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Abstract: Perturbatively around flat space, the scattering amplitudes of gravity are re-

lated to those of Yang-Mills by colour-kinematic duality, under which gravitational ampli-

tudes are obtained as the ‘double copy’ of the corresponding gauge theory amplitudes. We

consider the question of how to extend this relationship to curved scattering backgrounds,

focusing on certain ‘sandwich’ plane waves. We calculate the 3-point amplitudes on these

backgrounds and find that a notion of double copy remains in the presence of background

curvature: graviton amplitudes on a gravitational plane wave are the double copy of gluon

amplitudes on a gauge field plane wave. This is non-trivial in that it requires a non-local

replacement rule for the background fields and the momenta and polarization vectors of the

fields scattering on the backgrounds. It must also account for new ‘tail’ terms arising from

scattering off the background. These encode a memory effect in the scattering amplitudes,

which naturally double copies as well.
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1 Introduction

String theory methods have had a remarkable impact on the calculation of field theory

scattering amplitudes. In particular, in string theory, gravitational amplitudes are naturally

related to the square of those for Yang-Mills. This leads to corresponding statements in

field theory that are now well established at tree-level in the form of the KLT relations [1].
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These relations have been extended to a notion of colour-kinematic duality or more simply

double copy, in which gravity amplitudes can be obtained from Yang Mills by replacing the

colour structures for Yang-Mills with their associated kinematic numerators in a specific

class of representations [2–4]. In this form, the double copy has been applied at increasingly

high loop order, where it is instrumental in rendering the calculations feasible (e.g., [5–

9]). These computations have demonstrated the inadequacy of standard techniques for

determining the onset of UV divergences in supergravity [10–12], and have even fueled

speculations that four-dimensional N = 8 supergravity could be perturbatively ultraviolet

finite [13, 14].

The double copy is a precise conjecture about how, in a specific class of representations,

momentum space formulae for gravity scattering amplitudes are related to those of gauge

theory. Suppose there exist representations for which the kinematic numerators of a gauge

theory scattering amplitude (expressed as a sum over cubic Feynman graphs) obey the same

Jacobi-like relations as the colour factors of the amplitude. If such a set of numerators can

be found, then the corresponding gravity amplitude is given by simply replacing the colour

factors in the gauge theory amplitude by another copy of the kinematic factors in this

gauge. At tree-level, the double copy conjecture has been proven in a number of different

ways [15–19], and is equivalent to the KLT relations [1] between open and closed string

amplitudes in the low-energy limit. While there is currently no general proof at higher

loop orders in perturbation theory, a growing body of evidence suggests that the double

copy also holds at loop level, at the time of writing to 5 loops. The success of the double

copy prescription has led to an oft-repeated slogan in the amplitudes community: Gravity

= (Gauge Theory)2.

Yet, despite this array of evidence, the geometric and fully non-linear origins of the

double copy remain mysterious. Most clear proofs thus far are expressed in momentum

space for perturbations around a flat background. A body of recent work has explored how

to manifest the double copy at the level of classical non-linear solutions in gauge theory

and gravity [20–29]. However, these studies have been restricted to algebraically special

solutions (in particular those of Kerr-Schild type), and do not probe dynamics in the same

way as scattering amplitudes.

In this paper, we address the question as to whether the double copy relationship

between gauge theory and gravity holds for perturbation theory on curved backgrounds. To

do this, we consider the simplest curved backgrounds for which there is a well-defined notion

of S-matrix: sandwich plane waves [30]. These are metric or gauge field backgrounds which

are flat in the asymptotic past and future in generic directions but contain a compactly

supported region of curvature. This curvature can be thought of as a burst of unidirectional

radiation (gravitational or electromagnetic) which is turned on and then switched off at

some finite retarded times. The possibility of scattering on a plane wave background may

seem controversial in light of the fact that such space-times are not in general globally

hyperbolic [31]. Nevertheless, we will see that the evolution of massless fields is unitary

without leakage, so the S-matrix does indeed make sense.

The relationship Gravity =(Yang Mills)2 is already nicely manifest in the underlying

gravitational and electromagnetic plane waves, written in Brinkmann coordinates. With
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coordinates Xµ = (u, v, xa), a = 1, . . . , d − 2, the Brinkmann form of the metric is Kerr-

Schild, given by

ds2 = ds2
flat −Hab(u)xa xb du2 , where ds2

flat = 2du dv − δab dxadxb ,

whereas the corresponding electromagnetic potential is

A = F (u)a x
adu ,

so that the metric perturbation from flat space is naturally a sum of terms of the form

A � A. Here Hab(u) and Fa(u) are curvatures and are freely prescribable functions of u

subject to Hab being trace-free for the Einstein equations to be satisfied (this restriction

disappears if a dilaton is allowed).1 For a sandwich wave, Hab and Fa are supported in

some interval u ∈ [u1, u2] so that space-time and connection are flat for u → ±∞. For

both types of plane wave we will see that it is possible to find complete sets of polarization

states for in and out momentum eigenstates for linear massless fields of integral spins.

