
PHYSICAL REVIEW A 94, 013421 (2016)

Propagation of intense and short circularly polarized pulses in a molecular gas:
From multiphoton ionization to nonlinear macroscopic effects
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We present a detailed analysis of the propagation dynamics of short and intense circularly polarized pulses
in an aligned diatomic gas. Compared to linearly polarized intense pulses, high harmonic generation (HHG)
and the coherent generation of attosecond pulses in the intense-circular-polarization case are a new research
area. More specifically, we numerically study the propagation of intense and short circularly polarized pulses
in the one-electron H2

+ molecular gas, using a micro-macro Maxwell–Schrödinger model. In this model, the
macroscopic polarization is computed from the solution of a large number of time-dependent Schrödinger
equations, the source of dipole moments, and using a trace operator. We focus on the intensity and the phase of
harmonics generated in the H2

+ gas as a function of the pulse-propagation distance. We show that short coherent
circularly polarized pulses of same helicity can be generated in the molecular gas as a result of cooperative
phase-matching effects.

DOI: 10.1103/PhysRevA.94.013421

I. INTRODUCTION

We study in this paper the highly nonlinear effects of
propagation of intense and short circularly polarized (CP)
pulses in a one-electron H2

+ molecular gas. This work is in
particular motivated by interest in circular filamentation [1],
and more generally by the generated effects, at the macroscopic
level, of molecules subject to intense and short few-cycle
CP light. We simulate the evolution of the intensity and
the phase of the generated odd time harmonics during the
laser-molecule interaction as a function of the propagation
length of the pulse in the gas. This is possible by using
the Maxwell–Schrödinger-plasma (MASP) propagation model
and code which was presented in several papers [2–5]. The
MASP equations consist of the coupling of (i) macroscopic
Maxwell equations modeling laser-pulses interacting with (ii)
many laser-molecule time-dependent Schrödinger equations
(TDSEs) from which are deduced by using a trace operator,
the macroscopic polarization from the total-laser-induced
molecular dipole moments.

High harmonic generation (HHG) in atomic or molecular
gases by high-intensity ultrashort linearly polarized (LP) laser
pulses is currently the main method for producing coherent
extreme ultraviolet and attosecond (as) pulses [6]. This is based
on a universal model of electron-recollision with a maximum
harmonic energy,

N�ω0 = Ip + 3.17Up, (1)

where Ip is the ionization potential of the atom or molecule,
Up = e2E2/(4mω2

0) is the ponderomotive energy of the
electron in an oscillatory field E(t) of maximum intensity
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I = eE2/8π and frequency ω0 [7–13]. Molecules offer an
interesting medium because both ionization and recombi-
nation steps are dependent on the particular symmetry of
the highest occupied molecular orbital (HOMO) and orien-
tation [10–12,14]. Furthermore, at large distances, stretched
or dissociated molecules offer the possibility of obtaining
harmonics well beyond the 3.17Up cutoff law (1) [10,15,16].
The recombination LP model allows us to perform a full
tomographic reconstruction of the HOMO at a high degree
of spatial alignment of the molecules [17–19]. For LP pulses
the mathematical steps in structural retrieval from HHG are
based upon the strong-field approximation (SFA), a single
active electron (SAE) model, and a three-step process [7,8]:
(i) tunneling ionization with zero initial electron velocity;
(ii) acceleration in the laser field E(t); (iii) recombination
back into the bound electronic state. This simple three-
step model can be shown to always produce a maximum
return energy predicted by Eq. (1), even with nonzero initial
velocity upon ionization [9]. Several important questions
still remain open, such as the influence of the intense laser
field upon the bound electronic states upon recombination
[20], depletion of the initial ground state [21], the influence
of the Coulomb potential on the continuum electron states
[22]; all effects neglected in SFA. Finally, it is important
to consider macroscopic propagation effects because these
lead to interesting phenomena such as filamentation [23,24]
with the conclusion that ionization dynamics can strongly
influence the synthesis of isolated attosecond pulses [25].
We focus in this paper on the single-electron H2

+ system,
which nevertheless involves coupled electron-nuclear motion
beyond the Born–Oppenheimer approximation [26]. For this
H2

+ system, a previous TDSE simulation with exact non-
Born–Oppenheimer solutions lead to enhanced ionization and
HHG in the presence of an attosecond extreme ultraviolet
(XUV) and infrared (IR) fs pulse with the resulting efficient
generation of attosecond pulses [27]. A first Maxwell-TDSE
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equation for this system was then developed, based on a
slowly varying envelop approximation (SVEA), leading to a
first-order partial differential equation [28]. Such an approach
neglects ground-state depletion due to ionization, neglects
backward propagation, and is therefore appropriate only for
low field strengths. It was nevertheless found that initial
attosecond pulses could be shortened further in time through
the resultant HHG attosecond pulses produced nonlinearly
in the presence of an intense IR fs pulse [29]. Later, a
Maxwell-TDSE model was developed in Ref. [30], where
aligned one-dimensional (1-d) H2

+ molecules were subject
to intense short LP fields. The present work is an extension of
Ref. [30] in the case of CP pulses.

