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We show that quantum Hall states on surfaces with conical singularities behave as conformal pri-
maries near the singular points, with a conformal dimension controlled by the gravitational anomaly.
We show that the electronic fluid at the cone tip possesses an intrinsic angular momentum equal to
the conformal dimension, in units of the Planck constant. Finally, we argue that the gravitational
anomaly also controls the fine structure of electronic density at the tip, and the exchange statis-
tics of cones in the Laughlin states, arising from adiabatically braiding conical singularities. Thus,
the gravitational anomaly, which appears as a finite size correction on smooth surfaces, dominates
geometric transport on singular surfaces.

PACS numbers: 73.43.Cd, 73.43.Lp, 73.43.-f, 02.40.-k, 11.25.Hf

Introduction Early developments in the theory of the
quantum Hall e↵ect [1–4] and the recent resurgence [5–
14] point to geometric response as a fundamental probe
of quantum liquids with topological characterization,
complementary to the more familiar electromagnetic re-
sponse. Such liquids exhibit non-dissipative transport in
response to variations of spatial geometry, controlled by
quantized transport coe�cients. This geometric trans-

port is distinct from the transport caused by electromo-
tive forces and geometric transport coe�cients charac-
terize the state independently from electromagnetic re-
sponse.

Surfaces with a singular geometry, such as isolated con-
ical singularities, or disclination defects, highlight the ge-
ometric properties of the state. For this reason, they
serve as an ideal setting to probe the geometry of QH
states. In this paper, we demonstrate this by examining
Laughlin states on a singular surface. We compare spa-
tial curvature singularities to magnetic ones (flux tubes),
and emphasize the di↵erence. While the QH state im-
bues both types of singularities with local structure such
as charge, spin, and statistics, only the curvature singu-
larities reflect the geometric transport.

The gravitational anomaly is central to understanding
the geometry of topological states [8–15]. This e↵ect en-
codes the geometric characterization of such states, and
is often referred to as the central charge.

On a smooth surface the gravitational anomaly is a
sub-leading e↵ect. For example, the central charge, cH ,
is a finite size correction to the non-dissipative viscosity
⌘A introduced in [1]. In [10, 13, 14] it is shown that

2⇡⌘A = &H eB � ~cH
48

R, (1)

where B = 1
V

R
BdV and R = 1

V

R
RdV are mean mag-

netic field and curvature of a patch of the fluid with the
volume V . We take eB to be positive throughout the
paper, but do not fix the sign of the charge e. For the
j-spin Laughlin states (see [8], and (16) below for the
definition of spin) the transport coe�cient &H and the

‘central charge’ cH were found to be

cH = 1� 3

⌫
(1� 2j⌫)2, &H =

1

4
(1� 2j⌫), (2)

where ⌫ is the filling fraction. The last term in (1) rep-
resents the gravitational anomaly.
On smooth surfaces, bulk geometric transport is hard

to detect, since cH enters as a small higher order cor-
rection. On a flat surface or a torus, where the Euler
characteristic is zero, geometric transport vanishes alto-
gether as seen from (1). To observe cH as a global trans-
port coe�cient, we have to study QH states on higher
genus surfaces with at least two handles.
We want to identify a setting where the gravitational

anomaly cH is the dominant property, as opposed to be-
ing a finite-size correction overshadowed by a larger elec-
tromagnetic contribution. We demonstrate that a surface
with conical singularities provides this setting, and brings
geometric transport to the fore.
One implication of the transport coe�cients (2) is that

they determine the angular momentum of a parcel of the
electronic fluid [5]

L = �2V ⌘A. (3)

On a smooth surface, the angular momentum is an ex-

tensive property. It scales with the volume of the patch.
We show that the fluid parcel near the singularity spins

with an intensive angular momentum proportional to cH ,
independent of the parcel volume. Moreover, near the
singularity, the state is a conformal primary. Its confor-
mal dimension equals to the angular momentum in units
of ~.
Singularities elucidate the uneasy relation between

QH-states and conformal field theory. In general, QH-
states do not possess conformal symmetry. They feature
a scale - the magnetic length. As a result, physical ob-
servables do not transform conformally. However, the
states appear to be conformal in the vicinity of a sin-
gularity. Conical singularities are not as exotic as they
may seem, and occur naturally in several experimental
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settings. Disclination defects in a regular lattice can be
described by metrics with conical singularities [18], and
occur generically in graphene [19]. In a recent photonic
experiment, Landau levels on a cone were designed in an
optical resonator [20].

