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1 INTRODUCTION

ABSTRACT

We study the impact of star-forming mini-haloes, and the Initial Mass Function (IMF) of Pop-
ulation III (Pop III) stars, on the Galactic halo Metallicity Distribution Function (MDF) and on
the properties of C-enhanced and C-normal stars at [Fe/H]< —3. For our investigation we use
a data-constrained merger tree model for the Milky Way formation, which has been improved
to self-consistently describe the physical processes regulating star-formation in mini-haloes,
including the poor sampling of the Pop III IMF. We find that only when star-forming mini-
haloes are included, the low-Fe tail of the MDF is correctly reproduced, showing a plateau
that is built up by C-enhanced metal-poor (CEMP) stars imprinted by primordial faint super-
novae. The incomplete sampling of the Pop III IMF in inefficiently star-forming mini-haloes
(< 1073 Mg yr™!) strongly limits the formation of Pair Instability Supernovae (PISNe), with
progenitor masses nipopm = [140—260] Mo, even when a flat Pop III IMF is assumed. Second-
generation stars formed in environments polluted at > 50% level by PISNe, are thus extremely
rare, corresponding to = 0.25% of the total stellar population at [Fe/H]< —2, which is con-
sistent with recent observations. The low-Fe tail of the MDF strongly depends on the Pop III
IMF shape and mass range. Given the current statistics, we find that a flat Pop III IMF model
with mpopnr = [10 — 300] M, is disfavoured by observations. We present testable predictions
for Pop III stars extending down to lower masses, with mpepm = [0.1 — 300] Mo,

Key words: Galaxies: evolution, ISM; The Galaxy: evolution; stars: formation, Population
II, Population III, supernovae: general.

rounding star-forming galaxies gets ionized and heated up to tem-
peratures 7 > 10* K (e.g. Maselli et al. 2003; Graziani et al. 2015).

According to the standard A Cold Dark Matter (ACDM) model for
structure formation, the first stars formed at z ~ 20 in low-mass
dark matter “mini-haloes”, with total masses M ~ [10° — 107] M,,
and virial temperatures T.;; < 10* K (e.g. Abel et al. 2002; Bromm
2013, for a recent review). At these low temperatures, and in gas
of primordial composition, the only available coolant is molecu-
lar hydrogen, H,, which can be easily photo-dissociated by Lyman
Werner photons (LW, E = 11.2—-13.6 eV) produced by the first and
subsequent stellar generations (e.g. Haiman et al. 1997; Omukai &
Nishi 1999; Machacek et al. 2001). The ability of mini-haloes to
efficiently form stars is therefore highly debated, and it critically
depends upon the specific physical properties of these low-mass
systems, such as their formation redshift, gas temperature, and gas
metallicity, which determine the cooling efficiency of the gas (e.g.
Omukai 2012).

During the epoch of reionization, furthermore, the gas sur-
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Gas infall is thus suppressed in low temperature mini-haloes born
in ionized cosmic regions and it is completely quenched after the
end of reionization, at z = 6 (e.g. Gnedin 2000; Okamoto et al.
2008; Noh & McQuinn 2014; Graziani et al. 2015). Because of the
intrinsic fragility of mini-haloes, many galaxy formation models
neglect star-formation in these low-mass systems (e.g. Bullock et
al. 2015). However, mini-haloes likely played an important role in
the early Universe, being the nursery of the first stars and the dom-
inant halo population, which likely regulated the initial phases of
reionization and chemical-enrichment (e.g. Salvadori et al. 2014;
Wise et al. 2014).

During last years, observational evidences of the importance
of mini-haloes have been provided by ultra-faint dwarf galaxies,
the faintest and most metal-poor galaxy population in the Local
Group (Simon & Geha 2007). These galaxies, which have total lu-
minosities L < 10°Lg, have been proposed to be the living fossil
of the mini-haloes which overcame radiative feedback processes
and managed to form stars before the end of reionization (Sal-
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vadori & Ferrara 2009; Bovill & Ricotti 2009; Muiioz et al. 2009).
Deep color-magnitude diagrams of ultra-faint dwarfs have con-
firmed these theoretical predictions, showing that these small sys-
tems are typically dominated by > 13 Gyr old stars, which there-
fore formed at z > 6. In addition, many carbon-enhanced metal-
poor (CEMP) stars have been found in ultra-faint dwarf galaxies
(Norris et al. 2010; Simon et al. 2010; Frebel et al. 2015), with
respect to the more massive and more luminous “classical” dwarf
spheroidal galaxies (Skuladottir et al. 2015). The high incidence
of these peculiar stars, which have [C/Fe]>0.7 and were likely im-
printed by the very first stars (de Bennassuti et al. 2014), is an ad-
ditional confirmation that ultra-faint galaxies are likely the living
relics of star-forming mini-haloes from the pre-reionization epoch
(Salvadori et al. 2015).

Accounting for the star-formation in mini-haloes is thus an es-
sential step to study the early phases of galaxy evolution and the im-
pact on current stellar sample of “second-generation” stars, which
formed out of gas polluted by the first stars. In a previous paper, we
studied the implication of the properties of the most iron-poor stars
observed in the Galactic halo for the initial mass function (IMF) of
the first Population III (Pop III) stars (de Bennassuti et al. 2014).
To this aim, we use the cosmological merger-tree code GAlaxy
MErger Tree & Evolution (GAMETE, Salvadori et al. 2007, 2008)
which was implemented to self-consistently account for the pro-
duction and destruction of dust, and for a two-phase inter-stellar-
medium (Valiante et al. 2011; de Bennassuti et al. 2014). However,
we did not account for star-formation in mini-haloes, as instead it
was done in many other applications and further implementations
of the model (e.g. Salvadori & Ferrara 2009; Salvadori et al. 2010;
Salvadori & Ferrara 2012; Salvadori et al. 2014, 2015; Valiante
et al. 2016).

In de Bennassuti et al. (2014), we showed that dust-cooling
is required to explain the existence of the most pristine, carbon-
normal star at Z ~ 107*°Z, (Caffau et al. 2011). This implies that
the transition from massive Pop III stars, to normal, Population II
(Pop 1II) stars, is (also) driven by thermal emission of collisionally
excited dust and thus can occur at a critical dust-to-gas mass ratio
Dy > 4.4 x 107 (Schneider et al. 2002, 2006, 2012b). Further-
more, we showed that CEMP-no stars (which show no r-/s- process
elements, see Sec. 3) are likely imprinted by primordial faint super-
novae (SNe), which experienced mixing and fallback and had typ-
ical progenitor masses mpopm = [10 — 40]Mg. Our results pointed
out that these pristine and relatively massive stars should dominate
the early metal enrichment to successfully reproduce the fraction
of Carbon-enhanced vs Carbon-normal stars. In particular, we put
constraints on the Pop III IMF, which should be limited to the mass
range Mpop = [10 — 140]M,. This is in contrast with state-of-the-
art simulations of the first cosmic sources, which suggest a broader
mass range mMpep = [10 — 1000]M,, (e.g. Susa et al. 2014; Hirano
et al. 2014, 2015; Hosokawa et al. 2016).

In this paper, we revisit these results by accounting for star-
forming mini-haloes. To this aim, we further develop the model to
catch the essential physics required to self-consistently trace the
formation of stars in mini-haloes by including:

(i) a star-formation efficiency that depends on the gas tempera-
ture, gas metallicity, and formation redshift of mini-haloes, and on
the average value of the LW background;

(i1) a random sampling treatment of the IMF of Pop III stars,
which inefficiently form in mini-haloes;

(iii) a suppression of gas infall in mini-haloes born in ionized
regions, using a self-consistent calculation of reionization.