For circularly polarized fields interacting with atoms,
recollision is predicted from classical models to be absent
and requires pairs of co- or counter-rotating circular pulses
[31–33]. We show that including propagation effects can pro-
duce HHG with single CP intense pulses in molecular systems.
In this paper we address the problem of attosecond-pulse
generation and propagation by HHG in an aligned molecular
medium subject to CP pulses [34–36]. The molecules are
assumed to be aligned, and with all the same orientation,
thanks to a first low-intensity pulse. We emphasize that this is
a not a constraint of the model and random orientation of the
molecules could also be considered. The propagation effects on
the generated harmonic intensities were specifically analyzed,
such as the coherent generation of high-energy photons as a
function of the pulse propagation length.

We conclude this introduction by a discussion about the
expectation of the generated harmonic intensity as a function
of propagation length. In the LP case, it is theoretically
established by perturbation theory (which, however, limits
the range of validity) [37] that the harmonic intensities scale
quadratically as a function of the propagation distance due
to cooperative phase matching. We shortly summarize here
the corresponding physical process. For an x axis linearly
polarized (LP) pulse of amplitude E0, envelope E , frequency
ω0, and wave number k0 = ω0/c, propagating in the direc-
tion ez, E(x,t) = E0E(x,t)ei(k0z−ω0t)ex , where x = (x,y,z)T ,
Maxwell’s equations for E read

∂ttE − c2�E = −4π∂tt (PL + PNL) − 4π∂tJ, (2)

z

(L2)
vacuum

(L)
gas H+

2

y

x

(L1)
vacuum

CP pulse

FIG. 1. Geometry of HHG from an incident circularly polarized
pulse on aligned H2

+ molecules.
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FIG. 2. (a) Ex′ ,Ey′ amplitudes of circularly polarized initial pulse
in space for I = 1014 W/cm2, λ0 = 800 nm, z′(a.u.) = a0 = 0.0529
nm. (b) Total pulse in time; E(a.u.) = 5×109 V/cm, time (a.u.) =
24 as.

where J is the current density, PL and PNL are the linear and
nonlinear polarization, such that the Fourier transform of PNL

satisfies P̂NL(x,ω) = ∑∞
i=1 P̂(2i+1)(x,ω), where to first order

P̂L(x,ω) = χ (1)(ω)Ê(x,ω), (3)

and in higher orders,

P̂(2i+1)
NL (x,ω) =

∫ ∫
· · ·

∫
χ (2i+1)(ω; ω1,ω2, . . . ,ω2i+1)

× Ê(x,ω1)Ê(x,ω2) · · · Ê(x,ω2i+1)

× δ(ω1 + ω2 + · · · + ω2i+1 − ω)

× dω1dω2 · · · dω2i+1, (4)

χ (2i+1) is a rank (2i + 2) tensor of the medium susceptibility,
while the factor δ(ω1 + ω2 + · · · + ω2i+1 − ω) takes into ac-
count the energy-conservation law. This expansion is possible
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FIG. 3. (a) Homogeneous and (b) nonhomogeneous density profiles, N (z′); N0 = 8×10−5 a−3
0 .

by solving the laser-quantum particle TDSE by perturbation
theory. The nonlinear refraction index n then reads n =
n0 + n2I + n4I

2 + · · · , where I is the field intensity. In gen-
eral, the nonlinearities introduce focusing and filamentation
[1]. The above equations apply to linear polarization. We
establish in this paper that, based on numerical experiments,
the low-order odd-harmonic intensities scale quadratically
with distance, when a CP probe pulse propagates in a H2

+
molecule gas (centrosymmetric medium) and that the gener-
ated photons exhibit in the HHG process circular polarization
(CP).

II. MAXWELL TIME-DEPENDENT
SCHRÖDINGER-EQUATION MODEL

We study the process of attosecond pulse generation by
the analysis of harmonic phases and intensities by using the
micro-macro Maxwell–Schrödinger model, which consists of
the coupling of Maxwell’s equations (MEs) and TDSEs within
or beyond the Born–Oppenheimer approximation. The model
is totally nonperturbative, vectorial, and multidimensional,
taking into account ionization and high-order nonlinearities

beyond classical and semiclassical nonlinear Maxwell and
Schrödinger models [38–40]. The MASP equations in the
general case read

∂tB(x′,t) = −c∇ × E(x′,t),

∂tE(x′,t) = c∇ × B(x′,t)

− 4π [∂tP(x′,t) + J(x′,t)],

∇ · B(x′,t) = 0,

∇ · [E(x′,t) + 4πP(x′,t)] = 4π

⎛⎝ 2∑
q=1

qNq(x′,t) − Ne(x′,t)

⎞⎠,

(5)

where Nq(x′,t) and Ne(x′,t) represent the number density of
the ions with charge q (q = 1,2) and electrons, respectively.
The initial ionic molecule density is taken to be continuous in
space and is denoted by N (x′). It must be approximately equal
to the initial electron number density Ne(x′). The polarization
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FIG. 4. (a) Reflection of Ey component at the entering border “vacuum-gas,” t = 722 a.u., homogeneous case. (b) Reflection of Ey

component at the entering border “vacuum-gas,” t = 722 a.u., nonhomogeneous case with β = 3/4, time (a.u.) = 24 as.
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FIG. 5. Intensity of the low-order electric-field harmonic spec-
trum for different gas-region lengths L = 	zMNg for LP pulses
(λ = 800 nm, I = 5×1013 W/cm2, 	zM = 100 a.u.).

