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ABSTRACT

On a de Sitter background described by a cosmological constant ⇤ of holo-

graphic origin, non-Newtonian behavior is expected beyond a distance rt =

4.6M
1
2
11kpc to a baryonic mass M = M111011M� assocated with a background

energy surface density
p

⇤/(2
p

2⇡). The deceleration parameter satisfies q =

1�(4⇡a0/cH)2, whereH denotes the Hubble parameter, c the velocity of light and

a0 is Milgrom’s parameter in the asymptotic centriputal acceleration a =
p

a0aN

in galaxy rotation curves in r >> rt, where aN denotes the Newtonian accelera-

tion imparted by M . A detailed study of galaxy rotation curves at low redshifts

may hereby provide a new estimator of dq/dz at z = 0 to identify a dynamical

origin of dark energy.

1. Introduction

On a cosmological background dominated by dark energy (Riess et al. 1998; Perlmutter

et al. 1999), the limit of weak gravitational attraction on galactic scales and beyond is

defined by the Hubble acceleration scale aH = cH0 of a few Angstrom per second squared,

where c is the velocity of light and H0 ' 70 km s�1Mpc�1 is the Hubble parameter. In

this regime, we are o↵ by several orders of magnitude from accelerations, where Newton’s

law has been rigorously tested (Famae & McGaugh 2012). The cosmological horizon at

R = c/H0 is a Lorentz invariant, that may a↵ect Newton’s law by its covariant embedding

in general relativity. Spacetime may derive from a Planck scale structure of light modes.

If so, these modes are potentially sensitive to any low energy scale introduced by the

cosmological horizon. Non-Newton behavior is then expected in the regime of gravitational

1Corresponding author. E-mail: mvp@sejong.ac.kr



– 3 –

attractions on the order of aH or less.

We start with gravitation from a holographic principle (’t Hooft 1993; Susskind 1995),

that posits imaging of curved spacetime and matter within by superposition of modes

encoded in a large number of Planck sized surface elements. In unitary holography (van

Putten 2015a), the information that defines spacetime images is determined by enclosed

mass and distances to a holographic surface derived from particle propagators. Wave

functions of matter herein derive from superpositions of massless modes that obey the

trivial dispersion relation in vacuum, representing a projection of modes in the screen.

Any low energy scale introduced by the cosmological horizon is illustrative for the

holographic principle. Such is most apparent in geometrical units, in which Newton’s

constant G and the velocity of light c are set equal to 1. In these units, force is

dimensionless. A force F = 1 on the cosmological horizon area A = 4⇡R2 shows a pressure

p = 1/A = H2/(4⇡) that, by Lorentz invariance of the cosmological horizon, carries

an associated energy density ⇢ = �p. The result is a cosmological constant ⇤ ⌘ 8⇡⇢

satisfying ⇤ = 2H2, which recovers ⌦⇤ = 2/3 close to the present day value of about

0.7. For a deceleration paramter q = �1, the cosmological horizon also has a de Sitter

temperature TdS = H/2⇡ (Gibbons & Hawking 1977), equal to the Unruh temperature

H = aH/(2⇡) defined by its surface gravity H (Unruh 1976). TdS is representative for a

thermal energy surface density ⌃ = 1
2T = H/(4⇡). While the dark energy volume density

⇤/8⇡ is notoriously small, ⇤ ' 1.21 ⇥ 10�56 cm�2, its holographic origin is a dark energy

surface density ⌃ =
p

⇤/(4
p

2⇡) ' 6 ⇥ 10�29 cm�28 that is not small. An immediate

implication is a critical transition radius for gravitational attraction. Consider a central

mass M = M111011M� of a typical galaxy. Then A⌃ = M with A = 4⇡r2 defines a

transition radius

rt =
p

MRH = 4.6M
1
2
11 kpc. (1)
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The transition radius (1) is commonly observed in galaxy rotation curves and bears out in

a deviation of centripital accelerations a relative to the Newtonian acceleration aN expected

from the observed baryonic mass (Milgrom 1983; Famae & McGaugh 2012) as shown in

Fig. 1. (1) defines strong gravitational interactions in r << rt and weak gravitational

interactions in r >> rt. This pertains to accelerations relative to M/r2t , i.e., a << aH and,

respectively, a >> aH . Holography hereby identifies aH as a critical acceleration in galaxy

rotation curves.

Holographic imaging is a function of area A and opening angle ⌦ by their product

A⌦. (More precisely, it is a function of the integral of ⌦ over the surface of the screen.)

Factorization of A⌦ is hereby an internal symmetry of holography (cf. ’t Hooft 2015).

Scaling of A and ⌦ corresponds to curvature and, respectively, lensing. These may be

realized, repsectively, by a conformal factor or a deficit angle, giving di↵erent manifestations

of the same.