The paper is organized as follows: in Sec. 2 we summarize the
main features of our cosmological model, mainly focusing on the
new physics implemented here. In Sec. 3, we briefly recap available
observations of very metal-poor stars in the Galactic halo, includ-
ing the new findings. Model results are presented in Sec. 4, where
we show the effects of different physical processes on the Galactic
halo Metallicity Distribution Function (MDF) and on the fraction
of Carbon-enhanced vs Carbon-normal stars. Finally, in Sec. 5, we
critically discuss the results and provide our conclusions.

2 DESCRIPTION OF THE MODEL

In this section we briefly summarize the main features of the semi-
analytical code GAMETE and describe in full detail the model im-
plementations that we made for the purpose of this work.

GAMETE is a cosmological merger tree model in the ACDM
framework! that traces the star-formation history and chemical evo-
lution of Milky Way (MW)-like galaxies from redshift z = 20 down
to the present-day. The code reconstructs a statistical significant
sample of independent merger histories of the MW dark matter
halo by using a binary Monte Carlo code, which is based on the Ex-
tended Press-Schechter theory (e.g. Bond et al. 1991) and accounts
for both halo mergers and mass accretion (Salvadori et al. 2007). To
this end, we assume that the MW Galaxy is embedded in a DM halo
of mass Myw = 10'> My, at z = 0, which is in agreement with cur-
rent measurements and uncertainties: 1.26703; X 10' M, (McMil-
lan 2011), 0.9%3 x 10'2 M,, (Kafle et al. 2012), 0.80*03¢ x 10'2 M,
(Kafle et al. 2014, see also Wang et al. 2015 for the different meth-
ods adopted to infer the DM mass). The 50 possible MW merger
histories we reconstruct resolve mini-haloes down to a virial tem-
perature Ty; = 2 X 10°K (e.g. see de Bennassuti et al. 2014).

The star-formation and chemical evolution history of the MW
is then traced along the merger trees. We assume that the gas
inside dark matter haloes can be converted into stars at a rate
Y(t) = e.Mism(?)/tayn (1), where €, is the star-formation efficiency,
tayn(?) the dynamical time-scale, and Mgy (f) the total mass of gas
into the interstellar medium (ISM), which is regulated by star for-
mation, SN-driven outflows, and by a numerically calibrated infall
rate (Salvadori et al. 2008). Due to less efficient gas cooling, the star
formation efficiency in mini-haloes (Ty; < 10*K), evm, is smaller
than that of Lya-cooling haloes (Ty;, > 10°K), €. (see Sec. 2.1).

Once stars are formed, we follow their subsequent evolu-
tion using mass- and metallicity-dependent lifetimes (Raiteri et al.
1996), metal (van den Hoek & Groenewegen 1997; Woosley &
Weaver 1995; Heger & Woosley 2002) and dust (Schneider et al.
2004; Bianchi & Schneider 2007; Marassi et al. 2014, 2015) yields.
Chemical evolution is followed in all star-forming haloes and in the
surrounding MW environment enriched by SN-driven outflows reg-
ulated by a wind efficiency ¢, (Salvadori et al. 2008).

As discussed in de Bennassuti et al. (2014), the evolution of
the ISM in each progenitor halo is described as follows:

e we assume the ISM to be characterized by two phases: (i) a
cold, dense phase that mimic the properties of molecular clouds
(MCs). In this dense phase star-formation occurs and dust grains
accrete gas-phase metals. (ii) A hot, diffuse phase that exchanges
mass with the MW environment through gas infall and SN winds.
In this diffuse phase, SN reverse shocks can partially destroy newly

I We assume a Planck cosmology with: hyp=0.67, Qbh2:0.022, Q,=0.32,
QA =0.68, 03=0.83, ng=0.96 (Planck Collaboration 2014).
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produced dust grains (Bianchi & Schneider 2007; Marassi et al.
2015; Bocchio et al. 2016).

o Chemical evolution is described separately in the two phases,
but the mass exchange between the dense and diffuse ISM is taken
into account, through the condensation of the diffuse phase and the
dispersion of MCs which return material to the diffuse phase. These
processes are regulated by two additional free parameters, as de-
scribed in Section 2.1 of de Bennassuti et al. (2014).

o The transition from massive, Pop III stars to “normal” Pop II
stars is assumed to be driven by dust grains (e.g. Schneider et al.
2002) and to occur when the dust-to-gas mass ratio in the dense
phase exceeds the critical value D,, = 4.4 x 10~ (Schneider et al.
2012a)

e Pop III stars form with masses in the range [10 — 300] M,
according to a Larson-type IMF:

om) = W o ot exp(— ’"Ch) (1)
dm m

with mg, = 20 M, and @ = 1.35 (de Bennassuti et al. 2014). We
assume that chemical enrichment (metals and dust) is driven by
Pop III stars with masses [10 — 40] M, that experience mixing
and fallback and explode as faint SNe (Umeda & Nomoto 2003;
Marassi et al. 2014, 2015), and by stars with masses [140—-260] M,
that explode as Pair Instability SNe (PISNe, e.g. Heger & Woosley
2002; Schneider et al. 2004).

e Pop II stars form according to a Larson IMF with m, =
0.35 My, @ = 1.35, and masses in the range [0.1 — 100] M. Their
contribution to chemical enrichment is driven by Asymptotic Gi-
ant Branch (AGB) stars (2 M, < mpopn < 8M) and by ordinary
core-collapse SNe (8 My < mpopn < 40 Mo).

We refer the reader to the aforementioned papers for a detailed
description of the basic features of the model. In the next subsec-
tions we illustrate how we implemented star-formation in H, cool-
ing mini-haloes.

2.1 Gas cooling in mini-haloes

The gas cooling process in mini-haloes relies on the presence of
molecular hydrogen, H,, which can be easily photo-dissociated by
photons in the LW band. Several authors have shown that ineffec-
tive cooling by H, molecules limits the amount of gas that can be
converted into stars, with efficiencies that decrease proportional to
Tfir (e.g. Madau et al. 2001; Okamoto et al. 2008). For this rea-
son, models that account for mini-haloes, typically assume that in
these small systems the star-formation efficiency is reduced with re-
spect to more massive Lyman-a-cooling haloes, and that the ratio
between the two efficiencies is a function of the virial temperature,
evn/€ = 2[1+(Ty;i/2x10*K)73]7! (e.g. Salvadori & Ferrara 2009,
2012). This simple relation is illustrated in the right panels of Fig. 1
(dashed lines).

However, the ability of mini-haloes to cool down their gas not
only depends on T\;, but also on their formation redshift, on the
gas metallicity, and on the LW flux, Jiw, to which these systems
are exposed. In this work, we compute the mass fraction of gas that
is able to cool in one dynamical time following a simplified version
of the chemical evolution model of Omukai (2012). For a more
detailed description of the model and of the gas-cooling processes
that we have considered, we refer the reader to the Appendix A of
Valiante et al. (2016)2.

2 Here we correct the derivation of the cooling time (Eq. A2 in Valiante
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Figure 1. The ratio between the star-formation efficiency in mini-haloes,
emu, and the constant efficiency of Lyman-a cooling halos €. (see
text). The colored lines represent different mini-halos formation redshifts
(z = 20,15,12,10,8,6,4, from top to bottom, as explained in the leg-
enda). Upper, middle and lower panels show the results assuming Jp; =
JLW/(IO‘Z'erg/cmz/s/Hz/sr) =0, 1 and 100, respectively. Left panels: de-
pendence on the gas metallicity for a fixed Ty;; = 8x 10> K; at Z < 107>5Z
the ratio €y/p /€, is constant. Right panels: dependence on the virial temper-
ature, for a fixed Z = lO’ZZ@. The dashed lines show the z-independent
relation used in Salvadori & Ferrara (2009, 2012).