is obtained from the TDSE

P(x′,t) = N (x′)
m∑

i=1

di(x′,t)

= −N (x′)
m∑

i=1

χ
i
(x′)

∫
R3

ψi(x,t)xψ∗
i (x,t)dx,

i∂tψi(x,t) = −1

2
	xψi(x,t) + Vc(x)ψi(x,t)

+ x · Ex′
i
(t)ψi(x,t), ∀ i ∈ {1, . . . ,m}, (6)

where Vc denotes the nuclear Coulomb potential and x′ =
(x ′,y ′,z′)T denotes the electromagnetic field space variables
and for the Born–Oppenheimer approximation, the TDSE
space variables are x = (x,y,z)T . In the 1 − d/2 − d model
which is considered in this paper, two-dimensional H2

+
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FIG. 6. Intensity of harmonics of the dipole moment d̂y(ω) of
molecule in the right end of gas region for different propagation
lengths L = 	zMNg of LP pulses (λ = 800 nm, I = 5×1013 W/cm2,
	zM = 100 a.u.).
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FIG. 7. Intensity of harmonics of the transmitted electric field for
different gas-region lengths L = 	zMNg for LP pulses.

molecules are aligned in the z direction, oriented in the y

direction, and are subjected to the circularly polarized electric
field E(x′,t) propagating in the direction z. The electric field
first propagates in vacuum, then in the gas, and finally exits
in vacuum; see Fig. 1. The two-dimensional (2-d) electron
wave function ψz′ in Eq. (6) is solved by the following TDSE
modeling a molecule “located at z′”:

i∂tψz′ (x,y,t) = (− 1
2� + Vc(x,y,R0)

+ xEx,z′ (t) + yEy,z′ (t)
)
ψz′ (x,y,t). (7)

In Eq. (7), R0 denotes the molecular internuclear distance, z′ is
the field propagation coordinate, and (x,y) is the electric-field
polarization corresponding to the electron coordinates. The
molecular polarization is calculated as

P(z′,t) = −N (z′)
∫

ψz′ (x,y,t)xψ∗
z′ (x,y,t)dxdy

= N (z′)dz′ (t). (8)
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FIG. 8. Intensity of the low-order harmonics as a function of the
propagation length L = 	zMNg of the LP pulse.
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FIG. 9. Intensity of the low-order harmonics of the electric Ey

component as a function of propagation length L = 	zMNg of the
LP pulse in gas.

with density N (z′). In the following, we denote by E the
electric field (Ex,Ey), and by P = (Px,Py) the field-induced
polarization computed from the field-induced dipole moment
dz′ . Under the dipole approximation in the x, y directions,
the electric field depends on z′, and E(z′,t) is denoted by
Ez′ (t). Alternatively to the dipole moment, one can use the
acceleration of the electron as given in Ref. [20] [Fourier
transform âz′ (ω) = ω2d̂z′ (ω)]:

az′ (t) =
∫

ψz′ (x,y,t)[−∇Vc(x,y,R0) + Ez′ (t)]

×ψ∗
z′ (x,y,t)dxdy. (9)

The MASP model is solved by using a finite-difference method
described in detail in Ref. [5].

III. APPLICATION OF THE
MAXWELL–SCHRÖDINGER-PLASMA MODEL

As illustrated in Fig. 1, the laser pulse propagates in the
z′ direction through a vacuum region (of length L1), then in a
H2

+-gas region (of length L), and finally in a vacuum region (of
length L2). The x ′, y ′ components of the circularly polarized
(CP) field E(x′,t) and B(x′,t) are functions of the z′ coordinate
and time only in the (x,y) dipole approximation:

E(x′,t) = (Ex ′ (z′,t),Ey ′ (z′,t)),

B(x′,t) = (Bx ′ (z′,t),By ′ (z′,t)), (10)

TABLE I. Propagation time and L2 norm of the wave function
after impact of the laser pulse.

Ng Final time (a.u.) ‖ψ‖2
L2 (LP) ‖ψ‖2

L2 (CP)

4 869.815 0.972 799 0.952 074
16 878.485 0.973 138 0.949 644
64 913.162 0.972 781 0.949 84
256 1051.87 0.972 088 0.947 415
512 1236.81 0.971 847 0.945 787
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FIG. 10. Low-order harmonic spectrum of the transmitted electric
field for different gas-region lengths L = 	zMNg for a CP pulse.

so that the MEs (6) become

∂tEx ′ (z′,t) = −c∂z′By ′ (z′,t) − 4π∂tPx ′ (z′,t),

∂tEy ′ (z′,t) = c∂z′Bx ′ (z′,t) − 4π∂tPy ′ (z′,t),

∂tBx ′ (z′,t) = c∂z′Ey ′ (z′,t),

∂tBy ′ (z′,t) = −c∂z′Ex ′ (z′,t). (11)

The initial circularly polarized (CP) ultrashort laser pulse
is chosen in vacuum in the form (we note that the dipole
approximation is applied in the polarization plane x ′,y ′, but
not in the propagation direction z′)

Ex ′ (z′,t) = E0x ′f (k0z
′ − ω0t) sin(k0z

′ − ω0t),

Ey ′ (z′,t) = E0y ′f (k0z
′ − ω0t) cos(k0z

′ − ω0t),

Bx ′(z′,t) = −B0x ′f (k0z
′ − ω0t) cos(k0z

′ − ω0t),

By ′(z′,t) = B0y ′f (k0z
′ − ω0t) sin(k0z

′ − ω0t), (12)
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FIG. 11. Low-order harmonic of the dipole moment of aligned
H2

+ molecules in the right (exit) end of the gas region for different
propagation lengths L = 	zMNg of CP pulses.
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FIG. 12. Total harmonic spectrum of the transmitted electric field
for different gas-region lengths L = 	zMNg for a CP pulse.

where ω0 is the central frequency, k0 = ω0/c = 2π/λ0 is the
corresponding wave number, which in the simulations we take
to be λ0 = 800 nm, ω0 	 0.057 a.u.