A conical singularity of the order ↵ < 1 is an isolated
point ⇠0 on the surface with a concentration of curvature

R(⇠) = R0 + 4⇡↵�(⇠ � ⇠0), (4)

where R0 is the background curvature, a smooth func-
tion describing the curvature away from the singular-
ity. Locally, if ↵ > 0 the singularity is equivalent to
an embedded cone with the apex angle 2 arcsin �, where
2⇡� = 2⇡(1 � ↵) is the cone angle (see the Figure).
If ↵ < 0, the singularity is a branch point of a multi-
sheeted Riemann surface. Examples of genus-zero sur-
faces with constant curvature and conical singularities
include: R0 > 0 - an ‘american football’ with two an-
tipodal conical singularities [16], R0 = 0 - a polyhedron
[17, 21], R0 < 0 - a pseudo-sphere (see e.g. [22] and refer-
ences therein). When � or 1/� is an integer, the surface is
also an orbifold, a surface quotiented by a discrete group
of automorphisms. Then conical singularities are fixed
points of the group action [21].

Conical singularities a↵ect QH states di↵erently than
magnetic singularities

eB(⇠) = eB0 � 2⇡~ a�(⇠ � ⇠0), (5)

To emphasize the di↵erence between geometric and mag-
netic singularities we consider both simultaneously: a
magnetic flux a threaded through the conical singular-
ity ↵.

Lastly, before discussing our main results, we comment
on the inclusion of spin j. As discussed in [9, 11, 14]
Laughlin states are characterized not only by the fill-
ing fraction but also by the spin. Spin does not enter
electromagnetic transport. Nor does it enter local bulk
correlation functions, such as the structure factor, either.
The spin enters the geometric transport as seen in (2).

To the best of our knowledge, there is no experimental
or numerical evidence that determines the spin in QH
materials [38], nor are there any arguments that j = 0,
as it silently assumed in earlier papers. For this reason,
we keep spin as a parameter. It a↵ects the physics of
the QHE. For example, at the filling ⌫ = 1/3, the central
charge vanishes at j = 1, and j = 2. The central charge
equal 1 if j = 1

2⌫ , and equal �2 if ⌫ = 1 and j = 0 or 1.

Main results a. Conformal dimensions. In [8, 11] it
was shown that the magnetic singularity (5) is the con-
formal primary with the dimension

ha =
1

2
a(4&H � ⌫a). (6)

In this paper we extend this result and show that the
geometric singularity is also conformal primary. In this
case its dimension is controlled solely the gravitational

anomaly

�↵ =
cH
24

(��1 � �), � = 1� ↵. (7)

Formula (7) is familiar in conformal field theory: ��↵

(mind the opposite sign!) is the dimension of a vertex op-
erator of a conical point in conformal field theory [25, 26].
On singular surfaces, the dimension also appears as a
finite-size correction to the free energy [27] and the spec-
tral determinant of the Laplacian [28, 29]. The reason
is that near a conical singularity, QH-states and confor-
mal field theory share the same mathematics, but not
identical. The conformal dimension of QH states has the
opposite sign than that in a conformal field theory with
the central charge given by (2).
b.Gyration around the cone We show that the dimen-

sion determines transport near the singularity. Near the
apex, a small piece of the fluid gyrates around the apex,
while the fluid in the bulk does not. The angular mo-
mentum of this gyration is an intensive property. It does
not depend on the volume of the neighbourhood. We will
show that the angular momentum is exactly the dimen-
sion (7)

L↵ = ~�↵. (8)

This quantity must be added to Eq.(3). The formulae
(7,8) bring us to a conjecture about the value of the
total angular momentum on a surface with few conical
singularities, thus generalizing (1,3)(cf.[28, 29])

~�1L =�2&HN�+
cH
12
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where N� is the total magnetic field in units of the
flux quantum 2⇡~/e. The last term results from the
integrated Weyl anomaly and is equivalent to the spec-
tral determinant of the Laplacian. The formula for the
spectral determinant obtained for polyhedra in [28, 29].
There it is equivalent to

P
k�↵k

upon using the identity
� =

P
k ↵k.