In Fig. 1 we show the resulting efficiencies, evy, normalized
to €, for different gas metallicities (left), mini-halo virial tempera-
tures (right) and LW flux. The different lines show different mini-
halo formation redshifts. When the LW background is neglected,
ie. Joy = Juw/(102lerg/cm?/s/Hz/sr) = O (upper panels), we
can clearly see the dependence of eyy/e. on: (i) the formation
redshift, (i7) the gas metallicity (left), and (iii) the virial temper-
ature (right). As a general trend, we find that the smaller are these
quantities, the lower is the gas-cooling efficiency of mini-haloes. At
Ty > 10* K, Lyman-a cooling becomes efficient and ey /€. = 1.
When J;; ~ 1 (middle panels), gas cooling is partially suppressed
due to H, photo-dissociation. When z > 8, the gas is dense enough

etal. 2016) by dividing Eq. 19 of Madau et al. (2001) for €,,,. This enhances
the star formation efficiencies shown in their Fig. A1-A4 (see Fig. 1).
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to self-shield against the external LW background, and eyy de-
creases only by 1 dex with respect to the J; = 0 case. When z < 8,
gas cooling is completely suppressed in Ty, < 10* K systems, un-
less they are already enriched to Z ~ Z,. This is consistent with the
minimum halo mass to form stars assumed in Salvadori & Ferrara
(2009, 2012). Similarly, when mini-haloes are exposed to a stronger
LW flux, J;; ~ 100 (lower panels), gas cooling is allowed only at
z > 8 in highly enriched mini-haloes, which have Z > 1071°Z,. In
what follows, we will use the results in Fig. 1 to self-consistently
compute the star-formation efficiency of mini-haloes in our merger
trees.

2.2 Stochastic Pop III IMF

The mass of newly formed stars in a given dark matter halo depends
on the gas mass and star formation efficiency. In low-mass systems
the available mass of gas can be strongly reduced with respect to the
initial mean cosmic value, €, /Qy, because of SN-driven outflows
and radiative feedback processes (e.g. Salvadori & Ferrara 2009).
Furthermore, due to the reduced cooling efficiency mini-haloes (see
Fig. 1), the total stellar mass formed in each burst is small, M} o <
10* M. In these conditions, the resulting stellar mass spectrum will
be affected by the incomplete sampling of the underlying stellar
IMF. This effect can be particularly relevant for Pop III stars, which
have masses in the range [10 — 300]M,, (e.g. Hirano et al. 2014).
Hence, we adopt a random-selection procedure, the result of which
is illustrated in Fig. 2.

The stars produced during each burst of star-formation are ran-
domly selected within the IMF mass range, and they are assumed
to form with a probability that is given by the IMF normalized to
the total mass of stars formed in each burst. In Fig. 2 we show the
comparison between the randomly-selected and the intrinsic IMF

for total stellar masses of Ml‘,‘:)‘pm = (10%,10%, 10%, 10%) M,. When

M{,‘gpm 2 10° M, the overall mass range can be fully sampled and
the intrinsic IMF is well reproduced. On the other hand, the lower
is the stellar mass formed, the worse is the match between the sam-
pled and the intrinsic IMF. In particular, when M;?O‘pm < 10° Mo, it
becomes hard to form Pop III stars with mpep; = [140 — 260]M,
(PISN progenitor mass range). We find that while almost 100% of
the halos forming 10*M,, Pop III stars host ~ 9 PISNe each, only
60% of the halos producing 10°M, of Pop III stars host at most 1
PISN. Thus, we find that the number of PISN is naturally limited

by the incomplete sampling of the stellar IME.

2.3 Radiative feedback

To self-consistently account for the effect of radiative feedback
processes acting on mini-haloes, we compute the amount of radi-
ation in the Lyman Werner (LW, 11.2-13.6 e¢V) and ionizing (>
13.6 eV) bands produced by star-forming haloes along the merger
trees. We take time- and metallicity-dependent UV luminosities
from Bruzual & Charlot (2003) for Pop II stars and from Schaerer
(2002) for Pop III stars?.

Input values used for Pop II stars of different stellar metallic-
ities are shown in Fig. 3 as a function of stellar ages. As expected,
the UV luminosity is largely dominated by young stars and depends
on stellar metallicity, as more metal poor stars have harder emission
spectra. In the first 10 Myr, the ionizing photon rate drops from

3 We use the photon luminosities from Table 4 of Schaerer (2002) for
metal-free stars.

> 2 x 10* phot/s/M,, to < 2 x 10* phot/s/M,, while the rate of
LW photons remains approximately constant at ~ 10%® phot/s/ M.
Therefore, although initially lower, after 10 Myr the rate of LW
photons emitted becomes higher than that of ionizing photons.

In the following, we describe how we compute the LW
and ionizing background and how we account for reionization
of the MW environment. Given the lack of spatial information,
we assume that the time-dependent LW and ionizing radiation
produced by stars build-up a homogeneous background, which -
at each given redshift - affects all the (mini-)haloes in the same way.

2.3.1 LW background

The cumulative flux observed at a given frequency v,s and redshift
Zobs €an be computed by accounting for all stellar populations that
are still evolving at z,,, (Haardt & Madau 1996):

E(V’, Z) e_T(Vobs »Zobs 2) (2)

c 0 dt
Tt z) = (14 20)' o f K ‘d—z

where

di 3 1/2y-1

il {Ho(1 + )[Qn(1 +2)” + Qp 17}, 3)
V' = Vops(1 + 2)/(1 + Zops), €(V',2) is the comoving emissivity at

frequency v’ and redshift z, and T(Vops, Zobs, 2) 1S the MW environ-
ment optical depth affecting photons emitted at redshift z and seen
at redshift zqps at frequency vy, (Ricotti et al. 2001).

To obtain the average flux in the LW band, we integrate Eq. (2)
between Vin = 2.5 x 10° Hz (11.2 eV) and vimay = 3.3 X 10" Hz
(13.6eV):

1
Jrw(Zobs) =

f dVobs J("obsa Zobs)- (4)
max ~ Vmin Jypi,
Following Ahn et al. (2009), we write the mean attenuation in the

LW band as:

fv v"?“" e T0absiZobsd) y
min
, )]

Vmax
j‘: dVobs

‘min

e_T(Z'ost) —

so that,

éw(z) e e? (6)

Divtan) = U+ £ [ |
an . dz
where € w(z) is the emissivity in the LW band. Eq. 6 is integrated
up tO Zycreen, that is the redshift above which photons emitted in the
LW band are redshifted out of the band (the so-called “dark screen”
effect).
In the top panel of Fig. 4, we show the redshift evolution of the
LW background predicted by the fiducial model (see Sec. 2.4 and
4). We find that at z ~ 18 the average LW background is already
Jo1 = 10, thus strongly reducing the star-formation in 7y, < 10*K
mini-haloes. The point shown at z = 0 is the average LW back-
ground in the Galactic ISM, and it has been computed from Eq. (2)
of Sternberg et al. (2014). The value refers to a LW central wave-
length of 1000 A, while the errorbar represents the variation in-
terval of J,; corresponding to all wavelegths in the LW band (i.e.
from 912 A to 1108 A). Although the J5; background we have ob-
tained is consistent with this data, at high-z our calculations likely
overestimate J,;. In fact, at any given redshift all LW photons are
assumed to escape from star-forming galaxies but they are retained
into the MW environment. Yet, the mean free path of LW photons
(= 10 Mpc, e.g. Haiman et al. 1997) is larger than the physical
radius of the Milky Way.