In the case of CP pulses the field amplitudes can be
written as a function of the pulse intensity I as follows:
E0x ′ = E0y ′ = B0x ′ = B0y ′ = √

8πI/c, whereas for linearly
polarized (LP) pulses we have E0y ′ = B0x ′ = √

8πI/c. In the
computations I = 1014 W/cm2 = 2.84×10−3 a.u. [I (a.u.) =
3.5×1016 W/cm2].

In Eq. (12), the function f is the envelope of the
initial electromagnetic field, which in our computations is
chosen as a Gaussian [see Figs. 2(a) and 2(b)], f (k0z

′ −
ω0t) = e−α(k0z

′−ω0t)2
with α = 3×10−9, and the phase (k0z

′ −
ω0t) is expressed in a.u. (k0 = ω/c ≈ 0.057/137 ≈ 4.16×
10−4 a.u.).

The electromagnetic (EM) field (12) satisfies Maxwell’s
equations in vacuum, where in Eq. (11) ∂tPx ′ (z′,t) =
∂tPy ′ (z′,t) = 0, as well as ∇ · E = 0, ∇ · B = 0.
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FIG. 13. Low-order harmonic spectrum of the dipole-moment
component dx(ω) of H2

+ molecules in the right end of the gas region
for different propagation lengths of CP pulses.
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FIG. 14. Low-order harmonic spectrum of the dipole-moment
component dy(ω) of H2

+ molecules in the right end of the gas region
for different propagation lengths of CP pulses.

In such a geometry the molecular density in the second
medium region (of length L) can be considered as a function
of the z′ coordinate only. Namely, in the current computations,
two options were used: (a) homogeneous density (HD), where
N (z′) = N0, and (b) nonhomogeneous, where

N (z′) =

⎧⎪⎪⎨⎪⎪⎩
(z′−L1)

L

4N0
1−β2 , z′ ∈ [L1,L1 + L′]

2N0
1+β

, z′ ∈ [L1 + L′,L1 + L − L′]
(L1+L−z′)

L

4N0
1−β2 , z′ ∈ [L1 + L − L′,L1 + L],

(13)

chosen such that
∫ L1+L

L1
N (z′)	zM = N0L, with L′ = 1−β

2 L,
where β is a positive coefficient less than unity; see Fig. 3.

The nonhomogeneous model is found to reduce or smooth
out the EM-wave reflections at both interfaces between the
gas and vacuum regions, as illustrated in Fig. 4 for the
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FIG. 15. The level sets of electron density log10 (|ψ(x,y)|2) for
a H2

+ molecule in the left (entering) end of the gas region at
six consecutive times: t = 0, 302, 349, 451, 757, 1237 a.u., time
(a.u.) = 24 as. Total number of TDSEs is Ng = 512.
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FIG. 16. Intensity of the low-order harmonics as a function of the
propagation length L = 	zMNg of the CP pulse in gas.

entering border case. In the reported further computations,
we choose N0 = 5.17×10−5 a−3

0 ≈ 3.5×1020 mol/cm3, cor-
responding to ≈13 atmospheres.

We next discuss the numerical approximation of the MASP
model by the finite-difference scheme (FDS). Maxwell’s
equations are approximated by a second-order scheme with
the Courant, Friedrichs, and Lewy (CFL) stability condition
c	tM/	zM � 1, avoiding artificial diffusion, where 	tM ,
	zM denote the time and space steps in the numerical scheme
[41]. The vacuum and gas regions have lengths L1 = 	zMN1,
L = 	zMNg , and L2 = 	zMN2, with spatial discretization
	zM = 100 a.u. (≈5.29 nm), N1 = N2 = 999, while Ng ,
which is the number of cells along z′ in the gas region,
consequently takes the values 4, 16, 64, 256, and 512. Each
Maxwell spatial step 	zM is chosen such that 	zM < λ0/5
where λ0 = 800 nm is the largest pulse wavelength considered
in the computation.

