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Avalanche statistics from data with low time resolution
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Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time
resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative
criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional
analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law
exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses
with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time
series that can recover the size distribution of the underlying avalanches even when the resolution is so low that
naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from
a simple model and downsampled bulk metallic glass compression data and find that the methods recover the
correct critical exponents.
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I. INTRODUCTION

Avalanches are observed in a variety of dynamical systems,
including magnetic materials [1,2], charge density waves [3,4],
vortices in superconductors [5], earthquakes [6,7], crystal
plasticity [7–11], and amorphous plasticity [7,8,12–17]. For
these last two cases, deformation occurs through small jumps
caused by slipping weak spots in the material. The slips can
trigger other weak spots to slip, and this chain reaction is called
an avalanche. The often-observed power-law distribution of
avalanche sizes is believed to reflect proximity to a nonequi-
librium critical point. A simple mean-field model [18] that
exhibits tuned critical behavior in the depinning universality
class agrees with experimental data on slip avalanches during
the slow deformation of crystalline materials [10], amorphous
materials [13], and granular materials [7,19], as well as many
other systems with yielding behavior [7].

The avalanches that comprise plastic deformation take place
on short time scales (typically on the order of milliseconds in
bulk metallic glasses (BMGs) and single crystals [20–22]), so
experimental time resolution is important. There are two types
of avalanche events observed for BMGs. We have previously
referred to these events as small and large avalanches [13,23].
The small avalanches show a power-law size distribution
and self-similar dynamics and are likely related to incipient
shear bands. The large avalanches are less frequent but
almost regularly recurring and do not show a power-law size
distribution. The large shear bands are clearly related to the
propagation of fully formed, system-spanning shear bands
[13,23]. We focus here on the small events.

In this paper we demonstrate the effect of insufficient
resolution on typical avalanche observables and propose
methods to diagnose and mitigate problems due to resolution.
We use a simple model for demonstration and to make certain
calculations explicit, but many of the results are generic.
We find that naive analysis of low-resolution data can lead
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to avalanche size distributions with incorrect power-law
exponents and even no power-law regime at all. We also show
that, with the traditional methods, an apparent data collapse
with incorrect exponents can be obtained. (By “incorrect”
exponents, we mean exponents different from those obtained
analyzing high-resolution data. We maintain this usage
throughout the paper.) More importantly, we introduce
improved analysis methods that circumvent these problems.
We then apply these analysis methods to downsampled
high-resolution experimental data on compressed bulk metallic
glasses and find good agreement with results previously ob-
tained at high resolution [13]. The results of this study resolve
an apparent discrepancy between the results from experiments
at different time resolutions reported in the literature. We
find that in the experimental data from [13], the measured
avalanche size distribution changes from a broad power law
(at a data acquisition rate of 100 kHz) to a peaked distribution
once the resolution is lowered to around 50 Hz, a minimum
required resolution for this experiment [see Fig. 10(b)].

While it is difficult to extract reliable avalanche duration
statistics when the sampling rate is lower than the inverse
duration of typical avalanches, we show that avalanche size
statistics can be measured for much lower resolutions than this.
The time scale that determines the required data acquisition
rate for measuring the size statistics is the avalanche nucleation
rate, which is the number of avalanches triggered per second
during the deformation. If the sampling rate is much lower than
the nucleation rate, there will be several avalanches per sample
and information about the individual avalanche sizes will nec-
essarily be lost. Furthermore, if there are separate avalanches
that occur in consecutive sampling intervals, they can be
mistaken for one large avalanche. Since the nucleation rate
is proportional to the experimental displacement rate and pro-
portional to the system size (see Sec. III below), the required
time resolution will be lower for slower driving and smaller
systems. Therefore, if an experiment’s resolution is too low
and increasing the resolution is not feasible, then reducing the
displacement rate or the system size can compensate equally
well.
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FIG. 1. (a) The time derivative stress vs time series for a typical section of simulation signal from the simple mean-field model (from
Ref. [18]). The inset shows the stress vs time curve. (b) A demonstration of what we call the “traditional” avalanche detection procedure.
The top figure is a stress-time curve with two avalanches and the bottom is its time derivative. The avalanches are detected when the time
derivative drops below a threshold (the dashed line in the bottom figure). The circles and squares indicate the starts and ends of the avalanches,
respectively. The avalanche size is the total decrease in stress, as indicated in the top figure.

In this paper, we focus on stress-drop avalanches that occur
in experiment at fixed displacement rates. We propose the
following:

(1) When the sampling rate is higher than the nucleation
rate, but lower than the rate of stress increase between
avalanches (in units of the size of a typical stress drop), small
stress drops can be missed (see Fig. 3). If the rate r of stress
increase between avalanches can be estimated, then instead
of defining avalanches as continuous stress drops, one should
define them whenever the measured rate of stress increase
decreases below r . This can be implemented by defining a
tilted stress-time curve and measuring stress drops relative to
that. The tilted curve is given by F (t) − rt , where r is the
rate of elastic stress increase [see Eq. (13) and Fig. 3]. On the
tilted stress-time curve, there is no background increase in the
signal, so small avalanches will still be visible as drops in the
tilted signal. Alternatively, this procedure can be implemented
by moving the threshold from 0 to +r in the detection method
shown in Fig. 1. Under ideal circumstances, avalanche sizes
can be recovered with good accuracy using this method (details
are given in Sec. VI B). In Sec. VI A, we present a method
for determining when a stress-time signal is in this regime.
The analysis also reveals a way to extract the avalanche size
power-law scaling exponent τ by downsampling data without
actually measuring avalanche sizes [see Eq. (11)].