© RAS, MNRAS 000, 1-14
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Figure 3. Ionizing (left) and LW (right) photon luminosities per unit stellar
mass of Pop II stars as a function of stellar age (Bruzual & Charlot 2003).
Different colors refer to different metallicities as shown by the labels: Z/Zq
=0.005, 0.02, 0.2, 0.4, 1, 2.5 (black, blue, green, red, orange, gold).

2.3.2 Reionization

Photons with energies > 13.6 eV are responsible for hydrogen
(re)ionization. At any given redshift, we compute the ionizing pho-
ton rate density, 72;,,(z), by summing the ionizing luminosities over
all active stellar populations and dividing by the MW volume,
~ 5 Mpc?, which we estimate at the turn-around radius (see Sal-
vadori et al. 2014). The filling factor Qyy, i.e. the fraction of MW
volume which has been reionized at a given observed redshift zqps,
is computed following Barkana & Loeb (2001):

.esc Cem dt . L
Onn(Zobs) = j—o f dz ‘d_ Tlion eF Gobs:2) 7)
My Jzgns z
with
0 ¢ ’ dt ’ "3
F(zops, 2) = —ap ny dz P C@HYA+2) (8)

“obs

where f.. is the escape fraction of ionizing photons, F(Zops,Z2)
accounts for recombinations of ionized hydrogen, and nY is the
present-day hydrogen number density in the MW environment,
which is & 5 times larger than in the IGM. In Eq. 8, ajp is
the case B recombination coefficient*, and C(z) is the redshift-

4 We assume ag = 2.6 x 10713 cm?/s, which is valid for hydrogen at
T = 10* K, e.g. Maselli et al. (2003).
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Bt = (10%,10%,10*,10°) Mo (from left to right).

dependent clumping factor, which is assumed to be equal to
C(2) = 17.6010+00012) (Tliey et al. 2005).

Following Salvadori et al. (2014), we assume an escape frac-
tion for ionizing photons f.,.=0.1, which provides a reionization
history that is complete by z ~ 6.5, fully consistent with recent
data. This is illustrated in the lower panels of Fig. 4, where we
show the redshift evolution of the volume filling factor of ionized
regions and the corresponding Thomson scattering optical depth.
In addition, Salvadori et al. (2014) show that the same reionization
history appears consistent with the star-formation histories of dwarf
satellites of the MW.

2.4 Model calibration

The free parameters of the model are assumed to be the same for
all dark matter haloes of the merger trees, and they are calibrated in
order to reproduce the global properties of the MW as observed to-
day. Present-day observations are well reproduced without chang-
ing the model free parameters which are reported in Table 2 in de
Bennassuti et al. (2014).

3 OBSERVATIONS: VERY METAL-POOR STARS

During the last decades, surveys looking for very metal-poor stars,
with [Fe/H]< -2, have explored the stellar halo of our Galaxy. One
of the main outcomes of these surveys has been the determination
of the MDF, namely the number of stars as a function of their iron
abundance, [Fe/H], which is used as a metallicity tracer. Early de-
terminations of the MDF by Ryan & Norris (1991) and Carney et al.
(1996) have shown that the MDF peaks around [Fe/H] = —1.6 with
wings from [Fe/H]~ —3 to solar abundances. More recent observa-
tions by the HK survey (Beers et al. 1985) and the Hamburg/ESO
Survey (HES, e.g. Christlieb et al. 2008) have confirmed the pres-
ence of such a peak and they have lead to the identification of some
hundreds of new stars at [Fe/H]< —3 (see Fig. 5). These “extremely
metal-poor stars” are of key importance to understand the early
chemical enrichment processes. In particular, it has been shown
that the shape of the low-Fe tail of the Galactic halo MDF can shed
new light on the properties of the first stellar generations, and on
the physical processes driving the transition from massive Pop III
stars to normal Pop II stars (Tumlinson 2006; Salvadori et al. 2007;
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Figure 4. Redshift evolution of the LW flux (upper panel), the volume fill-
ing factor of ionized regions (middle panel) and the corresponding Thom-
son scattering optical depth (lower panel) predicted by the fiducial model
and obtained by averaging over 50 MW merger histories (solid lines). The
shaded areas show the 1-o- dispersion among different realizations. The
point with error bar at z = 0 represents an estimate of the specific inten-
sity of the isotropic UV radiation field in the Galactic ISM (Sternberg et al.
2014). The red-solid horizontal line shows the Planck measurement with
1-o dispersion (Planck Collaboration et al. 2015). The more recent mea-
surement (Planck Collaboration et al. 2016) is plotted as a blue-dashed hor-
izontal line with 1-o- dispersion.

Komiya et al. 2007; Salvadori et al. 2010; Tumlinson 2010; de Ben-
nassuti et al. 2014; Hartwig et al. 2015; Komiya et al. 2016).

In Fig. 5, we show the most recent determinations of the
low-Fe tail of the Galactic halo MDF as derived by various groups,
which exploited different data-sets. By normalizing the MDFs to
the same cumulative number of stars at [Fe/H] < —3 we compare
the results from: (i) the joint HK and HES medium-resolution
surveys, which provide ~ 2765 stars at [Fe/H] < -2 (Beers &
Christlieb 2005); (i) the HES survey, which collected ~ 1500
stars at [Fe/H]< -2 (e.g. Christlieb et al. 2008); the derived
MDF has been corrected by Schorck et al. (2009) to account for
observational biases and incompleteness; (iii) the high-resolution
sample by Yong et al. (2013), who collected an homogeneous

1000 f T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T B
- HK/HES (Beers & Christlieb 2005) 2

| __ HES (Schoerck et al. 2009)
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e LD

Figure 5. The Galactic halo MDFs obtained using different data-sets and
normalized to the same number of stars at [Fe/H] < —3. Histograms show
the result from: black - the medium resolution HK and HES surveys (Beers
& Christlieb 2005); magenta - the HES survey corrected for observational
biases and incompleteness (Schorck et al. 2009); cyan shaded - the homoge-
neous sample of high-resolution (HR) spectroscopic data from Yong et al.
(2013), corrected to account for incompleteness and observational errors.
The blue points show the uncorrected sample by Yong et al. (2013) to which
we added HR data for stars with [Fe/H]< —4, taken from recent literature
(see text for details and references). Errorbars represent poissonian errors.

ensemble of ~ 95 stars at [Fe/H]< —2.97 by combining data
from the literature along with program stars. Following Schorck
et al. (2009), Yong and collaborators corrected the high-resolution
MDF by using the HES completeness function. Furthermore,
they accounted for the gaussian error associated to each [Fe/H]
measurements, and derived a realistically smoothed MDF (see
their Sec. 3.2 and Fig. 5). The effects of these corrections can be
appreciated by comparing the final high-resolution (HR) MDF
in Fig. 5 (shaded area), and the points with error bars within
—4 < [Fe/H] < —3, which represent the raw data.

By inspecting Fig. 5 we can see that the MDFs obtained with
the high-resolution sample by Yong et al. (2013) and the joint HK
and HES samples by Beers & Christlieb (2005) are in excellent
agreement. Both MDFs continuosly decrease between [Fe/H] ~ -3
and [Fe/H] ~ —4 spanning roughly one order of magnitude in N,.
On the other hand, the HES sample underestimates the total num-
ber of stars at [Fe/H] < —3.7. As discussed by Yong et al. (2013),
this is likely due to the selection criteria exploited by the HES
sample, which reject stars with strong G-bands. As high-resolution
observations provide more precise [Fe/H] measurements, we use
the small HR sample by Yong and collaborators as our “reference
MDF” for -4 <[Fe/H]< -3. At lower [Fe/H], we complete
the sample by adding all the stars that have been discovered
during the years and followed-up at high-resolution (see points in
Fig. 5). Thus, the reference MDF we compare our models with
rapidly declines with decreasing [Fe/H], exhibits a sharp cut-off at
[Fe/H]= —4.2 + 0.2 and a low-Fe tail made by 9 stars that extends
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down to [Fe/H]~ —7.2 (Keller et al. 2014).