As we solve one single TDSE per Maxwell cell of size
	zM , a computation of Ng TDSEs corresponds to a sample
of gas of length L = Ng	zM , which contains Ng	zMN0
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FIG. 17. Intensity of the low-order harmonics of the Ex compo-
nent as a function of propagation length L = 	zMNg of the CP pulse
in gas.
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FIG. 18. Intensity of the low-order harmonics of the Ey compo-
nent as a function of propagation length L = 	zMNg of the CP pulse
in gas.

molecules, when the molecular density N (z′) = N0 is sup-
posed to be constant. TDSEs are solved by a Crank–Nicolson
finite difference scheme (FDS) of second order, which is
unconditionally stable and 
2-norm preserving. The molecular
H2

+ TDSE spatial-temporal solver steps are denoted 	xS ,
	yS , and 	tS , which satisfy 	tM/	tS � 1, 	zM/	xS � 1,
	zM/	yS � 1. In a.u., the H2

+ TDSEs read

i∂tψ(x,y,t) = − 1
2	x,yψ(x,y,t) + Vc(x,y,R0)ψ(x,y,t)

+ [xEz′,x(t) + yEz′,y(t)]ψ(x,y,t). (14)

Each equation is solved using a second-order Strang splitting
in time:

∂tψ(x,y,t) = −i[xEz′,x(t) + yEz′,y(t)]ψ(x,y,t),

t ∈ [tn,tn+1/2], ψ(x,y,tn) = ψn(x,y),

∂tψ(x,y,t) = i

2
	x,yψ(x,y,t) − iVc(x,y,R0)ψ(x,y,t),

t ∈ [tn,tn∗+1], ψ(x,y,tn) = ψn+1/2(x,y),

∂tψ(x,y,t) = −i[xEz′,x(t) + yEz′,y(t)]ψ(x,y,t),

t ∈ [tn+1/2,tn+1], ψ
(
x,y,tn+1/2

) = ψn∗+1(x,y).

(15)

We have denoted by ψn, ψn+1/2 the space-dependent
wave function at time tn, tn+1/2. The first step provides
ψn+1/2 = ψn exp [−i(xEn

z′,x + yEn
z′,y)	tS/2], where 	tS =

tn+1 − tn = tn∗+1 − tn = 2(tn+1 − tn+1/2) = 2(tn+1/2 − tn). In
the second step, the corresponding laser-free TDSE with
initial data ψn+1/2 is numerically solved and, finally,
the third step is solved as the first one: ψn+1 =
ψn∗+1 exp [−i(xE

n+1/2
z′,x + yE

n+1/2
z′,y )	tS/2].

In the second step, we solve the 2-d TDSE with absorbing
boundary conditions in order to eliminate electron artificial
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reflection in each TDSE domain, 
,

∂tψ(x,y,t) = i

2
	x,yψ(x,y,t) − iVc(x,y,R0)ψ(x,y,t),

(x,y) ∈ 
, t > 0,

ψ(x,y,0) = ψ0(x,y), (x,y) ∈ 
,

ψ(x,y,t) = 0, (x,y) ∈ � := ∂
, t > 0, (16)

where 
 = (a,b)×(c,d) and d − c = b − a = 60
(or 90) a.u.

In our computations 	xS = 	yS = 0.3 a.u. with 200
(or 500) grid points in each direction. Such discretization
establishes maximum free electron momentum px = py =
π/	xS ≈ 10 a.u. or equivalently a maximum energy E =
p2/2 a.u. ≈ 100 a.u. ≈ 2700 eV. In Eq. (16) the nuclear
potential of H2

+ is written as (in a.u.)

Vc(x,y,R0)

= −
[(

x − R0

2
cos θ

)2

+
(

y − R0

2
sin θ

)2

+ ε

]−1/2

−
[(

x + R0

2
cos θ

)2

+
(

y + R0

2
sin θ

)2

+ ε

]−1/2

,

(17)

where θ ∈ [0◦,90◦] defines the angle between the molecular
axis of H2

+ and the x axis, with R0 = 2 a.u. being the
internuclear distance. The value of ε = 4.5 is used to reproduce
the computational energy of the ground state of H2

+-molecule
≈ − 0.58 a.u. The time step for solving the TDSEs is chosen
as 	tS = 	tM/20 ≈ 0.036 a.u. (1 a.u. ≈ 24 as).

The parallel-computing strategy described in Ref. [42]
is used for solving the large set of 2-d TDSEs. More
specifically, on p processors, the gas region is decomposed
in p subdomains, containing S ∈ N∗ Maxwell cells in which
we solve one TDSE, and from which we deduce the local
macroscopic polarization (6). At each TDSE time iteration,
each processor solves sequentially S TDSEs, with a total of
pS TDSEs modeling the gas. The time step for solving MEs
is 	tM = CFL	zM/c ≈ 0.722 a.u. with CFL = 0.99, see
Ref. [41]. We neglect the interaction between H2

+ molecules,
because at pressure of 13 atmospheres (N0 = 5.17×10−5a−3

0 )
the average distance between H2

+ molecules is 27a0

(1.4 nm) which exceeds largely the molecular dimension
R0 = 2 a.u.