(2) When the data acquisition rate is slightly lower than
the nucleation rate, several avalanches can occur per sampling
time. Furthermore, when distinct avalanches happen during
successive samples, they will be part of one continuous
drop in the low-resolution stress-time signal (see the inset
of Fig. 6). For this reason, the stress drops that occur
between successive samples will be more representative of
the underlying avalanche sizes than the (potentially much
larger) consecutive stress drops of the traditional avalanche

definition, which potentially involve many time steps (see
Fig. 6). Therefore, at these very low resolutions, one should
again tilt the signal by subtracting rt and take the stress
drops between two successive stress measurements as the
best approximation of the avalanche sizes. This will not
recover the true size distribution exactly, but the result will
be similar to it as long as the data acquisition rate is on
the order of the nucleation rate. In Sec. VI C, we give the
relevant details and show the expected corrections to the size
distribution.

In Sec. VI D, we show that these procedures can be used
to obtain a scaling collapse from the low-resolution data
with the same critical exponents as one would find at high
resolution. We also show that traditional analysis of low-
resolution simulation data from the simple mean-field model
(of Ref. [18]) at different spring stiffnesses can give a collapse
with incorrect exponents (see Fig. 9). In Sec. VII, we compare
the results to downsampled experimental BMG compression
data and find good agreement with model predictions.

It is important to note that the model exponents and scaling
collapses vary according to temporal resolution if a naive
analysis of the data is implemented. This result is independent
of any particular model. The goal of this paper is not to
repeat the study of the validity of the mean-field model that
was performed in Ref. [13], but rather to show how the
scaling exponents extracted in experiments at much lower
data resolution than the exceptionally high resolution used
in Ref. [13] can be affected by low temporal resolution. The
data analysis methods presented in this paper are meant to
aid the analysis of future experiments at low time resolutions.
While we use a mean-field model to make certain calculations
explicit, we emphasize that the results are applicable beyond
mean-field theory, to any system with avalanches, regardless
of universality class.
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II. EXTRACTING AVALANCHE STATISTICS
FROM EXPERIMENTAL SIGNALS

Experimental data on plasticity are generally acquired as
one of two types: stress versus time (at constant displacement
rate) or displacement versus time (at a constant rate of stress
increase). In the first case, an avalanche manifests as a sudden
drop in stress and in between avalanches there are “quiet
periods” during which the stress increases at a constant rate due
to elastic loading. In the second case the avalanches are jumps
in the displacement and there is little change in displacement
during the quiet periods. As mentioned above, in this paper, we
focus on analyzing stress versus time data at a fixed imposed
displacement rate, although the results can be adapted in a
straightforward fashion to displacement versus time data.

Traditionally, avalanches are detected by taking a derivative
of the signal and observing when it drops below a negative
threshold. For instance, a stress-drop avalanche begins when
the derivative of the stress becomes negative and ends when
it returns to being positive (shown in Fig. 1). We call this the
traditional (or naive or conventional) method, in contrast to
methods we develop in Secs. VI B and VI C that are more
appropriate for low-resolution data.

In practice, experimental noise has a large effect on the
numerical derivative of a signal, so naive application of this
method can be unreliable, especially at high sampling rates.
This problem can be addressed by optimally filtering the
input data [24,25], by demanding that the stress derivative
drops below some negative threshold (rather than a threshold
of zero), or by dismissing avalanches below a certain size
as indistinguishable from noise. Deciding on the appropriate
method requires care because noise cannot only cause spurious
avalanches to be detected, but can also cause avalanches to be
incorrectly broken into pieces.

Once the avalanche sizes and durations have been mea-
sured, estimates of the statistical distributions of these quan-
tities can be constructed. The traditional way to present a
distribution estimate is by using a normalized histogram
of the sizes and durations as an approximate probability
density function (PDF). Histograms can be very effective
when data take integer values or when many avalanches have
been collected. When the data values span several orders
of magnitude (as avalanche sizes and durations often do),
logarithmic binning can be effective for reducing noise in the
tail of the distribution; however, any histogramming procedure
introduces a new parameter (binning scale) and also, more
crucially, averages out information from the data.

For this reason, we prefer to use complementary cumulative
distribution functions (CCDFs), even though their visual
interpretation is not always as straightforward as it is for
PDFs. The CCDF for a random variable X is defined as
C(x) = P (X > x). It can be estimated from the data as Ĉ(x) =
{fraction of samples with value greater than x}. Furthermore,
for independent samples, no information is lost: Each “step” in
the CCDF estimate is at the location of a data point, so the entire
data set can be recovered (except information about the time
order of samples, which is irrelevant if they are independent).
Key predictions of avalanche models about scaling forms of
size and duration PDFs can be cast equally well in terms of
the CCDF [10,13].