Interestingly, 8 out of the 9 Galactic halo stars identified at
[Fe/H] < —4.5 show high overabundance of carbon, [C/Fe]> 0.7
(Christlieb et al. 2002; Frebel et al. 2005; Norris et al. 2007; Keller
et al. 2014; Hansen et al. 2015; Bonifacio et al. 2015; Allende
Prieto et al. 2015; Frebel et al. 2015; Meléndez et al. 2016, see
for example Fig. 1 from Salvadori et al. 2015). Although only
5 of these CEMP stars have available measurements of slow-
and rapid-neutron capture process elements (s-/r-), which have
sub-solar values, all of them can be likely classified as “CEMP-no”
stars (e.g. see discussion in Bonifacio et al. 2015 and Norris et al.
2010). CEMP-no stars do not show s-process elements that are
produced by AGB stars (e.g. Beers & Christlieb 2005), they are
not preferentially associated to binary systems (e.g. Hansen et al.
2013), and they most likely appear at low [Fe/H] (see Fig. 6).
For these reasons, the chemical abundances measured in their
photo-spheres are believed to reflect their environment of forma-
tion, which was likely polluted by Pop III stars that developed
mixing and fallback evolving as “faint SNe” (e.g. Iwamoto et al.
2005; Marassi et al. 2014), or by rapidly rotating primordial
“spinstars”, which experienced mixing and mass-loss because of
high rotational velocities (e.g. Meynet et al. 2006; Maeder et al.
2015).

In Fig. 6 we show the fraction of CEMP-no stars in different
[Fe/H] bins, Feewpno = Neewp—no([Fe/H])/N.([Fe/H]), derived by
using the HR sample by Yong et al. (2013) along with new liter-
ature data. Following Yong et al. (2013), we select the iron bins
in order to have a roughly equal number of stars in each of them,
N, = 30. Only in the lowest bin, [Fe/H]< —4.5, the total number
of stars is limited to N, = 9. This is reflected in the larger Pois-
sonian errors. In Fig. 6 we also show the Fcgwp_no values obtained
by using the available data and CEMP-no classification by Placco
et al. (2014). These authors exploited a larger sample of high- and
medium-resolution observations. Furthermore, they corrected the
carbon measurements in Red Giant Branch (RGB) stars in order to
account for the depletion of the surface carbon-abundance, which
is expected to occur during the RGB phase. We can see that in both
samples Fcewp_no rapidly decreases with increasing [Fe/H], and that
the results are consistent within the Poissonian errors. However, as
already noticed by Frebel & Norris (2016), the estimated CEMP-no
fraction is higher in the sample by Placco et al. (2014). To be con-
sistent with our reference MDF and limit our comparison to high-
resolution data only, we will focus on the Fcgmp_n, Values derived
by using Yong et al. (2013) and new literature data. However we
should keep in mind that these are likely lower limits on the actual
CEMP-no fraction at [Fe/H] > —4.5.

4 RESULTS

In this section we present the results of our models by focusing on
the MDF and on the properties of CEMP-no stars at [Fe/H] < —3.
Since we did not model mass transfer in binary systems, we will
completely neglect CEMP-s/(rs) stars in our discussion (see also
Salvadori et al. 2015).

The comparison between simulated and observed MDFs is
shown in Fig. 7, where the theoretical MDFs have been normal-
ized to the number of observed stars at [Fe/H] < -3 (see Sec. 3). By
inspecting all the panels, from left to right, we can see how the dif-
ferent physical processes included in the models affect the shape
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Figure 6. Fraction of CEMP-no stars vs [Fe/H] obtained using different
data and [C/Fe] cuts for CEMP-no stars (see the labels). We show results
from: high-resolution sample by Yong et al. (2013) that we completed by
adding more recent literature data (points with poissonian errorbars); the
larger high/medium-resolution sample by Placco et al. (2013) (connected
colored points) that the authors corrected to account for carbon depletion
due to internal mixing processes (upper points). The shaded area quantifies
such a correction.

of the MDF, along with the predicted number of CEMP-no stars.
For each model, the figure shows how the results vary when we as-
sume Pop III stars to form with masses in the range [10 — 140] M,
(top panels), where only faint SNe can contribute to metal enrich-
ment, and [10—-300] M,, (bottom panels), where both faint SNe and
PISNe can produce and release heavy elements.

Panels (a, €) show the results for models with “sterile” mini-
haloes, i.e. assuming that systems with 7;, < 10* K are not able to
form stars. As discussed in de Bennassuti et al. (2014), we see that
both the low-Fe tail of the MDF, at [Fe/H] < -5, and the number of
CEMP-no stars, can only be reproduced when the Pop III stars have
masses Mpopir = [10 — 140] M, (panel a). This is because CEMP-
no stars form in environments enriched by the chemical products
of primordial faint SN, which produce large amount of C and very
low Fe. These key chemical signatures are completely washed out
if PISNe pollute the same environments (panel e), because of the
large amount of Fe and other heavy elements that these massive
stars produce (= 50% of their masses). Panel (a) also shows that,
although the overall trend is well reproduced, the model predicts an
excess of C-normal stars at [Fe/H] < —4, and it underestimates the
observations at [Fe/H] < —6. In other words, the slope of the total
MDF (blue+purple histograms) is predicted to be roughly constant,
at odds with observations (see also Sec. 3 and the discussion in de
Bennassuti et al. 2014).

The results change when mini-haloes are assumed to be “fer-
tile” (panels b, f) and their star formation efficiency is assumed to
be simply regulated by their virial temperature (see Sec. 2.1). Panel
(b) shows that the overall MDF has a different shape with respect
to panel (a): it rapidly declines around [Fe/H] ~ —4.5 and shows
a low-Fe tail that extends down to [Fe/H]~ —8 and that is made
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Figure 7. Comparison between observed (points with poissonian errorbars) and simulated (histograms with shaded areas) Galactic halo MDFs, where we
differentiate the contribution of C-enhanced (purple histograms/points) and C-normal (blue histograms/points) stars. Pop III stars are assumed to form either
in the range [10-140] Mg (fop panels) or [10-300] My (bottom panels, see also labels). From left to right we show the results for models with: sterile mini-
haloes (panels a-e); fertile mini-haloes with a temperature-regulated star-formation efficiency (panels b-f); fertile mini-haloes with a temperature-regulated
star-formation efficiency and a stochastically sampled Pop III IMF (panels c-g); fertile mini-haloes with a star-formation efficiency regulated by radiative

feedback and a stochastically sampled Pop III IMF (panels d-h).

by CEMP-no stars only. Such a discontinuous shape, which is con-
sistent with observations, reflects the different environment of for-
mation of CEMP-no and C-normal stars (see also the discussion
in Salvadori et al. 2016). CEMP-no stars are formed in low-mass
mini-haloes at a very low and almost constant rate (e.g. Salvadori
et al. 2015). C-normal stars, instead, predominantly form in more
massive systems, which more efficiently convert gas into stars, pro-
ducing the rapid rise of the MDF at [Fe/H] > -5.