The flat ‘in’ and ‘out’ regions of sandwich plane waves allow us to define the S-matrix.

We focus on the special case of 3-point amplitudes; in flat space, this is where the slogan

Gravity = (Gauge Theory)2 of the double copy is literally [1]:

Mflat
3 =

(
Aflat

3

)2
,

where Mflat
3 and Aflat

3 are the 3-point gravity and gauge-theory amplitudes in Minkowski

space, stripped of overall momentum conserving delta functions and coupling constants.

Hence, we expect that if there is a notion of double copy which holds in curved backgrounds,

it should be most easily found at the level of 3-point amplitudes for which propagators are

not yet required.

We consider such 3-point amplitudes for scalars, gauge theory and gravity on a gravi-

tational plane wave background, and for charged scalars and gauge theory on a Yang-Mills

plane wave background in any number of space-time dimensions. In each case, the compu-

tation reduces to an integral which depends on the background field; it turns out that the

integrand2 of the resulting expression carries sufficient information to determine if there is

a double copy.

We find that the 3-point amplitudes for gluons on a plane wave gauge background and

for gravitons on plane wave space-times have two parts written symbolically as

Apw
3 = F + C , Mpw

3 = F2 − C .
1Note that this classical double copy differs from that for the more general Kerr-Schild pp-waves consid-

ered in [21]. There, if the Maxwell field is φkµ, the metric is ds2
flat +φkµkν where kµ is a null vector and φ a

solution to the transverse wave equation. Such solutions can often be considered to be longitudinal with φ

playing the role of a Coulomb-like source term that is analogous to a propagator and therefore not squared.

We consider plane waves with a radiative Maxwell term, so the whole Maxwell field must be squared to

obtain a gravitational field.
2This ‘tree-level integrand’ is the equivalent of ‘stripping off momentum conserving delta functions’ in

the flat space amplitudes.
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Here, F is precisely the flat space-time integrand for three gluon scattering, whereas F
is the 3-gluon integrand on the gravitational plane wave background. Thus, there is a

correction term between the square of the gluon 3-point amplitude and the graviton 3-

point amplitude on a plane wave metric. The flat space F can be mapped to F after some

replacements of momenta and polarization vectors by their curved (and non-constant)

counterparts. These replacements are non-local on space-time and are fixed by finding

solutions to the Hamilton-Jacobi equations that allow one to bring momentum eigenstates

into the interior of space-time from future or past infinity in the curved case. That it is

non-local on a curved space-time is not a surprise as the double copy is only expressed

locally on momentum space.

The correction terms C and C arise from the ‘tails’ formed by the linearized free

fields backscattering off the background. Scalar waves propagate cleanly on a plane wave

background subject to Huygens’ principle [32], but spin one and spin two do not [33].

The tails of momentum eigenstates in the past pick up terms encoding the ‘memory’ of

the field through which they have passed (i.e., the integral of the field strength in the

electromagnetic case). Remarkably, we find that C2 → C with an extension of the same

replacements used to relate F and F .

Define Ã3 = F − C to be the gluon 3-point integrand on a gauge background with

flipped sign (or colour charge) for the background gauge field, and let ρ to be the replace-

ment maps from flat to curved kinematics and gauge to gravitational background fields.

Then our double copy can be written as

M3 = ρ(A3Ã3).

This is strong evidence that a notion of double copy persists more generally in the presence

of background curvature.

Our formulae therefore also allow a study of the memory effect for plane waves on the

amplitude. The key ingredient in the integrand is a vielbein whose non-trivial change from

past to future exemplifies the memory effect [34–36], which has been studied in detail for

sandwich plane waves (e.g., [37, 38]). For a charged field on a gauge background, it gives a

momentum shift from past to future infinity proportional to the integral of the field. On a

gravitational background, the linear planes that are wave fronts of a standard momentum

eigenstate in the past become diverging quartic surfaces, Dupin cyclides, in the future [32].

This memory effect will also give rise to new infrared divergences that have been studied

in the case of a charged field on an electromagnetic plane wave background [39, 40].

We review the non-linear plane wave backgrounds for both gravity and gauge theory

in Section 2. Free fields on these backgrounds are constructed in Section 3, where we

also confirm that (for scalars, gauge theory and gravity) the S-matrix for these states

is well-defined in the sense that scattering is unitary and there is no particle creation.

