. For the AMP 
ages, χ2 is minimized with the Barnes relation with a systematic shift of 35% and 
a χ2 of 78.5. Likewise, the fiducial models14 prefer a shift of 20 ± 3% with a χ2 of 
26.9. In both cases, the required systematic shifts are larger than the estimated 9.6% 
systematic uncertainties in seismic ages10.

Finally, to verify that we are not biased by the fact that the ages and periods were 
determined using different evolution codes, we tune the physics in the fiducial 
models14 to match that of the AMP models, and predict the rotation periods for the 
central AMP values of the masses, ages, and compositions of each star. In particular, 
we match the diffusion physics, opacity tables, equation of state, helium and metal 
abundances, boundary conditions, and important nuclear reaction rates present in 
the ASTEC code used for AMP. The results are presented in Extended Data Fig. 6, 
and demonstrate that the discrepancy between the predicted and observed periods 
is preserved. We conclude that our result is not the consequence of assumptions 
about the stellar physics included in models.
Code availability. The AMP science code used to infer stellar ages can be down-
loaded at https://amp.phys.au.dk/about/evolpack. Code for the period extraction 
and rotational evolution will be publicly released upon completion of the necessary 
documentation. YREC likewise has no public documentation, and has not been 
publicly released. BASTA is undergoing major revisions for increased speed and 
is not yet publicly available.
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Extended Data Figure 1 | The positions of all 21 Kepler stars on the 
Hertzsprung–Russell diagram. We plot spectroscopic Teff (a proxy 
for mass) versus seismic log(g) (surface gravity), with 1σ observational 
error bars; the symbol size is proportional to the period ratio (AMP ages, 
fiducial models14). Colours and symbol conventions are as in Fig. 2. 
Evolutionary tracks are overplotted for [Z/H] = +0.3 (dotted lines) and 
[Z/H] = −0.1 (solid lines), for masses 0.8–1.3 M⊙ in increments of 0.1 M⊙. 
([Z/H] = +0.3, M = 0.8 M⊙ is beyond the plotted area.)
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Extended Data Figure 2 | Period–age plot of sample stars. The 21-star sample, with observed rotational periods plotted against AMP asteroseismic 
ages. Symbol conventions are as in Fig. 2. The solid line denotes the empirical relation2 for Teff = 5,800 K (approximately equal to the mean sample Teff). 
All error bars represent 1σ.
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Extended Data Figure 3 | Period ratios using empirical gyrochronology 
relations. Ratios of predicted periods2 to observed periods are plotted as 
a function of the AMP asteroseismic age, and divided according to AMP 
ZAMS Teff (a, ZAMS Teff = 5,900–6,200 K; b, ZAMS Teff = 5,600–5,900 K;  
c, ZAMS Teff = 5,100–5,400 K.) Error bars represent 1σ. Symbol 
conventions are as in Fig. 2.
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Extended Data Figure 4 | Detectability of stars in spot modulation. 
Detection fractions for the 750 stars with noise in the hound-and-hare 
exercise of ref. 17, as a function of activity level A (where the activity level 
of the Sun is defined as A⊙ = 1) and rotation period. The total number of 

light curves searched for periodicity in each cell is overplotted. The dashed 
black line at P = 35 days represents the expected period for stars like the 
Sun under traditional gyrochronology relations found in the literature.
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Extended Data Figure 5 | Predicted versus observed rotation periods 
using ages determined with BASTA. a, c, e, Plotted are the ratios of the 
periods predicted using the fiducial models14 to the observed rotation 
periods, as a function of stellar age. The grey band represents the offset 
expected from models in which Rocrit = 2.16. All error bars represent 1σ.  

b, d, f, Ratios of the predicted periods obtained from the empirical 
relation2 to the observed periods, plotted against stellar age. Stars are 
divided according to ZAMS Teff, using BASTA ZAMS Teff values: a, b, 
5,900–6,200 K; c, d, 5,500–5,900 K; e, f, 5,100–5,400 K. All symbol 
conventions are as in Fig. 2.
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Extended Data Figure 6 | The shift in the period ratios induced by 
changing the stellar model input physics. Circles are colour-coded 
according to ZAMS Teff as in Fig. 2. Ratios of the periodicity expected 
from the fiducial model14 to the observed periodicity are plotted against 
age. Arrows denote the shift in the period ratio that occurs when YREC 
models14 are run to match the AMP–ASTEC physics.
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Extended Data Table 1 | Rotation periods, asteroseismic data and spectroscopic quantities for sample stars

Units are as follows: mass, solar masses; age, Gyr; log(g), g cm−2, Te#, K; period, days. Quoted errors are given to 1σ.
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