IV. PHYSICAL RESULTS

A. Linearly polarized pulse

We first study the propagation of LP laser pulses in the H2
+

gas modeled by 2-d TDSEs. The initial laser pulse is chosen as
follows: Ex = 0, By = 0, with Ey and Bx defined in Eq. (12),
at the intensity Iy = 5×1013 W/cm2 = 1.42×10−3 a.u. H2

+
molecules are oriented along the y axis (i.e., parallel to
Ey , see Fig. 1). In the following simulation the gas density
is assumed constant in space and time. The computation
grid for the TDSEs is a 200×200-point grid. In Fig. 5, we
report the harmonic spectrum up to the 11th harmonic of
the intensity of the electric field, I (ω) = Ix(ω) + Iy(ω) ∝
|Êx(ω)|2 + |Êy(ω)|2, as a function of the propagation length
of the LP pulse. Notice that, in the case of the initial LP
pulse Ix(ω) � Iy(ω), i.e., “(ω,I (ω)) ≈ (ω,Iy(ω))”. In Fig. 6,
we report the harmonic spectrum (in the same interval, i.e.,
up to the 11th harmonic) of the y component of the dipole
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FIG. 19. cos (φ{Êx[(2k + 1)ω0]} − φ{Êy[(2k + 1)ω0]}), for k = 0, 1, 2, 3, 4, 5 as a function of propagation length L = 	zMNg of the CP
pulse. Circularly polarized harmonics are generated at zero corresponding to a ±π/2 phase difference.
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FIG. 20. cos (φ{d̂x[(2k + 1)ω0]} − φ{d̂y[(2k + 1)ω0]}), for k = 0, 1, 2, 3, 4, 5 as a function of propagation length L = 	zMNg of the CP
pulse, for H2

+ molecules at the (a) left end (incident) and (b) at the right-end (outgoing) of the gas region.

moment dy , (ω,|d̂y(ω)|2), of a molecule located at the right
end of the gas region, for different “gas-region lengths.”
Figure 7 also illustrates the whole spectrum (ω,I (ω)) up to
the cutoff region about the 30th harmonic. In Figs. 8 and 9,
we report the intensities, I (ω), Iy(ω) of the first generated

odd harmonics (3,5,7,9) on a log scale and as a function
of the propagation length. These results are consistent with
those of Ref. [30], where the quadratic scaling harmonic in-
tensities and/or propagation length, was observed in a 1-d/1-d
model.
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B. Circularly polarized pulse

The initial CP pulse (12) has a total intensity I =
1014 W/cm2, i.e., 5×1013 W/cm2 per component of the
electric field, Ex and Ey . The H2

+ nuclei lie along the y axis.
Since the CP-electron radius becomes r(E) = 3.7E0/ω

2 ≈
44 a.u. [43], the TDSE grid is now a 500×500-point grid or
150×150 a2

0 . In Table I, we report the propagation time, as well
as the L2-norm of the wave function “after the pulse”—both
LP and CP cases for comparison. All the results in the table
and on the following graphs refer to the case of homogeneous
density, except when nonhomogeneous density is explicitly
specified.

In Fig. 10, we report the electric-field harmonic spectrum
intensity (first 11 harmonics) I (ω) as a function of propagation
length of the CP pulse in the gas. In Fig. 11, we report the
harmonic spectrum of the squared absolute value of the dipole
moment [see Eq. (8)] (ω,|d̂(ω)|2) of a molecule located in
the right boundary of the gas region, for different gas-region
lengths. In Fig. 12, we show the same spectrum up to the
40th harmonic. In Figs. 13 and 14, the harmonics spectra
(ω,|d̂x(ω)|2) and (ω,|d̂y(ω)|2) are shown separately.

In Fig. 15, we report the temporal evolution of the
squared absolute value of the wave function of a molecule
in the left end of the gas region. In order to avoid spurious
reflections at the computational domain boundary, we impose
absorbing boundary conditions with artificial potential Uabs =
−V1(x,y) − iV2(x,y), such that the positive definite functions
V1 and V2 are decreasing linearly in x or y while approaching
the edges of the computational domain, defined by a 500×500-
point grid.

In Figs. 16–18, we report the intensity I (ω), Ix(ω), and
Iy(ω), of the first generated odd harmonics (3rd, 5th, 7th, 9th)
on a log scale, as a function of the propagation length of the CP
pulse in the gas. These results suggest that the quadratic scaling
(intensity and/or propagation length) which was observed and
justified in the LP case is also satisfied in the CP case for the
first odd harmonics. Indeed, in a gas the influence of Ey on Px

through wave function [see Eqs. (6) or (7)] is negligible with
respect to the influence Ex on Px (the same can be said about
Ex and Py). On the other hand, the system (11) for CP pulses
contains two independent wave equations: for Ex and Ey (if
one excludes By and Bx , respectively). Each of these equations
can be simplified by using the SVEA, which in the perturbative
regime results in Ix(ω) ∼ L2 and Iy(ω) ∼ L2 independently.

The above results illustrate that high-frequency pho-
tons are coherently in the CP case to generate coherent
shorter pulses than the probe pulse. We analyze further the
harmonic phases φx[(2k + 1)ω0] := Arg{Êx[(2k + 1)ω0]},
φy[(2k + 1)ω0] := Arg{Êy[(2k + 1)ω0]}, for k ∈ N. More
specifically, the condition Êy[(2k + 1)ω0]/Êx[(2k + 1)ω0] =
exp (i{φy[(2k + 1)ω0] − φx[(2k + 1)ω0]}) = ±i must be sat-
isfied, which corresponds to a π/2 phase difference between
Ex and Ey . Figure 19 reports cos(φx − φy) for the 1st, 3rd,
5th, 7th, 9th, and 11th electric field harmonics as a function
of the propagation length. The cos(φx − φy) = 0 condition
is observed numerically, thus confirming CP harmonics. In
contrast, the phase differences of the 5th and 9th harmonics
differ somewhat from the zero condition.