We close this section with a brief discussion of Huygens’ principle and tails. Section 4

contains the calculation of 3-point amplitudes and integrands for scalars, gauge theory

and gravity on the gravitational plane wave background; Section 5 contains the analogous

calculations for charged scalars and Yang-Mills theory on a background plane wave gauge
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field. In Section 6, these two calculations are mapped onto each other; this map defines

the double copy for 3-point amplitudes on plane wave backgrounds. We also show how

the gauge theory 3-point functions on the two backgrounds are related by a double copy

map which acts only on the background. Section 7 concludes. In Appendix A, we provide

explicit amplitude formulae for the special case of the impulsive plane wave background.

Appendix B contains the operational definitions of tree-level amplitude and integrand used

throughout the paper.

2 Plane Wave Backgrounds

We begin with a brief review of plane wave backgrounds in both the gravitational and

gauge theoretic contexts. More thorough treatments can be found in the literature; the

focus is on those features relevant to our calculations.

2.1 Gravitational plane waves

Non-linear plane waves are among the oldest exact solutions to the field equations of general

relativity, and have many fascinating properties (c.f., [41–45]). These metrics describe

space-times composed of pure radiation of the gravitational field itself or a Maxwell field,

propagating from past to future null infinity along a given constant null direction. Our

focus will be on purely gravitational plane wave metrics, which can be interpreted as

a coherent superposition of gravitons. There are two standard coordinate systems: the

Einstein-Rosen [46] and the Brinkmann [47] coordinates.

In Einstein-Rosen coordinates, the metric is given by:

ds2 = 2 dU dV − γij(U) dyi dyj , (2.1)

where the indices i, j, . . . = 1, . . . , d − 2 and the only non-trivial metric components, γij ,

depend on U . These coordinates are useful because they manifest many of the symmetries

of the space-time which are ‘hidden’ in the other coordinates. The metric (2.1) clearly has

Killing vectors ∂
∂V , ∂

∂yi
, and the vectors

X i = yi
∂

∂V
+ F ij(U)

∂

∂yj
, F ij(U) :=

∫ U

ds γij(s) , (2.2)

are also Killing. The vectors ∂V , ∂i and X i form a Heisenberg algebra,

[
X i, X j

]
= 0 ,

[
∂

∂yi
, X j

]
= δji

∂

∂V
, (2.3)

so plane wave metrics are endowed with an abelian isometry group generated by translations

of the constant U planes as well as this (solvable) Heisenberg symmetry. We will also see

that massless field equations are most easily solved in these coordinates.

The main drawback of Einstein-Rosen coordinates is that they are essentially never

global coordinates: the metric will develop coordinate singularities due to the focusing of

the null geodesic congruence tangent to ∂U [31, 48]. Furthermore, the curvature and field
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equations are given by somewhat complicated expressions in terms of γij . For instance,

the Ricci curvature is

RUU = −γ
ij

2

(
γ̈ij +

1

2
γ̇ikγ

klγ̇lj

)
,

where ḟ = ∂Uf for any function f(U). Thus the vacuum equations impose conditions on

γij in the form of a second-order ODE.

The Brinkmann coordinates have the advantage that they are global, and the curvature

is easily identified. In the Brinkmann chart, the metric is:

ds2 = 2 dudv −H(u,x) du2 − dxa dxa , (2.4)

with indices a, b, . . . = 1, . . . , d − 2. In these coordinates, the u = const. metric is com-

pletely flat. For pp-waves H(u, x) can have general x-dependence, but for plane waves it

is constrained to be quadratic in xa:

H(u,x) = Hab(u)xa xb . (2.5)

The non-vanishing Christoffel symbols in these coordinates are:

Γauu = −Hab(u)xb , Γvua = −Hab(u)xb , Γvuu = −Ḣ(u,x)

2
, (2.6)

and the non-vanishing curvature components are

Raubu = −Ha
b (u) , (2.7)

so the vacuum equations in Brinkmann coordinates simply impose that Hab be trace-free:

Ha
a = 0.

The sandwich plane wave setup is one for which Hab(u) is compactly supported in

u [30]. Without loss of generality, we assume that Hab(u) 6= 0 only for u1 ≤ u ≤ u2 ≤ 0;

for u < u1 or u > u2, the space-time is a flat. The flat region u < u1 is referred to as the

in-region, while u > u2 is the out-region. See Figure 1 for a schematic of this setup.

Although we work mostly in Brinkmann coordinates, the relationship between the

Brinkmann and Einstein-Rosen coordinate systems will be important. It can be understood

in terms of the solutions to the equation:

ëa = Hab e
b , (2.8)

for some functions ea(u) . Setting ea(u) = ∆xa, (2.8) is the geodesic deviation equation in

Brinkmann coordinates; this follows from the fact that the connecting vectors between the

geodesics,

ea
∂

∂xa
− ėa xa

∂

∂v
,

are Killing vectors. A set of (d− 2) Killing vectors is obtained by choosing a full (d− 2)×
(d− 2) matrix of solutions to (2.8), Eai (u) (and its inverse Eia(u)), subject to

Ėa[iE|a| j] = 0 . (2.9)
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out

in

u v

Figure 1. The sandwich plane wave with xa-directions suppressed. The function Hab(u) is non-

vanishing only in the shaded region; the in- and out-regions are both flat.