III. MODEL

To analyze the generic effects of low time resolution on
avalanche statistics, we use a simple mean field model [18]
with an array of N cells that are elastically coupled to one
another as well as to a driving spring that moves at a constant
rate. The stress τi on cell i is given by

τi = J

N − 1

N∑
j=1

(uj − ui) + K(vdt − ui), (1)

where ui is the position of the ith cell, t is the time, J is the
mean field coupling between the cells, and K is the spring
constant of the loading spring connecting a site to the sample
boundary that moves at speed vd . For a system with linear
size L, the system’s boundary is a distance on the order of L

away from the cells, which leads to a loading spring stiffness
K ∼ 1/L [26]. This means that for a planar shear band with N

cells, we have K ∼ 1/
√

N, and therefore large systems have
a naturally small value of K.

A cell slips forward by a characteristic amount δu when
its stress surpasses a failure threshold τf . This causes a local
reduction in stress of amount δτi = δu(J + K) for cell i, while
every other cell j �= i sees a stress increase of �τj = J

N−1δu.

The increase in the other cells’ stresses can cause them to slip in
turn. This chain reaction is called an avalanche. The avalanche
size is defined to be the amount the total stress F = ∑

i τi

drops during the avalanche.
Assuming that vd is so small that the effect of driving can

be neglected during the course of an avalanche, the system
has one tuning parameter k ≡ K/J that governs the sizes of
avalanches. When a cell fails, it relieves Kδu stress from the
boundary spring. If this is comparable to the amount Jδu that
it redistributes to the other cells, it will be impossible to have
large avalanches in the steady state. In the thermodynamic limit
N → ∞, the largest avalanches in the scaling regime have size
Sa ∼ k−2 and duration Ta ∼ k−1 and their probability density
functions (PDFs) follow the scaling forms [18]

P (S) ∼ S−3/2F(k2S), (2)

P (T ) ∼ T −2G(kT ). (3)

Summing Eq. (1), the total stress on the system is F =
NK(vdt − ū), where ū is the average displacement of the
cells. The instantaneous stress-drop rate is

−δF

δt
= −NKvd + Kn

δu

δt
= NK(v − vd ), (4)

where n is the number of cells that fail, δu is the characteristic
distance a cell slips when it fails, δt is the time step, and v =
n
N

δu
δt

is the instantaneous center-of-mass velocity of the system.
Thus, the stress-drop rate is proportional to the difference
between the instantaneous velocity and the speed of the sample
boundary. So if we measure the size of an avalanche as the total
stress drop, it is proportional to �u − vdT , where �u = nδu

is the displacement jump and T is the avalanche duration. The
disproportionality vdT between stress drops and displacement
jumps becomes unimportant in the quasistatic limit vd → 0
for any finite avalanche duration T .
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IV. TIME SCALES

The two most important time scales in the problem are the
maximum avalanche duration Ta and the average interevent
time Ti. The smallest relevant physical time scale is the
microscopic scale δt set by the rate of slip activations in the
material. It is the reference time scale for the problem and
serves as the simulation time step in the model.

In the limit of quasistatic driving, the maximum avalanche
duration Ta scales with distance to criticality k ≡ K/J as
Ta ∼ δtk−νz, where ν = 1 and z = 1 for mean-field depinning
with long-ranged forces [2]. The other time scales pertaining
to the avalanche durations also diverge as k → 0, but not
necessarily with the same exponent. For instance, the average
avalanche duration scales as 〈T 〉 ∼ k−νz(2−α), where α is the
power-law exponent for the duration distribution. In mean field
theory (MFT), α = 2 and 〈T 〉 ∼ ln(k−1) [18,27].

The interevent times are controlled by the displacement
rate. The average interevent time is Ti = δf/(Kvd ), where δf

is the average amount of added stress required to nucleate
an avalanche after the previous one ends. In the cellular
model, we have δf ∼ δτ/N, where δτ is the amount a cell’s
stress is reduced when it slips (as defined in Sec. III), so
Ti = δτ/(NKvd ).

The ratio of the average interevent time and the maximum
avalanche duration is an important quantity. If the interevent
times are much larger than the avalanche durations, then there
are no temporal overlaps between avalanches and the analysis
is simplified. This condition can be obtained by driving the
system at a sufficiently slow rate. Demanding that the average
interevent time Ti is much longer than the maximum avalanche
duration Ta = δt/kνz = δt(J/K)νz (with νz = 1 in MFT)
gives the condition

vd 
 δτ

JNδt
≈ δu

Nδt
, (5)

where δu ≈ δτ/J is the amount a cell slips when it is triggered,
as defined in Sec. III. We will assume that this condition holds
throughout this paper, so that avalanches are well separated in
time.