The comparison between panel (b) and (c) shows that when
Mpopir = [10 — 140] M, the MDF does not depend on the incom-
plete sampling of the Pop III IMF (see Sec. 2.2). However, the pic-
ture changes when mpopm = [10 — 300] M, (panel g). Because of
the poor sampling of the Pop III IMF in mini-haloes, the forma-
tion of stars in the faint SN progenitor mass range is strongly fa-
vored with respect to more massive PISN progenitors (Fig. 2). As a
consequence, the chemical signature of primordial faint SNe is re-
tained in most mini-haloes, where CEMP-no stars at [Fe/H] < —4
preferentially form. Furthermore, because of the reduced number
of Pop III haloes imprinted by primordial faint SN only, the ampli-
tude of the low-Fe tail is lower than in panel (c), and thus in better
agreement with observations.

Panels (d, h) show the results obtained by self-consistently
computing the star-formation efficiency in mini-haloes (Sec. 2.1).
While there are no major changes with respect to panels (c, g), three
important differences can be noticed: (i) the number of C-normal
stars shows a larger scatter than previously found, (ii) their excess
with respect to the data is partially reduced, and (iii) the number of
CEMP-no star with [Fe/H] > —4 is larger, and thus in better agree-

ment with available data. These are consequences of the modula-
tion of mini-haloes star-formation efficiency, which declines with
cosmic time as a consequence of the decreasing mean gas den-
sity and of the increasing radiative feedback effects by the growing
LW background (Fig. 1). This delays metal-enrichment, preserving
the C-rich signatures of faint-SNe in the smallest Lyman-a cool-
ing haloes, where CEMP-no stars with [Fe/H] > —4 can form with
higher efficiency.

When we assume mpopm = [10 — 300] M, we obtain a bet-
ter agreement with the data at [Fe/H]> —4, i.e. where the statis-
tics of observed stars is higher. However at lower metallicities,
-5 <[Fe/H] < —4, we can see that both models over-predict the
total number of stars with respect to current data. But how sig-
nificant is the number of observed stars at these [Fe/H]? In the
top panel of Fig. 8 we plot the result of our fiducial model for
Mpopm = [10 — 300] Mo, also including the fotal MDF and the in-
trinsic errors induced by observations (grey shaded area). These
errors are evaluated by using a Monte Carlo technique that ran-
domly selects from the theoretical MDF a number of stars equal
to the observed one (see Sec. 5 of Salvadori et al. 2015). The re-
sults, which represent the average value +1 — o~ errors among 1000
Monte Carlo samplings, allow us to quantify the errors induced by
the limited statistics of the observed stellar sample. We can see that
at [Fe/H]< —4 these errors are larger than the spread induced by
different realizations, implying that the statistics should increase
before drawing any definitive conclusions (see also Sec. 5 for a dis-
cussion). We can then have a look to other observables.
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4.1 CEMP and carbon-normal stars

In the middle panel of Fig. 8 we compare our model results with the
available measurements of the [C/Fe] ratio for Galactic halo stars at
different [Fe/H]. Our findings show a decreasing [C/Fe] value for
increasing [Fe/H], in good agreement with observations. Accord-
ing to our results, stars at [Fe/H]< —5 formed in mini-haloes pol-
luted by primordial faint SNe (see also Fig. 9). When these stars
explode, they release large amounts of C and very small of Fe,
i.e. [C/Fel; > 4, thus self-enriching the ISM up to total metal-
licities Z > 107*Z,. The subsequent stellar generations formed in
these mini-haloes are thus “normal” Pop II stars. Their associated
core-collapse SNe further enrich the ISM with both Fe and C, i.e.
[C/Fele; =~ 0, thus producing a gradual decrease of [C/Fe] at in-
creasing [Fe/H]. Such a trend is reflected in the chemical proper-
ties of long-lived CEMP-no stars that formed in these environments
(see middle panel of Fig. 8).

When and where do the most metal-poor C-normal stars
form? We find that at [Fe/H] < —4.5, C-normal stars can only
form in halos with a dust-to-gas ratio above the critical value, and
that have accreted their metals and dust from the surrounding
MW environment. When this occurs, normal Pop II SNe in self-
enriched haloes have already become the major contributors to
the metal enrichment of the external MW environment, leading to
[C/Fe] < 0.7 (see also the middle panel of Fig. 7 in de Bennassuti
et al. 2014). As star-formation proceeds in these Pop II haloes,
more core-collapse SNe contribute to self-enrichment of these
environments, thus further increasing [Fe/H] with an almost
constant [C/Fe]. This creates the horizontal branch shown in the
middle panel of Fig. 8 within [Fe/H]~ [-5,—3]. In this region of
the plot, we note that the model predicts a larger concentration of
C-normal stars than currently observed.

In the bottom panel of Fig. 8 we compare the expected fre-
quency of CEMP-no stars at different [Fe/H] with the available
data (see Sec. 3). We can see that our models over-estimate the
contribution of C-normal stars at [Fe/H]< —4. Interestingly, a bet-
ter agreement is obtained when the mass of Pop III stars is lim-
ited to the range myopm = [10 — 140] M, since more faint SNe
are produced. The number of stars observed at [Fe/H]< —4 is lim-
ited to &~ 10 (see Sec. 3). Furthermore, such a discrepancy be-
tween model and data might also be connected to some underly-
ing physical processes that cannot be captured by the model, as we
will extensively discuss in Sec. 5. In conclusion, Pop III stars with
masses Mpopm = [10 — 300] My, are favored by our analysis. Such
a model better matches the overall shape of the MDF of CEMP-no
and C-normal stars, and it is also in better agreement with data at
[Fe/H]> —4 (compare panels d and h of Fig. 7). Only at these high
[Fe/H] the intrinsic observational errors are lower than the disper-
sion induced by different merger histories (see top panel of Fig. 8),
making the difference between model and data statistically signifi-
cant.

4.2 Predictions for second-generation stars

Our analysis of the Galactic halo MDF and properties of CEMP-no
vs C-normal stars supports the most recent findings of numerical
simulations for the formation of the first stars, which indicate that
Pop III stars likely had masses in the range mpopm = [10—300] M.
We make one step further, and we quantify the expected number
and typical [Fe/H] values of second-generation (2G) stars, i.e. stars
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Figure 8. Top: same as panel (h) in Fig. 7, but with the inclusion of the to-
tal MDF and errors induced by the observations, which have been obtained
using a Monte Carlo selection procedure (see text). Middle: stellar [C/Fe]
vs [Fe/H] measured in Galactic halo stars (black squares, see Fig. 1 of Sal-
vadori et al. 2015) and obtained in 50 realizations of our fiducial model for
mpopint = [10-300] M (grey dots). The red triangle at [Fe/H]~-5 shows the
upper limit for the only C-normal metal-poor star observed at [Fe/H]<-4.5
so far (Caffau et al. 2011). The line shows the value of [C/Fe]= 0.7, which
discriminates between CEMP-no and C-normal stars. Botfom: comparison
between the observed fraction of CEMP-no stars (points with Poissonian
errorbars as explained in Sec. 3) and the fraction predicted by our fiducial
models for different Pop III mass ranges (see labels).

that formed in gaseous environments that were predominantly pol-
luted by Pop III stars (Salvadori et al. 2007).