A formula similar to (8) holds for the angular momen-
tum of combined magnetic and geometric singularities

L↵,a = ~
✓
1

�
ha +�↵

◆
. (9)

c. Braiding singularities Just like Laughlin quasi-holes
(which are closely related to flux tubes (5)) , conical sin-
gularities can be braided. The phase acquired by adiabat-
ically exchanging two singularities is called the exchange
statistics. Braiding two quasi-holes with charges a1 and
a2 yields the phase �12 = ⇡(⌫a1a2). This result is known
since early days of QHE [30].
Braiding conical singularities is more involved. We ar-

gue that the exchange statistics of braiding of two cones
of the order ↵1 and ↵2 are determined exclusively by the
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central charge

�12 = ⇡
cH
24
↵1↵2

✓
1

�1
+

1

�2

◆
=

� ⇡ (↵2�↵1 + ↵1�↵2)� ⇡
cH
12
↵1↵2. (10)

Here, we assume that the path is su�ciently small, so
conical singularities are the only contributions to the en-
compassed solid angle. The first two terms in (10) are
the phase acquired by a particle with angular momentum
�↵1 ( �↵2) going half way around a solid angle 4⇡↵2(
↵1). The last term cH

12 ↵1↵2 is the exchange statistics.
On an orbifold, where either � or 1/� is an integer, the

phase for identical cones is �12 = ⇡ cH
12

⇣p
n� 1p

n

⌘2
. It

appears rational, even in the case of the integer QHE.
The formulae (7-10) are our main results: the braid-

ing statistics of the singularities and the angular momen-
tum of the electronic fluid around a cone are given solely
by the gravitational anomaly. Other results such as the
transport and the fine structure of the density profile at
the singularity are shown below.

d.Moment of inertia The conformal dimension can be
also read-o↵ from the fine structure of the density pro-
file in the neighborhood of the singularity. On a singular
surface the density changes abruptly on the scale of mag-
netic length and in the limit of vanishing magnetic length
is a singular function. It is properly characterized by the
moments

m2n =

Z
(r2/2l2)n(⇢(r)� ⇢1)dV. (11)

Here, ⇢1 = ⌫(e/h)B is the asymptotic value of the den-
sity away from the singularity and l =

p
~/(eB). In the

integral (11) r is the Euclidean distance to the singularity
and dV = 2⇡�rdr is the volume element.

The first moment, the ‘charge’ m0, follows from the
generalized Středa formula – a number of particles in a
patch of the surface is saturated by

⇢̄ = ⌫(eB/h) + (&H/2⇡)R. (12)

We will obtain this relation in the next section. Hence

m0 =

Z
(⇢̄� ⇢1) dV = �⌫a+ 2&H↵. (13)

Eq. (13) says that if &H > 0, the apex accumulates elec-
trons when ↵ > 0. It is an alternative definition of the
transport coe�cient &H .

This result for j = 0 is well known (see, e.g., [10, 31,
32]). Recently the charge of the cone has been observed
experimentally [20]. However, the gravitational anomaly
does not enter here. It emerges in the next moment, the
moment of inertia of the gyrating parcel m2. We will see
that

m2 = (1� j)m0 + ��1ha +�↵, (14)

where ha and�↵ are the dimension (6,7). This result can
be checked against the integer QH e↵ect, ⌫ = 1, where
all the moments are computed in the end of the paper.
This relation between the moment of inertia (14) and

the angular moment (8) is not surprising. In QH state
the positions of particles determine their velocity. Conse-
quently, the density determines the angular momentum L
of the flow. In the case of the Laughlin state this relation
reads

L=(eB)

Z
r2

2
(⇢� ⇢̄)dV + ~(j � 1)

Z
⇢dV. (15)