The Killing vectors are then:

Di = Ea i
∂

∂xa
− Ėia xa

∂

∂v
.

The commutation relations between the Di and the X i (transformed to Brinkmann coordi-

nates) give the Heisenberg algebra which was more manifest in Einstein-Rosen coordinates.

By comparing the line elements (2.1), (2.4), the diffeomorphism linking Einstein-Rosen

and Brinkmann coordinates is identified as:

U = u , (2.10a)

V = v +
1

2
ĖiaEb i x

axb , (2.10b)

yi = Eia x
a . (2.10c)

The array Eai and its inverse will be referred to as vielbeins since they give the d − 2

orthonormal 1-forms dxa = Eai dyi in terms of the Einstein-Rosen coordinates. They obey

Ëa i = HabE
b
i , γij = Ea(iE|a| j) . (2.11)

As part of the geometry of the Einstein-Rosen waves, the hypersurfaces V = constant

are null and transverse to the geodesic shear-free null congruence ∂v that rules the u =

constant null hypersurfaces. The ∂U null congruence has a deformation tensor, measured

in Brinkmann coordinates by

σab = ĖiaEb i , (2.12)

whose trace is the expansion and trace-free part is the shear.

Note that any other choice of vielbein, say fai , is related to Eai by

fai = Eaj

(
F jk bki + cji

)
, (2.13)
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for constant matrices bij , c
i
j , and F ij(u) defined as:

F ij(u) :=

∫ u

ds γij(s) =

∫ u

dsEa (i(s)Ej)a (s) . (2.14)

In particular, given some initial value for the vielbein on the in-region of a sandwich plane

wave, (2.13) encodes how the vielbein changes after passing through the curved interior to

the out-region. For the sandwich wave, two natural initial values are given by requiring

the vielbein to become trivial in the past or future:

lim
u→±∞

Ei±a (u) = δia . (2.15)

Since solutions to (2.8) are simply linear in flat regions, we have

Ea−i (u) = ba+
i u+ ca+

i as u→ +∞ , Ea+
i (u) = ba−i u+ ca−i as u→ −∞ . (2.16)

From (2.9) and the conservation of the Wronskian between E+ and E−, it follows that

ba±[i c±j] a = 0, ba+
i = δaj δbi b

b−
j (2.17)

and we can use a rotation of the Brinkmann coordinates to make b symmetric if desired.

Note that it is essentially impossible to have E invertible for all u for non-trivial b, so

the Einstein-Rosen coordinates are generically singular. This is the inevitable consequence

of null geodesic focusing of the V = constant null hypersurfaces as emphasized by Penrose

[31]. Both Ea+
i and Ea−i will describe the same flat metric in the asymptotic regions but

with different Einstein-Rosen forms. In particular, if the deformation tensor σab vanishes

in one asymptotic region, it will generically be nontrivial in the other, albeit falling off as

1/u. This non-trivial change in σab is an example of the memory effect [34–36], which has

been studied in detail for sandwich plane waves (e.g., [37, 38]).

2.2 Gauge theory plane waves

An ‘Einstein-Rosen’ plane wave in gauge theory is a gauge potential which satisfies prop-

erties similar to a plane wave metric in Einstein-Rosen coordinates. It is often used to

model the electromagnetic fields of lasers (c.f.,[40, 49, 50]). In particular, we demand that

A – a priori taking values in the adjoint of some Lie algebra g – manifests the symmetries

generated by ∂
∂v and ∂

∂xa . The most general connection satisfying these conditions has the

form:

A = A0(u) dv + Aa(u) dxa , (2.18)

where we write the potential in the coordinates

ds2 = 2 dudv − dxa dxa , (2.19)

of Minkowski space.

We want (2.18) to be preserved under the same Heisenberg symmetry algebra (2.3)

that generated the isometries of the plane wave metrics in Einstein-Rosen coordinates.

This requires there to be a vector field

X aϕ = xa
∂

∂v
+ u

∂

∂xa
+ ϕa , (2.20)
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with ϕa a Lie algebra-valued function for which[
X aϕ , X bϕ

]
= 0 ,

[
∂

∂xa
, X bϕ

]
= δba

∂

∂v
. (2.21)

These conditions imply that ϕa = ϕa(u) and [ϕa, ϕb] = 0. Furthermore, we require that

X aϕ generates a further symmetry of the gauge connection; namely, that D = d + A is

covariantly Lie-dragged along the X aϕ . This imposes further constraints on A:

Aa = −ϕ̇a , [A0, ϕ
a] = 0 ,

[
Aa, ϕ

b
]

= δba A0 . (2.22)

For simplicity, we restrict our attention to the special case where ϕa is valued in the Cartan

subalgebra h ⊂ g. With this choice, consistency of the symmetry algebra reduces to

A0 = 0 , ϕa(u) = −
∫ u

dsAa(s) , (2.23)

and the functional form of X aϕ closely resembles that of its gravitational counterpart (2.2).