V. AVALANCHE DURATION DISTRIBUTIONS

If an avalanche has shorter duration than the sampling
time ts , it is impossible to measure its duration. Therefore,
we can only expect our measured duration distributions to
be accurate when the sampling time is much less than the
maximum avalanche duration Ta. Even avalanche durations
that are on the order of the sampling time will be measured
incorrectly due to quantization, so only durations that are much
longer than the sampling time will be measured accurately.

Furthermore, duration distributions generally scale over
fewer orders of magnitude than the size distribution (since, for
example, in MFT, T ∼ Sσνz, where σνz = 1/2). Therefore, it
is unlikely that one will obtain a reliable picture of the scaling
regime for the duration distribution except at sufficiently
high time resolution. In our simulations we set the duration
cutoff to Ta ≈ 100 time steps and this corresponds to an
average duration of around 〈T 〉 ≈ 10. Even when we use
ts = 5 or ts = 2, we see an apparent deviation in the duration
distribution from the power law observed at full resolution (see
Fig. 2).

measured duration
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ts = 5

T-1

FIG. 2. Duration distributions for several values of the sampling
time ts . The line represents the MFT prediction C(T ) ∼ T −1 [18].
The apparent power-law changes with sampling time ts , even for
values of ts much less than the maximum avalanche duration Ta ≈
100. The simulation parameters used were number of cells N = 104,

coupling between cells J = 1, loading spring stiffness K = 10−2,

and displacement rate vd = 10−5.

VI. AVALANCHE SIZE DISTRIBUTIONS

Fortunately, measurements of avalanche sizes are much
more robust to low time resolution than durations. This is
not because they exhibit more decades of scaling, but rather
because stress drops are measurable even if the sampling time
is longer than the avalanche duration. Still, there are difficulties
with the measurement process as the resolution is decreased,
but fortunately some of the most common problems can be
mitigated.

We will begin by studying the regime where the sampling
time ts is much less than the average interevent time Ti. The
relationship between the sampling time and the maximum
avalanche duration Ta is of secondary importance when
studying avalanche sizes as long as Ta 
 Ti.

A. One avalanche per time step (ts � Ti and Ta � Ti )

If we have sampling time ts 
 Ti, then there will almost
always be, at most, one avalanche per time sample (in fact,
the avalanche may have a duration of several time samples).
In this case, the size distribution of measured avalanches can
be computed exactly. The effect of low resolution is that some
small stress drops will be overcome by the background elastic
increase in stress (see Fig. 3). The elastic stress increase will
be Kvdts , where ts is the sampling time. The measured stress
drop will be Sts = min(S − Kvdts,0) and the avalanches that
have size less than

S∗ = Kvdts (6)
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FIG. 3. (a) A portion of a stress-time series from a simulation
of the mean-field model (from Ref. [18]). The circles mark every
20th data point and thus correspond to a lower-resolution signal with
sampling time ts = 20 (in units of the simulation time step δt = 1).
The size of the large event on the left side of the plot is measured fairly
accurately by the size of the stress drop in the low-resolution signal.
As the inset shows, a small stress drop does not have a corresponding
drop in the low resolution signal. (b) A portion of the stress-time curve
from the simulation, tilted according to Eq. (13). Subtracting out the
elastic stress increase makes the small avalanches visible as drops in
the signal. The inset shows the stress-time curve before tilting.

will go undetected by the standard methods. If we assume the
avalanches are drawn from the distribution predicted by MFT
[27],

P (S) =
√

Sm

2S3/2
e−k2S/2, (7)

where Sm 
 k−2 is the minimum avalanche size, then we will
start to notice significant changes in the shape of the size
distribution once S∗ � Sm. The probability that an avalanche
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FIG. 4. Number of avalanches collected versus sampling time
(in units of the simulation time step δt = 1) from a simulation of
the mean-field model (from Ref. [18]). The simulation parameters
used were number of cells N = 104, coupling between cells J = 1,

loading spring stiffness K = 10−2, and displacement rate vd = 10−5.

The line shows the predicted power law 1 − τ = −1/2 from Eq. (11).

is missed is given by

P (S < S∗) =
∫ S∗

Sm

P (S)dS = k
√

Sm

2

∫ k2S∗

k2Sm

x−3/2e−x/2dx.

(8)

If the data acquisition rate is sufficiently high that the largest
avalanches are not canceled out by the background stress
increase, i.e., if S∗ 
 k−2, then

P (S < S∗) ≈ k
√

Sm

2

∫ k2S∗

k2Sm

x−3/2dx = 1 −
√

Sm

S∗ . (9)

Similarly, for a more general size distribution P (S) ∼
1
Sτ F(S/Sa), where Sa is an upper size cutoff and F(x) is a
scaling function that is regular near the origin and decays
exponentially at large values, the probability an avalanche will
be too small to observe is

P (S < S∗) ≈ 1 −
(

Sm

S∗

)τ−1

(10)

for the case that the largest avalanches can still be detected,
i.e., for S∗ 
 Sa . This means that as the resolution is lowered,
the number of avalanches detected Ndetected will go down.
The proportion detected Ndetected/Ntotal will be approximately
P (S > S∗) = (Sm/S∗)τ−1. Since S∗ ∼ ts , it follows that