In Fig. 20, we report the cosinus of the dipole phase
difference of d̂x[(2k + 1)ω0] and d̂y[(2k + 1)ω0] at k =
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FIG. 21. (a) Ey as a function of space at final time with
homogeneous and nonhomogeneous [β = 1/3 in Eq. (13)], molecular
density. (b) Same figure with zoom along y.

1, 2, 3, 4, 5 as a function of the propagation length,
for a molecule located at the left-end (incident) region
and a molecule located at the right end (outgoing) of the
gas region; that is, cos{νx[(2k + 1)ω0] − νy[(2k + 1)ω0]},
where νx[(2k + 1)ω0] := Arg{d̂x[2(k + 1)ω0]} and νy[(2k +
1)ω0] := Arg{d̂y[2(k + 1)ω0]}. When this value is close to 0,
as in the case of the 5th and 9th harmonics, we conclude
to the emission of circularly polarized photons of frequency
2(k + 1)ω0.

We also report the electric field Ey components in real
space, at final time t = 1051.87 a.u. ≈ 25 fs, modeled by
256 TDSEs, with homogeneous and nonhomogeneous (Fig. 3)
molecule density. The difference between these two config-
urations is rather small and is illustrated in Fig. 21(a) and
magnified in Fig. 21(b). As expected, the nonhomogeneous
density allows for a reduction of the reflection of the incoming
pulse at the gas-region boundaries (both vacuum-gas and
gas-vacuum boundaries). The pulse propagating through an
interface where the density varies from 0 to N0 is largely
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FIG. 22. Transmitted electric field as a function of space at final
time with homogeneous molecular density. (a) Ng = 256. (b) Ng =
512.

reflected. In the nonhomogeneous case the density smoothly
varies from 0 to 2N0/(1 + β), and we observe that the reflected
wave is of much smaller amplitude. However, small-amplitude
high-frequency waves exist for both cases, homogeneous and
nonhomogeneous, and seem unrelated to wave reflection.

In Fig. 22, we report the electric field E modeled by 256
[Fig. 22(a)] and 512 [Fig. 22(b)] TDSEs, with homogeneous
molecule density in the (x,y) space. While the upper pulse
visually demonstrates CP configuration, the structure of the

propagating pulse in the case of Ng = 512 is strongly perturbed
by the gas, and the circular polarization only is suppressed.

V. CONCLUSION

In this paper we study the generation of circularly polarized
harmonics and propagation effects in a 2-d H2

+ gas. As
discussed in Refs. [2,44], more complex molecules like O2

and N2 could also be considered by using the single-active-
electron approximation [45]. Numerical simulations of a
MASP model allows for a nonperturbative calculation of
the macroscopic polarization in Maxwell’s equations using
the solution of H2

+ molecular TDSEs under the influence
of an intense laser pulse. The MASP model permits the
accurate observation of the generation of high harmonics and
nonlinearities through multiphoton ionization, as well as the
inclusion of corresponding coherent effects at the macroscopic
scale. Although it is theoretically possible to rigorously derive
the macroscopic nonlinear polarization from laser-molecule
TDSEs in the case of linearly polarized pulses, the circularly
polarized case is more complex. Through the numerical MASP
model, we have obtained the dipole harmonic intensities and
their phases as a function of the pulse propagation length. We
have shown that, for low-order harmonics (up to N ≈ 11), it
is possible to coherently generate circularly polarized pulses
shorter than the incoming incident circular pulse. Notice
that the third harmonic, which in atmospheric linear laser
filamentation [1,46] is an important nonlinear optical emission,
is also observed in the LP-pulse propagations reported in
Figs. 5–7. Of interest in our work, this now appears also
in circular polarization. In fact, Fig. 10 shows that the third
harmonic in circular polarization becomes more dominant with
increasing gas density. In Fig. 13, this harmonic “splits” into
a third and fourth harmonic, possibly due to Rabi oscillations.
Macroscopic propagation effects on higher-order circular
harmonics, and circularly polarized filaments, where strong
inversion and laser emission has been observed from N2

+
[47], are a future research direction. This will require extension
of the present numerical MASP model through the inclusion
of an additional nonhomogeneous transport equation for the
macroscopic polarization coupled to Maxwell’s equations
[4,48].
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Montréal, 2007), pp. 161–182.

[4] E. Lorin, M. Lytova, A. Memarian, and A. D. Bandrauk, J. Phys.
A: Math. Theor. 48, 105201 (2015).

[5] E. Lorin, S. Chelkowski, and A. Bandrauk, Comput. Phys.
Commun. 177, 908 (2007).

[6] P. B Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[7] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[8] M. Lewenstein et al., Phys. Rev. A 49, 2117 (1994).
[9] A. D. Bandrauk, S. Chelkowski, and S. Goudreau, J. Mod. Opt.

52, 411 (2005).
[10] A. D. Bandrauk, S. Barmaki, and G. L. Kamta, in Progress in

Ultrafast Intense Laser Science, edited by K. Yamanouchi et al.
(Kluiver, Amsterdam, 2006).