To summarize, our definition of an ‘Einstein-Rosen’ plane wave gauge field (valued in

the Cartan of the gauge group) results in a gauge potential of the form:

A = −Aa(u) dxa , (2.24)

where an overall negative sign has been included for convenience. Just as the Brinkmann

form of a plane wave metric can be obtained by the diffeomorphism (2.10) from Einstein-

Rosen form, a gauge transformation of (2.24) gives the plane wave gauge potential in

‘Brinkmann’ form. In particular, taking A→ A + d(xaAa) gives

A = xa Ȧa du . (2.25)

The fact that A is a linear polynomial in xa, rather than a quadratic function as in the

gravitational setting (2.5), is a first glimpse of the double copy. It has already been noted

that plane wave background geometries (for gauge theory and gravity) exhibit the double

copy structure [21], although the distinction between linear and quadratic functions does

not seem to have been noticed previously. Although we obtained (2.25) from the Einstein-

Rosen gauge by working in the Cartan subalgebra of the gauge group, general non-abelian

plane waves also take this functional form [51].

The field strength is

F = Ȧa dxa ∧ du . (2.26)

As for the Brinkmann metric, the gauge field (2.25) directly encodes the field strength;

(2.26) obeys the Maxwell equations, and hence the Yang-Mills equations when valued in

the Cartan subalgebra of the gauge group.

The sandwich gauge field plane wave is analogous to that for gravity; the field strength

Fa = Ȧa(u) is taken to be compactly supported for u1 ≤ u ≤ u2 ≤ 0, so that it is flat in the

in-region (u < u1) and out-region (u > u2). The memory effect here is associated with the

fact that if A is taken to vanish in the past, it will be constant and non-zero in the future

Aa|out − Aa|in =

∫ u2

u1

Fa du , (2.27)
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By analogy with the gravitational case, (2.27) can be viewed as encoding the electromag-

netic memory effect [52] for plane wave gauge theory backgrounds.

3 Free Fields on Plane Wave Backgrounds and Inner Products

Amplitudes in flat space are functionals of free fields and are usually expressed as functions

of momenta after being evaluated on momentum eigenstates. In curved space, such solu-

tions are not so obviously available and it is here that we must use the special structure of

plane waves. Friedlander showed that Huygens’ principle remains valid for the scalar wave

equation in plane wave space-times: there exist solutions with delta-function support on

null hypersurfaces through every null direction [32]. These null hypersurfaces are level sur-

faces of solutions to the Hamilton-Jacobi equation, which provide curved space analogues

of the function k ·X for null vectors k in Minkowski space.

Such functions provide analogues of momentum eigenstates, and also lead to integral

formulae for general solutions to the wave equation [53]. Generalizing [33], we can raise the

spin to obtain free fields of spin one and two with arbitrary polarizations, but Huygens’

principle no longer holds and tails appear. Furthermore, a consequence of the memory

effect will be that, unlike flat space-time, a momentum eigenstate in the past will not

evolve into one in the future. Nevertheless, we can show that, despite the lack of global

hyperbolicity of plane waves [31], the scattering problem is well-defined on a plane wave

background, featuring unitary evolution without leakage or particle creation.

3.1 Scalar wave equation

The plane progressing waves of Friedlander are obtained from solutions to the Hamilton-

Jacobi equation for null geodesics

gµν(∂µφ)(∂νφ) = 0 ,

such that arbitrary functions of φ satisfy the wave equation (when multiplied by a fixed

pre-factor). Solutions are most easily obtained in Einstein-Rosen coordinates where they

can be separated using the explicit symmetries leading to

φk = k0 v + ki y
i +

kikjF
ij(U)

2 k0
,

where (k0, ki) are constants and F ij =
∫
γij(s)ds as in (2.14). The wave equation in

Einstein-Rosen coordinates is

1√
−|g|

∂µ

(√
−|g| gµν ∂ν Φ

)
=
(
2∂U ∂V + (∂U

√
γ)∂V − γij∂i ∂j

)
Φ = 0 , (3.1)

and it can be seen directly that this is solved by [32, 53]

Φ(X) = Ω(U) eiφk , Ω(U) := |γ−1(U)|1/4 = |E(u)|−
1
2 , (3.2)

In Brinkmann coordinates, the wave equation is(
2∂u ∂v +H(u,x) ∂2

v − ∂a ∂a
)

Φ = 0 , (3.3)
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and of course this is solved by the same Φ. Using (2.10), it can be expressed in Brinkmann

coordinates as:

φk :=
k0

2
σab x

axb + kiE
i
a x

a + k0 v +
ki kj
2 k0

F ij , (3.4)

with F ij(u) and (k0, ki) as before, and σab = ĖiaEb i the deformation tensor defined by

(2.12). The natural momentum associated with φk is:

Kµ dXµ := dφk =

k0 dv +

(
k0

2
σ̇bc x

bxc + kiĖ
i
bx
b +

kikj
2k0

γij
)

du+ (kiE
i
a + k0 σabx

b)dxa . (3.5)

Although Kµ is a (u, xa)-dependent generalization of the constant momentum familiar from

flat space, it is nevertheless null by construction from the Hamilton-Jacobi equation. To

see this explicitly, note that σ̇bc = ĖibĖc i −Hbc.

The solutions Φ = Ωeiφk clearly reduce to on-shell momentum eigenstates when the

background is Minkowski space, and hence can be chosen to do so in one or other asymptotic

region. We can use this to characterize in and out scattering states in terms of φk: an in

state Φ− is one which looks like a plane wave eik·X in the in-region (u < u1), while an out

state Φ+ looks like a plane wave in the out-region (u > u2). This comes down to requiring

the vielbein to become trivial in the past or the future:

lim
u→±∞

Ea±i (u) = δai . (3.6)

In terms of the solution to the Hamilton-Jacobi equations, φk, the distinction becomes:

φ−k |in = k0 v + kiδ
i
a x

a + u δij
kikj
2k0

= φ+
k |out . (3.7)

The positive frequency condition on these states is simply that k0 ≥ 0.

Even at the level of the free theory, some interesting facts about the S-matrix on a

plane wave space-time can be derived by making use of the natural inner product between

two solutions to the free equation of motion. This uses complex conjugation to turn the

standard symplectic form on the space of solutions of the wave equation into an inner

product:

〈Φ1|Φ2〉 = i

∫
Σ

(
Φ1 ∧ ∗dΦ̄2 − Φ̄2 ∧ ∗dΦ1

)
, (3.8)

where Σ is an arbitrary Cauchy surface. Plane wave space-times do not admit a Cauchy

hypersurface [31], but one can instead choose the foliation by hypersurfaces Σu of constant

u. In this case, the inner product gives:

〈Φ1|Φ2〉 = i

∫
Σu

dv dd−2x
(
Φ1 ∂vΦ̄2 − Φ̄2 ∂vΦ1

)
, (3.9)

evaluated at some fixed u.

Consider the inner product between two positive frequency in states, say Φ−1 and Φ−2
with constant momentum components {k0, ki} and {l0, li} respectively. Using (3.9), this

gives

〈Φ−1 |Φ
−
2 〉 = 2 k0 δ(k0 − l0) δd−2(ki − li) , (3.10)
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with all u-dependence dropping out. As desired, the evolution problem underlying the

scattering theory is unitary, since there is no ‘leakage’ of momentum – at any value of u –

between the two in states.

Similarly, the inner product between a positive frequency in state and a negative

frequency out state (namely 〈Φ+
1 |Φ̄

−
2 〉) encodes the presence of ‘particle creation’ in the

plane wave background. Without loss of generality, the inner product can be evaluated at

u = 0 > u2, leading to:

〈
Φ+

1 |Φ̄
−
2

〉
= δ(k0 + l0) (k0 − l0) Ω−(0)

∫
dd−2x exp

[
i

(
l0
2
σ−ab(0)xaxb

+(ka + liE
− i
a (0))xa +

lilj
2l0

F ij− (0)

)]
. (3.11)

However, the assumption of positive frequency means that k0 + l0 ≥ 0, so on the support

of the overall delta function this inner product vanishes:〈
Φ+

1 |Φ̄
−
2

〉
= 0 , (3.12)

confirming the well-known result that there is no particle creation for scalar QFT in plane

wave space-times [54, 55]. Equivalently: positive frequency in states do not develop a

negative frequency part in the out-region.

The final independent inner product is between positive frequency in and out states,

〈Φ+
1 |Φ

−
2 〉. This quantity encodes the amplitude for in-to-out scattering in the plane wave

space-time [55]. The inner product can again be evaluated at u = 0:

〈Φ+
1 |Φ

−
2 〉 = 2 k0 δ(k0 − l0) e−isl Ω−(0)

×
∫

dd−2x exp

[
i

(
(ka − liE− ia (0))xa − l0

2
σ−ab(0)xaxb

)]
, (3.13)

where the (constant) phase sl is defined as

sl :=
li lj
2l0

F ij− (0) .