Ndetected ∼ (ts)
−(τ−1). (11)

Interestingly, Eq. (11) gives us a way to estimate the correct
size exponent τ without measuring the size of an avalanche.
One can simply downsample the data to lower resolutions (that
are still high enough so that large avalanches are detected)
and then count the number of avalanches measured at each
resolution (see Figs. 4 and 11). Equation (11) also gives a
potential way to diagnose whether avalanches are being lost
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FIG. 5. Measured avalanche size CCDFs at full resolution (ts =
1) and at ts = 100 (about one-tenth of the average interevent time Ti)
for both the untilted and the tilted stress-time series. The tilted data
give a CCDF that is very close to the one obtained at full resolution,
whereas the untilted signal gives a distribution that appears rounded
and the power law is difficult to identify by eye. The simulation
parameters used were number of cells N = 104, coupling between
cells J = 1, loading spring stiffness K = 10−2, and displacement
rate vd = 10−5.

due to low resolution or high strain rate. If one downsamples
the stress-time curve and finds the number of avalanches
decays initially like t τ−1

s , then avalanches are already being
lost due to resolution. If the number of avalanches is constant
at first, and then begins to decay, then the resolution is high
enough that this effect is not important.

Provided that S∗ 
 Sa, the avalanches that are above the
detection threshold will come from the truncated distribution
P ∗(S) = A (S∗)τ−1

Sτ F (S/Sa) for S > S∗, where A is a numerical
constant approximately equal to τ − 1 by normalization.
Additionally, the observed size of the avalanche is less than
its original size by S∗. So the observed distribution will be
shifted,

Pobs(S) = P ∗(S + S∗) = A
(S∗)τ−1

(S + S∗)τ
F [(S + S∗)/Sa], (12)

for S > 0. For S  S∗ this looks like the usual power-law
decay with a cutoff, but the distribution flattens near the origin.
For moderate values of S∗ the distribution appears rounded and
the power law is difficult to identify by eye (see the dashed
curve in Fig. 5).

B. Recovering small avalanches for ts � Ti and Ta � Ti

If the rate of elastic stress increase (i.e., in the absence
of avalanches) is known, then deviations from this trend
will be approximately the sum of the avalanche sizes during
the sampling interval. There are two potential methods for
estimating the rate of elastic stress increase. If the stress signal
has an elastic portion, its slope can serve as an estimate.
Alternatively, as long as the sampling rate is not too low
compared to the avalanche nucleation rate, there will be some
time intervals where very little plastic deformation occurs that
can be used for an estimate.

In the model, the stress increase rate is given by r = KNvd.

If we estimate r, we can tilt the stress signal F (t) to

F (t) → F (t) − rt (13)

and then perform the analysis (shown in Fig. 1) on the tilted
signal [see Fig. 3(b)]. The complication of small avalanches
being covered up by the stress increase during elastic loading
is then removed. This procedure can also be understood as
moving the detection threshold from 0 to +r in the numerical
derivative (see Fig. 1).

For the model signal, we can nearly recover the exact
avalanche distribution for ts ≈ Ti/10 ≈ Ta . This is possible
because we are at a high-enough resolution that with high
probability there is at most one avalanche per sampling
interval, and therefore no information is lost. Whether the
condition ts 
 Ti is achieved experimentally depends both on
the strain rate and the time resolution. If time resolution is too
low, this regime can still be reached by lowering the strain rate.

In the next section, we will discuss the situation where
ts ≈ Ti, so that there can be several avalanches per sampling
interval.

C. Multiple avalanches per time step (ts � Ti and Ti � Ta)

When the avalanche nucleation rate is on the order of the
sampling rate, we must account for the possibility of many
avalanches occurring during a time sample. If we attempt
to analyze the signal with the method of Fig. 1, two effects
become important. First, the stress drop during a sampling
time may be from multiple avalanches, and there is no way to
know the sizes of the individual avalanches, only their sum.
Second, if there are stress drops in consecutive time intervals,
they will be all merged into a single avalanche (see Fig. 6).
Therefore, the apparent avalanche will only stop once there is
a time interval without any stress drop.

If the avalanches are nucleated in a Poisson process, the
probability that there are no avalanches during a sampling time
interval ts is p0 = e−ts /Ti , where Ti is the mean interevent time
between avalanches. The measured avalanche durations will
be quantized in terms of the sample time, i.e., T = mts , where
m is the number of consecutive sample times during which the
stress drops. Since the measured avalanche continues until
there is a sampling time with no physical avalanches, the
duration distribution follows the geometric distribution [28],

P (T = mts) = (1 − p0)m−2p0, (14)

where p0 = e−ts /Ti is the probability the stress does not
decrease during the time step, thereby ending the measured
avalanche. [The factor (1 − p0) on the right-hand side of
Eq. (14) is raised to the power m − 2 instead of the usual m − 1
for the geometric distribution since the minimum avalanche
duration is one rather than zero.] From the distribution defined
in Eq. (14), we can compute the average measured duration to
be

〈T 〉 = ts

p0
+ ts = ts(1 + ets/Ti ). (15)