In Fig. 9 we show the predictions for our fiducial model with
Mpopir = [10 — 300] M. The figure illustrates the total distribu-
tion of 2G stars formed in environments in which Pop III stars pro-
vided > 50% of the total amount of metals (green). Furthermore, it
shows the individual distributions for 2G stars imprinted by faint
SNe (red) and PISNe (orange). It is clear that the total number
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Figure 9. Simulated average MDF for all stars (black histogram) and for
2G stars (dashed green histogram), selecting them as stars formed in envi-
ronments where metals come mostly (> 50%) from Pop III stars. The red
(orange) histogram represents 2G stars with a dominant (> 50%) metal con-
tribution from Pop III faint SNe (PISNe).

of 2G stars represents an extremely small fraction of the Galac-
tic halo population, in full agreement with previous studies (Sal-
vadori et al. 2007; Karlsson et al. 2008). Furthermore, we can see
that the distributions of 2G stars polluted by faint SNe and PISNe
are extremely different. Because of the low amount of Fe released
by faint SNe, 2G stars enriched by this stellar population predomi-
nantly appear at [Fe/H]< —3. Interestingly, we find that their distri-
bution essentially matches that of CEMP-no stars (see Fig. 8), rep-
resenting ~ 100% of the observed stellar population at [Fe/H]< —5.
In other words, our model predicts that all CEMP-no stars in this
[Fe/H] range have been partially imprinted by Pop IlI faint SNe.
On the contrary, we see that the distribution of 2G stars polluted
by PISNe is shifted towards higher [Fe/H] values. This is because
massive PISNe produce larger amount of iron than faint SNe, thus
self-enriching their birth environments up to [Fe/H]> —4. Unfor-
tunately, at these [Fe/H] the Galactic halo population is dominated
by stars formed in environments mostly polluted by normal Pop II
SNe (see Sec. 4.1). This makes the detection of 2G stars imprinted
by PISNe very challenging.

In the upper (lower) panel of Fig. 10 we quantify the cumu-
lative (differential) fraction of 2G stars imprinted by PISNe with
respect to the overall stellar population as a function of [Fe/H].
In both panels we identify 2G stars that formed in environments
where 50%, 80%, and 99% of the metals were coming from
PISNe. We can clearly see that 2G stars always represent < 3% of
the total stellar population. Furthermore, the cumulative fraction of
2G stars polluted by PISN at 50% (80%) level, strongly decreases
with increasing [Fe/H]: around [Fe/H]= -2, in particular, these 2G
stars are predicted to represent 0.25% (0.1%) of the total stellar
population, which is fully consistent with current observations
(see point in Fig. 10). Indeed, among the ~ 500 Galactic halo
stars analyzed so far at [Fe/H]< -2, there is only one candidate
at [Fe/H]~ —2.4 that might have been imprinted by a PISN (Aoki
et al. 2014). This rare Galactic halo star shows several peculiar
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Figure 10. Cumulative (top) and differential (bottom) fraction (%) of 2G
stars imprinted by PISNe with respect to the total number of stars in dif-
ferent [Fe/H] bins. The colors show the percentage of 2G stars formed in
environments where metals from PISNe correspond to at least 50% (solid
orange), 80% (dashed red) and 99% (dotted blue) of the total. The yellow
shaded area is the 1-o dispersion for the 50% case. The data point is from
Aoki et al. (2014), who possibly detected the chemical imprint of PISNe
(upper limit) in 1 out of 500 stars at [Fe/H]< 2.

chemical elements in its photo-sphere, which might reflect an
ISM of formation enriched by both massive PISNe and normal
core-collapse SNe (Aoki et al. 2014). In Fig. 10 we can see that 2G
stars imprinted by the chemical products of PISNe only, represent
< 0.1% of the total Galactic halo population (top), and they are
predicted to be more frequent at —3 <[Fe/H]< -2 (bottom).

4.3 Varying the Pop III IMF

We can finally analyze the dependence of our findings on the slope
and mass range of the Pop III IMF. These results are shown in
Fig. 11, where we compare our reference model (left), with two
alternative choices of the Pop III IMF, inspired by numerical simu-
lations: a flat IMF with myepm = [10 — 300] M, (e.g. Hirano et al.
2014), and a Larson IMF with mpem = [0.1 — 300] M, and a char-
acteristic mass mg, = 0.35 M, (e.g. Stacy et al. 2016).

The low-Fe tail of the MDF, and thus the number and distribu-
tion of CEMP-no stars, strongly depends on the Pop III IMF. When
a flat IMF is considered (middle panel of Fig. 11), less CEMP-no
stars are produced with respect to the reference case (left panel),
both at low and at high [Fe/H]. This is due to the smaller fraction
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of faint SNe with respect to the total mass of Pop III stars formed.
This is equal to =~ 1.5% for a flat IMF, and = 70% for a Larson IMF,
where these numbers have been obtained by integrating the normal-
ized IMFs in the mass range [8 — 40] M. Such a large difference is
partially mitigated by the incomplete sampling of the Pop III IMF
in inefficient star-forming mini-haloes (see Sec. 2.2). Still, the dif-
ferent IMF slope decreases substantially the number of CEMP-no
stars, making the flat IMF model partially inconsistent with current
data-sets.

On the other hand, when the Pop III IMF is extended down to
lower masses, mpopnr = [0.1 — 300] Mo, the number of CEMP stars
increases with respect to the reference model (right vs left panels
of Fig 11). However, if we make the same calculation as before, we
find faint SNe to represent ~ 1% of the total Pop III stellar mass,
substantially less than in our reference model. The larger number
of CEMP stars at low [Fe/H] must then have a different origin.

According to our predictions & 30% of CEMP stars with
[Fe/H] < =5 form out of gas that has been polluted by the winds
of Pop III Asymptotic Giant Branch (AGB) stars, with mpepm =
[2 — 8] M,,. Thus, these CEMP stars should also retain the peculiar
chemical signature of Z = 0 AGB stars, such as the slow-neutron
capture elements (e.g. Goriely & Siess 2001, 2004). In other words,
we predict ~ 30% of them to be CEMP-s stars rather than CEMP-
no stars. This seems to be in contrast with current observational
findings for CEMP stars at [Fe/H]< -3 (e.g. Norris et al. 2010;
Bonifacio et al. 2015), although a larger statistics is required to rule
out this Pop IIT IMF model.

Furthermore the model predicts the existence of metal-free
stars, as long as stars with Z < 107> Z,, that should respectively
correspond to & 0.15% and =~ 0.3% of the total number of stars
at [Fe/H]< —3. As already discussed and quantified by several au-
thors (Tumlinson 2006; Salvadori et al. 2007; Hartwig et al. 2015),
this result might be in contrast with the current non-detection of
metal-free stars. Yet, given the total number of stars collected at
[Fe/H]< -3, which is = 200, the fraction of zero-metallicity stars
should be < 1/200 = 0.5%, which is still consistent with our find-
ings.

5 SUMMARY AND DISCUSSION

In this paper, we investigate the role that Pop III star-forming mini-
haloes play in shaping the properties of the Metallicity Distribu-
tion Function (MDF) of Galactic halo stars and the relative fraction
of CEMP-no and C-normal stars observed at [Fe/H]< —3. To this
end, we use the merger tree code GAMETE (Salvadori et al. 2007,
2008), which we further implement with respect to recent studies
for Galactic halo stars (de Bennassuti et al. 2014) to resolve H,-
cooling mini-haloes with T;, < 10* K, which are predicted to host
the first, Pop III stars (e.g. Abel et al. 2002; Hirano et al. 2014).
Following de Bennassuti et al. (2014), we initially assumed Pop III
stars to have masses in the range [10 — 300] M, and to be dis-
tributed according to a Larson IMF (Fig. 2). We subsequently ex-
plored the dependence of our results on different IMF slope and
Pop III mass range. In all cases, we assumed that Pop III stars with
masses Mpopm = [10 —40] M, evolved as faint SNe that experience
mixing and fallback (e.g. Umeda & Nomoto 2003; Iwamoto et al.
2005; Marassi et al. 2014, 2015).