This relation can be extracted from [8, 9]. In the next
section we recall its origin. Interpreting this formula we
notice that the first term is the diamagnetic e↵ect of fluid
gyrating in magnetic field the second term is the param-
agnetic contribution. The subtracted term with ⇢̄ nulls
the orbital moment in the a surface with a constant cur-
vature and a constant magnetic field.
The integral (15) over the bulk of the surface gives the

extensive part (3), while the integral over a patch at the
singularity is m2� (1� j)m0. Then (14) yields (9). It
remains to compute (6,7).

e. Transport at the singularity. Since the work of
Laughlin [35] it was known that an adiabatic change of
the magnetic flux a(t) in (5) threading through the punc-
ture of a disk causes a radial electric current flowing out-
ward I = �⌫eȧ.
Adiabatically evolving the order of the conical singu-

larity ↵(t) also induces a current. It follows from (13)
that the current flowing away from the apex I = eṁ0

is I = 2e&H ↵̇. More interestingly, evolving the cone an-
gle accelerates the gyration of the fluid, which produces
torque near the singularity. The torque is the the rate
of change of the angular momentum M = L̇. From (8) it
then follows that the torque is proportional to the rate
of change of the conformal dimension. We collect the
formulae for electric and geometric transport

e-transport: current = �e⌫ȧ, torque = ~ḣa,

g-transport: current = 2e&H ↵̇, torque = ~�̇↵.

In the remaining part of the paper we obtain the
dimensions (6,7) and the statistics (10) by employing
the conformal Ward identity, a framework developed in
[8, 36]. It would be instructive to obtain the results by
two complimentary methods of [13] and [11] based on the
field theory.

QH-states on a Riemann surface Before turning
to singular surfaces, we recall some major facts about
Laughlin states on a Riemann surface [7, 8].
The most compact form of the state appears in lo-

cally chosen complex coordinates (z, z̄), where the met-
ric is conformal ds2 = e�|dz|2. In these coordinates the
Laplace-Beltrami operator is � = 4e��@z@z̄ and the vol-
ume form is dV = e�d2z.
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In the conformal metric we can always choose coordi-
nates such that, the unnormalized state reads

 L=
NY

1i<j

(zi�zj)
� exp

NX
i=1

1

2
[Q(zi, z̄i)�j�(zi, z̄i)] (16)

where, the integer � = ⌫�1 is the inverse filling fraction
and Q is the magnetic potential defined by�~�Q = 2eB.

While the wave function (16) explicitly depends on the
choice of coordinates, the normalization factor

Z[Q,�] =

Z
| L|2

Y
i

exp [�(zi, z̄i)]d
2zi (17)

does not. It is an invariant functional depending on the
geometry of the surface, and in particular on the posi-
tions and orders of singularities.

Eq. (17) is referred to as the generating functional as
it encodes the correlations and the transport properties
of the state. A variation of the generating functional over
the magnetic potential Q at a fixed conformal factor � is
the particle density

⇢ = e��� logZ/�Q

In [14] it was shown that the variation over the metric at
a fixed magnetic field gives the angular momentum

L = �~
Z
� logZ
��

d2z � L (18)

Subtracting L = (eB)
R

r2

2 ⇢̄dV assures the vanishing of L
on surfaces with constant curvature and magnetic field.

Now we can obtain the relation (15). It follows from
the observation that the magnetic potential and the con-
formal factor appear in (16,17) almost in equal footing,
except that the variation over the conformal factor is
taken at a fixed magnetic field. Under this condition the
magnetic potential also varies �~��Q = 2��(eB).

QH-state on a cone A surface has a conical singu-
larity of order �↵ (↵ < 1) if in the neighborhood of the
conical point z0 the conformal factor behaves as

� ⇠ �↵ log |z � z0|2. (19)

Locally a cone is thought as a wedge of a plane with
the deficit angle 2⇡↵, whose sides are isometrically glued
together (see the figure).