In unitary holography, the information I in imaging a mass m is given by the distance

to a screan measured in total phase �', as defined by m’s wave function. For a spherical

screen of radius s, we have (van Putten 2015a)

I = 2⇡�'. (2)

A heuristic counting argument shows a minimum of four bits in the imaginging of mass,

electric charge, angular momentum, electromagnetic and gravitational waves. Mass alone is

herein encoded in one out of four bits. It follows that I is encoded in the impression f of

A⌦ by fA = A � AE or f⌦ = 4⇡ � ⌦E, where AE = 8⇡ms and ⌦E = 8⇡m/s denote the

Einstein area and opening angles, respectively, i.e.:

fA⌦ = 4⇡ (A� AE) = 4⇡A (4⇡ � ⌦E) = 16⇡2s2f. (3)

A minimum screen size attains with A = AE or ⌦E = 4⇡ at the Schwarzschild radius



– 5 –

s = RS, RS = 2m =
p

S/⇡ with S = min I = 4⇡m2 in I = 2⇡m (s�RS) + S the same as

the Bekenstein-Hawking entropy. Accordingly, f = 1� 2m/s in (3).

Holographic imaging with factorization by a conformal factor �4 is described by the

isotropic line-element

ds2 = �N2dt2 + �4
�
d⇢2 + ⇢2d✓2 + ⇢2 sin2 ✓d�2

�
, (4)

where N = N(�) denotes the gravitational redshift, i.e., the ratio of energy-at-infinity to

locally measured energy. According to the above, RS =
p

4S/⇡ expresses the mass-energy

of a particle by its linear size, locally measured by the minimal surface area 4S of an

enveloping holographic screen. In keeping the total energy-at-infinity constant, putting a

test particle at various locations preserves a constant N
p

S:

N�2
' const. (5)

Here, we use the approximation of minor perturbations to the spherically symmetric

line-element (4). (For a detailed consideration, see (van Putten 2012).) We shall refer to

(5) as Gibbs’ condition, following its use in thermodynamics. According to the equations

of geodesic motion, Newton’s law derives from N in the large distance limit. By (5), it

equivalently derives from the conformal scale �4. Since ⇢ reduces to the ordinary radial

distance at large separations, (4-5) can be seen to embed Newton’s law in

� ' f� 1
4
' 1 +

m

2s
(s >> 2m). (6)

In §2, the non-Newtonian asymptotic behavior in r >> rt in (1) is detailed on a de

Sitter background, based on aforementioned Gibbons-Hawking temperature TdS. In §3,

these results are extended to the more general Friedmann-Robertson-Walker background,

parameterized by a finite deceleration parameter q. A finite sensitivity of the behavior in

r >> rt to q is proposed as a new estimator of q = q(z) as a function of redshift z. It gives
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a new method to determine dq/dz at z = 0, to discriminate between dynamic and static

dark energy independent of supernova Type Ia supernovae.

2. Sensitivity to a de Sitter background

In what follows, A will refer to surface area as well as the number of Planck sized

surface elements A/l2p, where lp =
p
G~/c3 denotes the Planck length.

In holography, the wave function of a particle m results from a superposition of a large

number A of low energy Planck sized harmonic oscillators. Ordinarily, there is one mode in

the image for each mode in the surface on the screen. (The number of degrees of freedom

in the image is then equal to the number of degrees of freedom in the holographic screen.)

Quantum mechanically, m is the time rate-of-change of total phase as measured at infinity,

whereby

m =
1

2
A! (7)

of the ground state energies (1/2)! of harmonic oscillators in the screen. Distance encoding

(2) derives from �' = ks with the total wave number k given by the superposition of wave

numbers of massless modes imaged by these harmonic oscillators,

k =
1

2
A. (8)

This identification (8) follows by application of the trivial dispersion relation ! = , which

recovers the Compton wave number k = kC , kC = m, with the low energy wave numbers

N =
2m

A
=

aN
2⇡

(9)

defined by the Newtonian acceleration aN = m/s2.

It will be appreciated that recovering the Compton relation k = m by the trivial

dispersion associates N with the Unruh temperature of Newtonian acceleration. In entropic
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gravity (Verlinde 2011), the above implies entropic forces at the temperature T = m/2⇡s2

by dS = �dI = �2⇡m0ds, giving F = �dU/ds = TdS/ds = �mm0/s2. In keeping with

(5-6), however, we shall not use entropic force arguments.

Following our introduction, (9) may become susceptable to the low energy de Sitter

temperature of the cosmological horizon. Screen modes satisfy the dispersion relation

! =
q
2 + 2

H (10)

representing an incoherent sum of a momenta  and the background de Sitter tempreature,

H = TdS (Narnhofer et al. 1996; Deser & Levin 1997; Jacobsonb 1998). A spherical screen

imaging a mass m at its center hereby assumes

N = ! � H :  =
q

2
N + 2NH , (11)

giving  ' N (r >> rt) and  '

p

a0aN (r << rt) with a0 = 2aH as proposed in

(Klinkhamer & Kopp 2011). However, (11) overestimates the Milgrom parameter a0

(Milgrom 1983) by about one order of magnitude according to the data shown in (Fig. 1).