To accurately model the formation of Pop III stars, we
introduce a new random IMF selection procedure, which allows us
to account for the incomplete sampling of the Pop III IMF in inef-
ficiently star-forming mini-haloes. To compute the star-formation
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efficiency of these low-mass systems, we exploit the results of
numerical simulations by Valiante et al. (2016), who evaluate the
cooling properties of H,-cooling mini-haloes as a function of: (i)
virial temperature, (ii) formation redshift, (iif) metallicity, and (iv)
Lyman Werner (LW) background. To this end, we self-consistently
compute the LW and ionizing photon fluxes produced by Milky
Way (MW) progenitors, along with the reionization history of
the MW environment, which is consistent with recent theoretical
findings (Salvadori et al. 2014) and new observational data (Planck
Collaboration et al. 2015, 2016).

The main results of our work, and their implications for theo-
retical and observational studies, can be summarized as follows:

o the shape of the low-Fe tail of the Galactic halo MDF is cor-
rectly reproduced only by accounting for star-formation in mini-
haloes, which confirms their key role in the early phases of galaxy
formation.

e We demonstrate that it is fundamental to account for the poor
sampling of the Pop III IMF in mini-haloes, where inefficient
Pop III starbursts, with < 107> M, yr™!, naturally limit the forma-
tion of > 100 M, stars and hence change the “effective” Pop III
IMF.

e CEMP-no stars observed at [Fe/H]< —3 are found to be im-
printed by the chemical products of primordial faint SNe, which
provide > 50% of the heavy elements polluting their birth environ-
ment, making them “second-generation” stars.

e Second-generation stars imprinted by PISNe, instead, emerge
at —4 < [Fe/H]< —1, where they only represent a few % of the total
halo population, which makes their detection very challenging.

o At [Fe/H]~ -2, only 0.25% (0.1%) of Galactic halo stars are
expected to be imprinted by PISNe at > 50% (> 80%) level, in
good agreement with current observations.

o The low-Fe tail of the Galactic halo MDF and the properties of
CEMP-no stars strongly depends on the IMF shape and mass range
of Pop III stars.

A direct implication of our study is that the Galactic halo MDF
is a key observational tool not only to constrain metal-enrichment
models of MW-like galaxies and the properties of the first stars
(Tumlinson 2006; Salvadori et al. 2007), but also the star-formation
efficiency of mini-haloes. These observations, therefore, can be
used to complement data-constrained studies of ultra-faint dwarf
galaxies aimed at understanding the properties of the first star-
forming systems (e.g. Salvadori & Ferrara 2009; Bovill & Ricotti
2009; Bland-Hawthorn et al. 2015; Salvadori et al. 2015).

A key prediction of our model concerns the properties and
frequency of second-generation (2G) stars formed in gaseous en-
vironments imprinted by > 50% of heavy elements from PISNe.
In agreement with previous studies (Salvadori et al. 2007; Karls-
son et al. 2008), we find that these 2G stars are extremely rare, and
we show that their MDF peaks around [Fe/H]= —1.5 (Fig. 9). In
particular, 2G stars imprinted by PISNe only (> 99% level) are pre-
dicted to be more frequent at —3 <[Fe/H]< -2, where they repre-
sent ~ 0.1% of the total. In the same [Fe/H] range, 2G stars polluted
by PISNe at > 50% (> 80%) level, constitute ~ 0.4% (= 0.2%)
of the stellar population. These numbers are consistent with the
unique detection of a rare halo star at [Fe/H]~ —2.5 that has been
possibly imprinted also by the chemical products of PISNe (Aoki
et al. 2014).

On the other hand, we show that C-enhanced stars at [Fe/H]
< =5 are all truly second generation stars. Hence, the number and
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Figure 11. Comparison between the observed and simulated Galactic halo MDFs (see Fig. 7) obtained by using different IMF for Pop III stars: a Larson
IMF with m,0p117=[10-300]M and me, = 20M¢, (left), a Flat IMF with m,p17=[10-300)]Me (middle), and a Larson IMF with m,,,777=[0.1-300] M and

meh = 0.35M¢ (right).

properties of these CEMP stars can provide key indications on the
Pop III IMF.

Given the current statistics, we show that a flat Pop III IMF
with mpopm = [10-300] M, is disfavoured by the observations. Fur-
thermore, by assuming a Larson IMF with mp,em = [0.1 = 300] M,
and mg, = 0.35 M, we find that ~ 30% of CEMP stars at [Fe/H]<
—5 are imprinted by zero metallicity AGB stars. Thus, they have
to show the typical enhancement in s-process elements. This pro-
vides a precise prediction for the existence of Pop III stars with
Mpopiit < 10M, that can be tested by increasing the statistics of
CEMP stars with available s-process measurements at [Fe/H]< —5
(e.g. Bonifacio et al. 2015).

As a final point, we recall that, with our fiducial model, we
find a larger number of C-normal stars with -5 <[Fe/H]< —4
than observed. As a consequence, in this [Fe/H] range the fraction
of CEMP-to-C-normal stars is also lower than observed, although
consistent with the data at 1 — o level (Fig. 8). Several solutions for
this small discrepancy do exist:

(i) the global contribution of Pop III stars to metal-enrichment
might have been underestimated in the model, which do not ac-
count for the inhomogeneous mixing of metals into the MW en-
vironment. Including this physical effect would natural delay the
disappearance of Pop III stars (Salvadori et al. 2014);

(ii) a fraction of Pop II stars with mp,pn = [10 —40] M may evolve
as faint SNe rather than normal core-collapse SNe, thus further con-
tributing to enrich the gaseous environments with C, and reducing
the formation of C-normal stars (de Bennassuti et al. 2014);

(iii) another solution concerns chemical feedback. If we exclude
the Caffau’s star, the low-Fe tail of C-normal stars is consistent
with Z., ~ 107 Z,, which means that these low-mass relics form
thanks to dust but in environments that might correspond to higher
Dy, (or lower fyep) than we assumed here, where Z; = D/ fuep and
D., can be expressed as (Schneider et al. 2012b):

ny
10'2¢m—3

o T T 112
= 126-631x10° || | |

Do =1 13107 | T ©

Here we have assumed the total grain cross section per unit mass

of dust to vary in the range 2.22 < §/10°cm?/gr < 5.37, and a gas

density and temperature where dust cooling starts to be effective

equal to ny = 10" cm™ and T = 10® K . Since S could vary in a

broader interval depending on the properties of the SN progenitor,
this might lead to a larger variation of the value of D,,;

(iv) since C-normal stars at —5 < [Fe/H] < —4 predominantly form
in MW progenitors which have D > D, and have accreted their
heavy elements from the MW environment (as opposed to haloes
that have been self-enriched by previous stellar generations), we
might have overestimated the D of accreted material. In fact, no
destruction is assumed to take place in SN-driven outflows, when
the grains are mixed in the external medium, or during the phase
of accretion onto newly formed halos. Indeed, the null detection
of C-normal stars with [Fe/H] < —4.5, beside the Caffau’s star and
despite extensive searches, might be an indication that, at any given
Z, haloes accreting their heavy elements from the MW environment
might be less dusty than self-enriched halos;

(iv) a final possibility pertains the effect of inhomogeneous ra-
diative feedback, which might reduce (enhance) the formation of
C-normal (C-enhanced) stars in mini-haloes locally exposed to a
strong (low) LW/ionizing radiation. These effects are expected to
be particularly important at high-z, i.e. before the formation of a
global uniform background (Graziani et al. 2015).

Although all these solutions are plausible, we should not forget that
our comparison is actually based on 10 stars at [Fe/H]< —4, which
makes the intrinsic observational errors larger than those induced
by different merger histories of the MW (Fig. 8, upper panel). This
underlines the quest for more data to better understand the intricate
network of physical processes driving early galaxy formation.
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