Let us set the apex of the cone at the origin and denote
the complex coordinate on the plane as ⇠ and the cone
angle 2⇡� = 2⇡(1 � ↵). The wedge is a domain 0 
arg ⇠ < 2⇡� with a Euclidean metric ds2 = |d⇠|2. A
pullback of a singular conformal map

z ! ⇠(z) = z�/� (20)

maps the wedge to a punctured disk. The map intro-
duces the complex coordinates (z, z̄) where the metric is
conformal

ds2 = |z|�2↵|dz|2. (21)

The quantum mechanics on the cone assumes the ‘wedge-
periodic’ condition. The lowest Landau level on a cone is
spanned by the holomorphic polynomials of z (see (34))
in the metric (21).
Eq. (16) is valid on any genus-zero surface. Specifi-

cally, in the neighborhood of the conical singularity the
the conformal factor in (16) behaves as (19).
A singularity can be interpreted as an insertion of the

‘vertex operator’ at the marked point of the surface.
Then the generating functional Z↵ is the expectation
value of this operator. We will show that this operator is
a conformal primary. This means that under a dilatation,
the functional transforms as �� logZ↵ = �↵��, where
�↵ is the conformal dimension. Eq. (18) identifies the
conformal dimension with the angular momentum (8).
We compute it in the remaining part of the paper.

Conformal Ward identity Moments of the density
and the angular momentum are computed via the Ward
identity. The Ward identity reflects the invariance of the
integral (17) under the infinitesimal holomorphic change
of variables zi ! zi + ✏/(z � zi). It claims that the
function of coordinates zi and a complex parameter z

X
i

@ziQ+ (1�j)@zi�

z � zi
+
�

2

 X
i

1

z � zi

!2

+
X
i

1� �
2

(z � zi)2

vanishes under averaging over the state .
Ward identity in terms of the ‘Bose’ field

' = ��
X
i

log |z � zi|2 �Q. (22)

Then the identity yields a form that resembles the Ward
identity in the context of conformal field theory

1

~

Z
iPz0 � &H

⇡ @z0(eB)

z � z0
dVz0 = T. (23)

Here Pz and T are holomorphic components of the mo-
mentum of the fluid and the conformal ‘stress tensor,’

iPz =
⌫

2⇡
(eB)@z(h'i � '̄) + (1� j)~@z⇢, (24)

T =
⌫

2
h(@z')2i � 2&Hh@2z'i, (25)
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and we denoted �⌫�'̄ = 4⇡(⇢̄� ⌫eB/2⇡~).
The first moment m0 follows from the di↵erential form

of the Ward identity (23), obtained by acting on both
sides by e��@z̄. This allows one to see that away from
singularities,

H
Pzdz =

R
(r⇥P )dV = 0. Then the iden-

tity
R
(r ⇥ P )dV = �eB

R
(⇢� ⇢̄) dV yields (13). This

is closely related to the translation invariance zi ! zi+ ✏
of the integrand (17).

The angular momentum L follows from dilatation in-
variance zi ! ��1/2zi of the Ward identity. Multiplying
(23) by zdz

2⇡i and integrating over the boundary of a singu-
lar patch yields ~�1

R
Im(zP )dV = res(z T ). The LHS of

this equation is proportional to the angular momentum
since

R
Im(zP )dV = ��

R
r ⇥ PdV = ��L, so that

L =
~
�
res(zT ). (26)

Gravitational Anomaly The source of the gravita-
tional anomaly is the two-point function h(@z')2i in the
stress tensor T . Evaluated at coincident points, the con-
nected part of the two-point function TA = ⌫

2 h(@z')
2ic =

⌫
2

⇥
h(@z')2i � h@z'i2

⇤
must be regularized. In [8] it was

shown that

TA =
1

12
S[�], S[�] = �1

2
(@z�)

2 + @2z�. (27)

Thus T = TC + TA consists of the ‘classical’ part

TC =
⌫

2
h(@z')2i � 2&H@

2
z h'i (28)

and the anomalous part (27). This explicit representation
of T completes the Ward identity.