Now, by (2.13) it follows that

E−ia(u) = u bia + cia , ∀u > u2 , (3.14)

where b, c are constant, invertible (d−2)×(d−2) matrices. This leaves a Gaussian integral

to do in (3.13), with the result:

〈Φ+
1 |Φ

−
2 〉 = 2 k0

(
2π

i l0

) d−2
2

δ(k0 − l0)
e−i(sl+rk,l)√

|b|
, (3.15)

after using the fact that Ω−(0) =
√
|c−1| and defining another phase

rk,l := − 1

2l0
(ka − licia) cak(b−1)bk (kb − ljcjb) .

As expected, this matches the result in the literature [55].
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3.2 Spin one

The action for free gauge fields propagating on a plane wave space-time is

Sfree[A] =
1

g2

∫
M

dudv dd−2x tr
(
∇[µAν]∇µAν

)
, (3.16)

where Aµ is the gauge field and ∇ the Levi-Civita connection. We will see that on a plane

wave it is consistent to simultaneously impose both a Lorenz gauge ∇µAµ = 0 and a light-

cone gauge Av = 0, since ∂v is Killing. With this, the linearized equations of motion for

the gauge connection are

gρσ∇ρ∇σAµ = 0 , ∂µA
µ = 0 = Av . (3.17)

These can be solved using the d− 2 spin-raising operators

Ra := du δab
∂

∂xb
+ dxa

∂

∂v
, (3.18)

where the free index labels different possible polarization states. As tensors, the Ra are

covariantly constant. Acting on a solution to the wave equation, Φ, it is easily checked

that RaΦ satisfies (3.17), so Ra is naturally a spin-raising operator (this generalizes the

four-dimensional approach in [33]). Thus with Φ the scalar wave (3.2) we construct the

free gauge field

Aµ dXµ =
1

k0
εaRaΦ =

1

k0
εaRa

(
Ω eiφk

)
, (3.19)

where φk and Ω are as before and the polarization vector εa is constant. We can also define

a ‘curved’ εµ so that

Aµ = εµ Φ , where εµ dXµ = εa
(
kj
k0
Eja + σab x

b

)
du+ εa dxa . (3.20)

This satisfies the free equation of motion and gauge-fixing conditions. Similarly to its flat

space counterpart, the curved polarization vector obeys

ε ·K = gµνεµKν = 0 , (3.21)

where K is as defined in (3.5). In the flat space limit, Aµ reduces to a standard linearized

plane wave εflat
µ eik·X , with the non-trivial constant components of εflat

µ being εa.

In and out states are defined in the same way as for the scalar: an in state looks like

a Minkowski plane wave in the in-region, while an out state looks like a Minkowski plane

wave in the out-region.

As in the scalar case, an inner product on free gauge fields is induced by the boundary

term of the action [56]. Restricted to a constant u hypersurface, this inner product is:

〈A1|A2〉 := i

∫
Σu

dv dd−2x
(
Aµ1 F̄2 vµ − Āµ2 F1 vµ

)
, (3.22)
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which is easily used to compute the three cases of interest. Assuming positive frequency

for all (un-conjugated) fields, one finds:〈
A−1 |A

−
2

〉
= 2 k0 ε1 · ε2 δ(k0 − l0) δd−2(ki − li) , (3.23a)〈

A+
1 |Ā

−
2

〉
= 0 , (3.23b)〈

A+
1 |A

−
2

〉
= 2 k0

(
2π

i l0

) d−2
2

ε1 · ε2 δ(k0 − l0)
e−i(sl+rk,l)√

|b|
, (3.23c)

where ε1 ·ε2 = εa1ε
b
2δab and the phases sl, rk,l are the same as the scalar case. Unsurprisingly,

(3.23) indicate that the evolution problem is unitary and that there is no particle creation

for gauge fields propagating on the plane wave space-time.

3.3 Spin two

Finally, consider linearized metric fluctuations hµν on the plane wave background. Assum-

ing that the background is a solution to the vacuum Einstein equations and choosing a

transverse-traceless gauge for the perturbations

∇µhµσ = 0 = hµµ , (3.24)

the linearized Einstein equation is:

∇σ∇σhµν − 2Rρµνσ h
σ
ρ = 0 , (3.25)

with Rρµνσ the background curvature tensor. For a vacuum plane wave in Brinkmann

coordinates (i.e., Ha
a = 0), the gauge for hµν can be further fixed by requiring the vanishing

of the v-components hvµ = 0. With these conditions, the linearized equation is:

gµν∂µ∂νhρσ + 4 δu(ρ∂|v|hσ)aH
a
b x

b − 2 δuρ δ
u
σ H

ab hab = 0 , (3.26)

where all Christoffel symbols have been written out explicitly in Brinkmann coordinates.