Likewise, the average size of an apparent avalanche will
increase exponentially with sampling time. Since the physical
avalanches are nucleated in a Poisson process with rate 1/Ti,

052135-6



AVALANCHE STATISTICS FROM DATA WITH LOW TIME . . . PHYSICAL REVIEW E 94, 052135 (2016)

time
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

til
te

d 
st

re
ss

4840

4860

4880

4900

4920

4940

4960

t
s
 = 1

t
s
 = 2000

1.52 1.54 1.56 1.58 1.60
4864.8

4865.0

4865.2

4865.4

4865.6

4865.8

ts
ts

ts

 105

 105

stress drop
during
sample

FIG. 6. A portion of a stress-time series from a simulation of the
mean-field model (from Ref. [18]), tilted as described in Eq. (13). The
circles mark every 2000th data point and thus correspond to a very
low-resolution signal with sampling time ts = 2000. This sampling
time is about twice the inverse avalanche nucleation rate, so most
increments contain at least one avalanche. As a result, measuring
avalanches as successive drops in the tilted stress will give stress drops
of very long duration, corresponding to many successive underlying
avalanches. However, the stress drops measured between successive
sample points will be close in size to the underlying avalanches,
although sometimes several avalanches may be merged, as is the case
for the first and last time step of size ts of the inset plot. The simulation
parameters used were number of cells N = 104, coupling between
cells J = 1, loading spring stiffness K = 10−2, and displacement
rate vd = 10−5.

the number of physical avalanches during a sample will be
Poisson distributed with average ts/Ti . If we let n be the
number of physical avalanches that occur during a sample
time, n will have the distribution

P (n) = 1

ets/Ti − 1

(ts/Ti)n

n!
(16)

for n � 1. We modified the Poisson distribution so to not
include n = 0 because sampling times in which no physical
avalanches happen will not show any stress decrease. Taking
the average of the distribution,

〈n〉 =
∞∑

n=1

nP (n) = ts/Ti

1 − e−ts /Ti
. (17)

The average measured avalanche size is the product of the
average number of sample times per avalanche 〈T 〉/ts, the
average number of physical avalanches per sample time 〈n〉,
and the average size of an avalanche, which gives

〈S〉 = 〈T 〉
ts

〈n〉〈S〉0 = ts

Ti

(1 + ets/Ti )

(1 − e−ts /Ti )
〈S〉0, (18)

where 〈S〉0 is the average size of the underlying physical
avalanches. In Fig. 7 we show that Eqs. (15) and (18) agree
with the simulation of the MFT model.
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FIG. 7. Mean values of the measured size and duration vs
sampling time from the analysis (shown in Fig. 1) of the tilted signal.
The curves are the predicted values from Eqs. (15) (top) and (18)
(bottom).

In Fig. 8, we see that in this very low-resolution regime, the
standard analysis (as shown in Fig. 1) gives something com-
pletely different from the underlying avalanche distributions.
The principal complication is that consecutive intervals are
likely to have stress drops. Therefore, it is more representative
to measure the avalanche as the stress drop during a single

measured avalanche size
10-3 10-2 10-1 100 101 102

C
C

D
F

10-5

10-4

10-3

10-2

10-1

100

ts = 1
ts = 1000, tilted, standard analysis
ts = 1000, tilted, one measurement timestep per avalanche

FIG. 8. Avalanche size CCDFs from simulations of the mean-
field model (from Ref. [18]) at full resolution and from tilted
stress-time curves at low resolution ts = 1000 (roughly two times
the average interevent time Ti) using the analysis described in Fig. 1
and the improved method for very low-resolution data described in
Sec. VI C that defines the sample stress drops defined in Eq. (19) (after
tilting) as avalanche sizes. The distribution from the improved method
is much closer to the full-resolution distribution and the same rough
power-law behavior can be seen, but it is still somewhat distorted
due to avalanche merging. The simulation parameters used were
number of cells N = 104, coupling between cells J = 1, loading
spring stiffness K = 10−2, and displacement rate vd = 10−5.
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FIG. 9. (a) Data collapse of the size CCDF [Eq. (7)] for different K values from a simulation of the mean-field model (from Ref. [18]) at full
resolution. The collapse uses MFT exponents τ = 3/2 and α = 2 [18]. (b) An apparent collapse for ts = 500 using the analysis shown in Fig. 1.
Here the collapse yields different exponents τ = 1 and α = 1.5. (c) A collapse with MFT exponents τ = 3/2 and α = 2 for ts = 100 
 Ti,

using the the tilted signal described in Sec. VI B. (d) A successful collapse with MFT exponents τ = 3/2 and α = 2 for ts = 1000 ≈ Ti, using
the sample stress drops defined in Eq. (19). Insets are the original distribution before the rescaling.

sampling time. This means that if the stress changes by an
amount δF during a sampling time, one should record an
avalanche of size

S =
{−δF, δF < 0,

no avalanche, δF � 0 (19)

(see the inset of Fig. 6). We will call these the sample stress
drops to distinguish them from the stress-drop avalanches
that extend over multiple time steps that are measured in the
analysis.