Geometric singularity TheWard identity consists of
terms of a di↵erent order in magnetic length and has to be
solved iteratively. The leading approximation, where ⇢ ⇡
⇢̄ su�ces. Then as it follows from (22) h'i ⇡ 2(&H/⌫)�.
Up to this order, the classical part of the stress tensor
is TC = �4(&2H/⌫)

⇥
� 1

2 (@z�)
2 + @2z�

⇤
. Together with the

anomalous part (27) the stress tensor reads

T =
cH
12

S[�]. (29)

We compute the singular part of the stress tensor by eval-
uating the Schwarzian derivative on the singular metric
(19). Equivalently, we treat a conical singularity as a con-
formal map (20) and compute the Schwarzian derivative
of the map

S[�] ⌘ {w, z} =
w000

w0 � 3

2

✓
w00

w0

◆2

=
↵(2� ↵)

2z2
.

Resulting in

T =
cH
24

↵(2� ↵)

z2
. (30)

Using (26), we arrive at our main result (8).

Magnetic singularity In this case, the gravitational
anomaly does not appear in the singular scaling of the
stress tensor near the location of the flux tube. Rather,
the stress tensor receives an additional contribution from
the magnetic potential of the flux tube Qa = 2a log |z|,
such that

T = �⌫
2
(@zQa)

2 � 2&H@
2
zQa =

ha

z2
, (31)

where ha is the conformal dimension (6).
Finally, when the flux tube sits on top of a conical

singularity, the stress tensor is the sum of (31) and (25).
Near the singularity , T ⇠ (��↵ + ha)/z2. This implies
the relation (9).

Exchange statistics When adiabatically exchang-
ing two singularities, located at say z1 and z2 of the
z=plane, the state acquires a phase. Since it is a holo-
morphic function of singularity position, its holonomy is
encoded by the normalization factor. The phase is then
�12 = � i

2

H
d logZ, where the integral goes along the

adiabatic path in parameter space (z1, z2). The adia-
batic connection d logZ has a pole when two singular-
ities coincide, so the phase is the residue of the pole
�12 = ⇡ res [d logZ].
For conical singularities, the residue arises entirely

from the gravitational anomaly. Calculation of the
normalization is equivalent to computing the determi-
nant of the Laplacian Det(��) on singular surfaces [9].
A reason for this is that, on singular surfaces, logZ is
equivalent to cH

2 logDet(��), viewed as a gravitational
e↵ective action, since it encodes the same stress tensor T .
In order to capture the leading singularity, a piece-wise
flat surfaces su�ces. The result can be borrowed from
e.g., [29]

logZ|z1!z2 =
cH
12
↵1↵2

✓
1

�1
+

1

�2

◆
log |z1 � z2|. (32)

Then the adiabatic connection is

d logZ =
cH
24
↵1↵2

✓
1

�1
+

1

�2

◆
dz1 � dz2

z1 � z2
(33)

which prompts the formula (10) for the exchange statis-
tics.

Integer QH-state on a cone The formulae for the
charge of the singularity (13) and the moment of inertia
(14) readily checked against the direct calculations for the
integer case ⌫ = 1. See, [37], and more recently [31] for
study of Landau levels on a cone. In the case where a flux
(2⇡~/e)a threads the cone the Landau level is spanned
by one-particle states

 k =
e�|⇠|2/4l2

l
q
2⇡��( k� � j + 1)

✓
⇠p
2l

◆ k
� �j

(34)
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with k = a+j, a+j+1, . . . , a+j+N�1 , and the density is the
sum of densities of each one-particle state ⇢ =

P
k | k|2.

We find the moments from the conformal Ward iden-
tity. Under re-scaling the magnetic length l2 ! ��1l2 the

state (34) scales  k ! �
1
2 (1�j+ k

� )e(1��)|⇠|2/4l2 k. Then
the normalization condition for the new state yields the
identity

Z
e(1��) |⇠|2

2l2 | k|2dV = �(j�1)��
k
� .

Then, summing over all modes and taking N ! 1, we

obtain a generating function of moments (11)Z
e(1��) |⇠|2

2l2 (⇢� ⇢1)dV =
��

1
� (a+j)�j�1

1� ��
1
�

� �

1� �
,

where ⇢1 = 1/2⇡l2. Expanding it around � = 1 yields
the charge m0 (13) and the moment of inertia m2 (14).
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