The momentum  in (11) is not representative for the wave number of the modes in the

holographic image.

The modes in the image satisfy the dispersion relation

!0 =
p

2 + ⇤, (12)

as follows directly from writing the wave equation of a vector field in curved spacetime,

e.g., of the electromagnetic vector potential (e.g. Wald 1984) or the Riemann-Cartan

connections in a Lorenz gauge (van Putten & Eardley 1996), where ⇤ derives from coupling

to the Ricci tensor. It implies an e↵ective rest mass energy
p

⇤ of the graviton and photon

alike. Though an e↵ective mass arising from background curvature is not the same as true

mass, we mention in passing that the problem of consistent general relativity with massive
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gravitons has recently received considerable attention (de Rham et al. 2011; Bernard et

al. 2014). With q0H
2 = H2 + Ḣ , the generalized Higuchi constraint m2

� 2(H2 + Ḣ)

(Higuchi 1987; Deser & Waldron 2011; Grisa & Sorbo 2010) reduces to ⌦⇤ � 2q0. Based on

observations, 1 < q0 < 0.5 (Riess et al. 2004; Wu & Yu 2008; Giostri et al. 2012), whereby

q0 > �1 appears secure at any rate.

Comparing low energy modes in the image and the screen in the regime r >> rt, we

encounter di↵erent e↵ective masses in (10) and (12), namely

�!0
'

2

2
p

⇤
, �! '

2

2H

. (13)

In the limit of weak gravitation in de Sitter space, therefore, a direct correspondence between

screen modes and image modes is lost, in striking departure from ordinary holography in

r << rt. Specifically, (13) shows a discrepancy by a factor of 2
p

2⇡ in e↵ective masses
p

⇤

and H .

With screen momenta defined by total energy in (11), (13) defines an reduced image

momenta

0
N = !0

�

p

⇤ =
p

2 + ⇤�

p

⇤. (14)

By (11) once more, the associated reduced screen momenta are

0 =
q

02
N + 20

NH . (15)

The resulting graph 0(N) shown in Fig. 1 is in agreement with the data. Specifically, we

arrive at Milgrom’s constant

a0 =

✓
H
p

⇤

◆
2cH0 =

cH0
p

2⇡
' 1.5⇥ 10�8cm s�2, (16)

where we restored dimensions in cgs units.
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3. Sensitivity to q(z)

The above generalizes to Friedmann-Robertson-Walker (FRW) universes characterized

by a Hubble parameter H and a deceleration parameter q with modified de Sitter

temperature (Cai & Kim 2005; van Putten 2015b)

TdS =
1� q

2

H

2⇡
. (17)

Milgrom’s constant hereby generalizes to

a0 =

p

1� q

4⇡
cH0, (18)

allowing measurement of q from a0 as a function of redshift:

q(z) = 1�

✓
4⇡a0(z)

cH(z)

◆2

. (19)

The low redshift sample of galaxies of (Famae & McGaugh 2012) accurately recovers the

value q0 ' �0.75 (Fig. 2) consistent with Type Ia supernova surveys (Riess et al. 2004; Wu

& Yu 2008; Giostri et al. 2012)

The rather well-defined minimum in Fig. 2 suggests that galaxy rotation curves of

samples at di↵erent redshifts may be used as probes of q = q(z). This prospect seems

particularly worthwhile to measure dq(z)/dz at z = 0, by obtaining a0(z) in a nearby

redshift range z << 1 to circumvent the limitations in systematic errors of existing

supernova surveys. A principle objective is an accurate determination of dq(z)/dz at z = 0,

su�cient to discriminate between dynamical dark energy (dq(z)/dz ' 2) or a static dark

energy conform ⇤CDM (dq(z)/dz ' 1). The first would indicate the manifestation of a

holographic dark energy ⇤ = H2(1� q) with a cosmological distribution of light dark matter

with negligible clustering on galactic scales (van Putten 2015b).
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Fig. 1.— Galaxy rotation curves (blue dots) reveal a transition to a 1/r force law at weak

accelerations asymptotically in a << aH away from Newtonian forces in a >> aH based on

the observed baryonic matter. Shown is a theoretical curve (red) in unitary holography with

a good match in a cosmological background with deceleration parameter close q in the range

�1 < q < �0.5. Data are from galaxy curves with essentially zero redshifts from (Famae &

McGaugh 2012).
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Fig. 2.— Estimation of q0 ' �0.75 based on a sample of rotation curves of low redshift

galaxies shown in Fig. 1.
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