One complication with this method is that sometimes there
are several avalanches during a time step. We cannot recover
the sizes of the individual avalanches, but if we know the
nucleation rate, we can predict the distribution of apparent
avalanche sizes as follows.

Let Pn(S) be the distribution of the sum of n independent
avalanches. The distribution of apparent avalanche sizes will
be

P (S) =
∞∑

n=1

P (n)Pn(S), (20)

where P (n) is the distribution of the number of avalanches in
a sampling time from Eq. (16) and Pn(S) is the distribution of
the sum of n independent avalanche sizes. In the Appendix,

we show that

Pn(S) = nv0√
2πS3

e− 1
2S

(kS−nv0)2
, (21)

where v0 = Sm/δt , the ratio of the minimum physical
avalanche size to the minimum physical avalanche duration.
As long as 〈n〉, the average number of avalanches per sampling
time, is not too big, the distribution of Eq. (20) looks roughly
like the distribution P (S) of physical avalanche sizes with a
larger short-distance cutoff since the n = 1 term of Eq. (20)
dominates. Provided that 〈n〉〈S〉0 
 Sa , where 〈S〉0 is the
average physical avalanche size and Sa is the maximum
physical avalanche size, the tail of the distribution is not
affected by merging, so a collapse may still look reasonable
(see Figs. 8 and 9).

D. Data collapse at low resolution

The physical scaling form predicted by the model, P (S) ∼
S−τF(kαS) can be tested by performing a scaling collapse for
different K values. This scaling form implies a scaling form,

C(S) =
∫ ∞

S

P (S ′)dS ′ ∼ S1−τ F̄(kαS), (22)

for the CCDF, where F̄(x) = ∫ ∞
1 z−τF(zx)dz [7].
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We use the loading spring constant K as a tuning parameter
for our collapses. There are two complications that we correct
for. First, since the definition of the stress drops scales with K,

the avalanche sizes we use in the collapse are rescaled S →
S/K before collapsing. We also tune the displacement rate
vd so that the interevent time Ti ∼ (Kvd )−1 remains constant.
This allows us to tune the spring constant over a wider range
without changing the resolution regime (i.e., ts 
 Ti or ts �
Ti).

In Fig. 9(a) we plot C(S)Sτ−1 versus SKα, which, accord-
ing to Eq. (22), should give the plot of the scaling function
F̄ . We do this for three values of K and confirm that they
all lie on the same curve. As we lower the resolution, the
distributions become distorted and the scaling form ceases
to hold; however, due to regularities in the behavior of the
measured size distribution at different resolutions, an apparent
data collapse can still be possible. In Fig. 9(b) we show an
apparent collapse we obtained for ts = 500, after performing
the naive avalanche analysis of Fig. 1 without tilting the stress-
time curve; however, the exponents τ = 1 and α = 1.5 that
collapse the data strongly deviate from the MFT values τ = 1.5
and α = 2 that yield a collapse for the full resolution data.

In the lower panels, we show that we can obtain acceptable
collapses with the MFT exponents for ts = 100 and ts = 1000
when we use the improved analysis methods outlined in
Secs. VI B and VI C.

VII. COMPARISON WITH EXPERIMENT

We compare our theoretical results with experimental data
on bulk metallic glasses originally presented in [13]. The data
are collected at a very high data acquisition rate of 100 kHz and
the avalanche size distribution and average avalanche shapes
show good agreement with mean-field theory. See Ref. [13]
for details on the experiment and data analysis.

One complication in applying the above analysis to data
is the presence of noise. We use Wiener filtering to reduce
the noise amplitude (see Ref. [13] for details). Since the
analysis uses a numerical derivative to detect stress drops
(shown in Fig. 1), even a small amount of noise can have
a large effect, and there are still many small events that are
a result of noise rather than material response. These “noise
avalanches” can be seen as a sharp decrease on the left part
of the 100-kHz CCDF in Fig. 10(b). After the sharp decrease,
a scaling regime emerges where the size distribution follows
the predicted power law C(S) ∼ S−1/2. Avalanches from this
region, as well as larger avalanches, are not polluted by noise.

In Fig. 10 we plot the avalanche size CCDFs obtained using
the analysis (without tilting; see Fig. 1) at different resolutions
from a model simulation and experiment. In both cases, we
see that the distribution becomes narrower at lower resolution.
In the CCDFs for the experimental data (bottom panel), a
pronounced noise regime is visible for the higher resolutions,
but disappears at lower resolutions since the noise averages
out over long sampling times.

In Fig. 10(b) we see that when the resolution is lowered to
around 100 Hz, the power law begins to become shallower and
below 50 Hz the power law begins to disappear entirely. This
gives a rough lower bound for resolution at which we expect
resolution effects to be important for stress-drop distributions
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10 Hz 
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1 Hz from experimental data
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FIG. 10. (a) Avalanche size distributions measured at different
resolutions from simulations of the mean-field model (from Ref. [18])
and (b) from BMG experiment (from Ref. [13]). The trend lines
are power laws with exponent 1 − τ = −1/2 predicted by MFT. In
both cases, the analysis described in Fig. 1 gives avalanche size
distributions that become increasingly narrow at low resolution.
Thus, low resolution can obscure power-law distributed jumps in
the underlying signal. In the experimental data, a pronounced noise
regime is visible for the higher resolutions, but is averaged out at
lower resolutions.

in this particular system. Since the key time scale is the
avalanche nucleation rate [which is proportional to 1/(NKv)],
resolution effects can be avoided by decreasing the system size
or decreasing the displacement rate rather than increasing the
resolution.