013421-11

http://dx.doi.org/10.1016/j.physd.2012.02.013
http://dx.doi.org/10.1016/j.physd.2012.02.013
http://dx.doi.org/10.1016/j.physd.2012.02.013
http://dx.doi.org/10.1016/j.physd.2012.02.013
http://dx.doi.org/10.1088/1751-8113/48/10/105201
http://dx.doi.org/10.1088/1751-8113/48/10/105201
http://dx.doi.org/10.1088/1751-8113/48/10/105201
http://dx.doi.org/10.1088/1751-8113/48/10/105201
http://dx.doi.org/10.1016/j.cpc.2007.07.005
http://dx.doi.org/10.1016/j.cpc.2007.07.005
http://dx.doi.org/10.1016/j.cpc.2007.07.005
http://dx.doi.org/10.1016/j.cpc.2007.07.005
http://dx.doi.org/10.1038/nphys620
http://dx.doi.org/10.1038/nphys620
http://dx.doi.org/10.1038/nphys620
http://dx.doi.org/10.1038/nphys620
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1080/09500340410001729582
http://dx.doi.org/10.1080/09500340410001729582
http://dx.doi.org/10.1080/09500340410001729582
http://dx.doi.org/10.1080/09500340410001729582


M. LYTOVA, E. LORIN, AND A. D. BANDRAUK PHYSICAL REVIEW A 94, 013421 (2016)

[11] M. Lein, J. Phys. B: At., Mol. Opt. Phys. 40, R135 (2007).
[12] G. L. Kamta and A. D. Bandrauk, Phys. Rev. A 74, 033415

(2006).
[13] E. Cunningham and Z. Chang, IEEE J. Sel. Top. Quantum

Electron. 21, 5 (2015).
[14] R. Velotta et al., Phys. Rev. Lett. 87, 183901 (2001).
[15] A. D. Bandrauk, H. Yu, S. Chelkowski, and E. Constant,

Phys. Rev. A 56, R2537(R) (1997).
[16] P. Lan, P. Lu, W. Cao, X. Wang, and G. Yang, Phys. Rev. A 74,

063411 (2006).
[17] C. Vozzi et al., Phys. Rev. Lett. 95, 153902 (1995).
[18] J. Itatani et al., Nature (London) 432, 867 (2004).
[19] T. Kawai, S. Minemote, and A. Sakai, Nature (London) 435,

470 (2005).
[20] A. D. Bandrauk, S. Barmaki, and G. L. Kamta, Phys. Rev. Lett.

98, 013001 (2007).
[21] W. Cas, P. Lu, P. Lan, X. Wang, and G. Yang, Phys. Rev. A 74,

063821 (2006).
[22] G. L. Yudin, S. Chelkowski, A. D. Bandrauk, and P. B. Corkum,

J. Phys. B: At., Mol. Opt. Phys. 40, F93 (2007).
[23] F. Theberge, N. Akozbek, W. Liu, A. Becker, and S. L. Chin,

Phys. Rev. Lett. 97, 023904 (2006).
[24] J. C. Painter et al., Opt. Lett. 31, 3471 (2006).
[25] M. B. Gaarde, M. Murakami, and R. Kienberger, Phys. Rev. A

74, 053401 (2006).
[26] S. Chelkowski, C. Foisy, and A. D. Bandrauk, Phys. Rev. A 57,

1176 (1997).
[27] A. D. Bandrauk and N. H. Shon, Phys. Rev. A 66, 031401

(2002).
[28] H. S. Nguyen, A. Suda, and K. Midorikawa Phys. Rev. A 60,

2587 (1999).
[29] A. D. Bandrauk, S. Chelkowski, and H. S. Nguyen, J. Mol.

Struct. 735C, 203 (2004).
[30] E. Lorin, S. Chelkowski, and A. Bandrauk, New J. Phys. 10,

025033 (2008).

[31] T. Zuo and A. D. Bandrauk, Phys. Rev. A 54, 3254 (1996).
[32] A. D. Bandrauk and H. Z. Lu, Phys. Rev. A 68, 043408

(2003).
[33] S. Long, W. Becker, and J. K. McIver, Phys. Rev. A 52, 2262

(1995).
[34] L. Mediauskas, J. Wragg, H. Van Der Hart, and M. Yu. Ivanov,

Phys. Rev. Lett. 115, 153001 (2015).
[35] J. M. Ngoko Djiokap, S. X. Hu, L. B. Madsen, N. L. Manakov, A.

V. Meremianin, and A. F. Starace, Phys. Rev. Lett. 115, 113004
(2015).

[36] A. Kamor, C. Chandre, T. Uzer, and F. Mauger, Phys. Rev. Lett.
112, 133003 (2014).

[37] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press,
Montréal, 2008).

[38] T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997).
[39] M. Geissler, G. Tempea, and T. Brabec, Phys. Rev. A 62, 033817

(2000).
[40] Burnett et al., Phys. Rev. A 45, 3347 (1992).
[41] J. C. Strikwerda, Society for Industrial and Applied Mathematics

(SIAM), 2nd ed. (SIAM, Philadelphia, 2004).
[42] E. Lorin and A. D. Bandrauk, J. Comput. Sci. 3, 159 (2012).
[43] K. J. Yuan and A. D. Bandrauk, J. Phys. B: At., Mol. Opt. Phys.

45, 074001 (2012).
[44] E. Lorin, S. Chelkowski, and A. Bandrauk, Commun. Comput.

Phys. 9, 2 (2011).
[45] K. J. Schafer, B. Yang, L. F. Dimauro, and K. C. Kulander,

Phys. Rev. Lett. 70, 1599 (1993).
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