In Fig. 11 we plot the number of avalanches collected versus
the sampling time. We see rough agreement with the power law
of 1 − τ = −1/2 predicted by Eq. (11) for high resolutions but
with a more pronounced deviation for larger sampling times
(also see Fig. 4). This is due to the shorter scaling regime in
the experimental data and deviations from scaling for large
avalanches [13].

Finally, in Fig. 12, we use the method from Sec. VI A to
recover the power-law exponent from the experimental data
downsampled to 2 Hz, a resolution at which the traditional
analysis yields a distribution with no power-law regime. First
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FIG. 11. Number of avalanches collected versus sampling time
ts from the experimental data. The line is a power law with exponent
1 − τ = −1/2 from Eq. (11).

the data were cut into sections of monotonically increasing
stress, and an appropriate stress increase rate r was determined
by a linear fit for each section [see Eq. (13)]. The measured
value of r was about 6.5 ± 0.3 MPa/s throughout the sample.
Then we tilted the lowered-resolution data according to the
local values of r and took the distribution of sample stress drops
for each sample in which the stress change was negative. The
full-resolution power law of −1/2 is recovered in the resulting
CCDF.

avalanche size (Pa)
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improved analysis of 2 Hz data

conventional analysis of 2 Hz data

conventional analysis of full resolution (100 kHz) data

FIG. 12. The bottom curve is the avalanche size CCDF measured
using the analysis described in Fig. 1 on the full-resolution (100-kHz)
experimental data. The scaling regime follows a power law with
exponent 1 − τ = −1/2, in agreement with MFT. The top curve is the
CCDF measured with the analysis when the same data are drastically
downsampled to 2 Hz. The power law is no longer apparent. The
middle curve is the CCDF measured using the improved method
outlined in Sec. VI A, where the sample stress drops are analyzed
from a tilted signal [see Eq. (19)]. The −1/2 power law apparent in
the 100-kHz data is recovered from the downsampled data.

VIII. CONCLUSION

Lowered resolution affects the measured avalanche dis-
tributions in several ways. Avalanche duration distributions
are distorted significantly unless the sampling time is well
below the average avalanche duration. For larger sampling
times (lower resolutions), the apparent power law is steeper
than the theoretical power law (see Fig. 2). Avalanche size
distributions are much more robust and can be measured even
when the sampling time is longer than the duration of the
largest avalanches, but there can still be significant rounding
of the shape of the size distribution.

For moderately low resolution where the sampling time
is still much less than the average time between avalanches,
tilting the data before measuring the stress drops makes it
possible to recover the underlying avalanche size distribution
to a good approximation. For very low resolutions with
sampling times on the order of the interevent time, tilting the
signal and using the sample stress drops described in Sec. VI C
allow the recovery of a size distribution similar to the one that
would be obtained at high acquisition rates.
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APPENDIX: DERIVATION OF THE MERGED
AVALANCHE DISTRIBUTION

In the continuum limit, the distribution of avalanche sizes
is given by a Brownian first passage time distribution

P (S) = v0√
2πS3

e− 1
2S

(kS−v0)2
, (A1)

where v0 ∼ Sm/δt, with Sm the minimum avalanche size and
δt the minimum avalanche duration [27]. v0 may be thought
of as the size of the initial “kick” starting an avalanche.

We can then compute the distribution of the sum of two
independent avalanche sizes from this distribution. We first
Laplace transform, giving

P̃ (λ) =
∫ ∞

0
dSe−λSP (S) = v0e

kv0

√
2π

∫ ∞

0

dS

S3/2
e−(λ+k2/2)S−v2

0/2S

= ekv0e−
√

2v2
0 (λ+k2/2). (A2)

By the convolution theorem, the Laplace transform of the
distribution of the sum 
n = ∑n

j=1 Sj of n independent
draws from P (S) is just P̃ (λ)n. We can then inverse Laplace
transform to get

P (
n) =
∫ a+i∞

a−i∞

dλ

2πi
eλ
nP̃ (λ)n, (A3)

052135-10



AVALANCHE STATISTICS FROM DATA WITH LOW TIME . . . PHYSICAL REVIEW E 94, 052135 (2016)

where a > −k2/2 to avoid the branch cut. The integral can be done by deforming the contour around the branch cut and shifting
λ → λ − k2/2, giving

P (
n) = ekv0

π
e−k2
n/2

∫ ∞

0
dλ sin

(√
2v2

0λ
)
e−λ
n = nv0√

2π (
n)3
e− 1

2
n
(k
n−nv0)2

. (A4)

The sum of n avalanches has the same distribution as a single avalanche with n times as large an initial kick [29].
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