Solutions to (3.26) can be constructed by acting on the massless scalar twice with the

spin-raising operator (3.18). This leads to:

hµν dXµ dXν =
1

k2
0

εaRa
(
εbRb Φ

)
=

(
(ε · dX)2 − i

k0
εaεb σ

abdu2

)
Φ , (3.27)

where εa is chosen to be null with respect to δab to ensure that the gauge condition hµµ = 0

is obeyed. Note in particular the ‘tail’ term proportional to εaεb σ
ab: unlike in Minkowski

space-time, metric perturbations on a plane wave background do not carry a polarization

which is simply the ‘square’ of a gauge field’s polarization. The reason for this is that the

second spin raising operator in (3.27) acts not only on the scalar solution (which contributes

a second copy of εµ) but also on the first spin raising operator (or equivalently, on the first

copy of εµ, which – unlike in Minkowski space – is not a constant vector).

Thus the perturbative double copy for plane wave backgrounds involves subtleties not

present in Minkowski space. For linear perturbations around flat space, hµν ∼ Aµ�Aν for
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momentum eigenstates, whereas in plane wave space-times we have hµν ∼ Aµ �Aν +Cµν ,

with correction Cµν given by the last term proportional to σab in (3.27).

The boundary term in the linearized Einstein-Hilbert action induces an inner product

on metric fluctuations [56]:

〈h1|h2〉 = i

∫
Σu

dv dd−2x
(
hµσ1 ∂vh̄2µσ − h̄µσ2 ∂vh1µσ

)
. (3.28)

Once again calculating the inner products between incoming and outgoing states gives:〈
h−1 |h

−
2

〉
= 2 k0 (ε1 · ε2)2 δ(k0 − l0) δd−2(ki − li) ,〈

h+
1 |h̄
−
2

〉
= 0 ,〈

h+
1 |h
−
2

〉
= 2 k0

(
2π

il0

) d−2
2

(ε1 · ε2)2 δ(k0 − l0)
e−i(sl+rk,l)√

|b|
. (3.29)

So despite the ‘correction’ term in hµν , the physical properties of unitary evolution and no

particle creation are preserved.

3.4 Charged free fields in plane wave gauge fields

Although we assume that the background gauge potential in (2.25) is valued in the Cartan

algebra, it couples non-trivially to free fields which are charged under the gauge group.

Consider a free, charged scalar:

Sfree[Φ] =
1

2

∫
dudv dd−2xDµΦDµΦ , (3.30)

where Dµ = ∂µ − ieAµ, with Aµ the background gauge field (2.25) and e the charge of Φ.

In the first instance, we will take e to be a standard U(1) charge, but more generally, A

takes values in the Cartan subalgebra of some gauge group, Φ in some root space, and e

will then be the corresponding root and eA the corresponding contraction with A encoding

the commutator. The free equation of motion for the charged scalar is thus

DµD
µΦ(X) =

(
2∂u ∂v − ∂a ∂a − 2ixae Ȧa ∂v

)
Φ(X) = 0 . (3.31)

Solutions to this ‘charged’ wave equation are given by:

Φ(X) = ei φ̃k , (3.32)

where

φ̃k = k0 v + (ka + eAa)x
a +

1

2 k0
f(u) . (3.33)

The function f(u) is the analogue of the F ij(u) which appeared in the gravitational case:

f(u) :=

∫ u

ds (ka + eAa(s)) (ka + eAa(s)) . (3.34)

When the background gauge field is turned off, it is easy to see that these solutions become

the usual momentum eigenstates of Minkowski space.
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The natural momentum associated with these scalars is defined by

Kµ dXµ := −ie−iφ̃k Dµ eiφ̃k dXµ

= k0dv +
1

2 k0
(ka + eAa)(k

a + eAa)du+ (ka + eAa)dx
a . (3.35)

The components of Kµ are functions of u, but it is easy to see that this momentum is null.

The distinction between in and out states for the charged scalar is in direct analogy

with the definitions on the gravitational background. An incoming state is one which looks

like a Minkowski plane wave in the in-region, while an outgoing state looks like a Minkowski

plane wave in the out-region. This distinction manifests itself in the boundary conditions

on A:

lim
u→±∞

A±a (u) = 0 . (3.36)

Note that unlike the massless scalar in the gravitational background, the exponential de-

pendence on xa for the charged scalar is at most linear in any region.

The inner product on the charged scalars is given by

〈Φ1|Φ2〉 = i

∫
Σu

dv dd−2x
(
Φ1 ∂vΦ̄2 − Φ̄2 ∂vΦ1

)
, (3.37)

and once again there are three inner products of physical interest. These are:〈
Φ−1 |Φ

−
2

〉
= 2k0 δ(k0 − l0) δd−2(ka − la) ,〈

Φ+
1 |Φ̄

−
2

〉
= 0 ,〈

Φ+
1 |Φ

−
2

〉
= 2k0 δ(k0 − l0) δd−2(ka − la + ca) ei s̃l , (3.38)

where ca is the inner product of A−a (0) in the Cartan subalgebra with the charge of the

field. The momentum conservation then indicates the ‘kick’ received by the field from the

memory effect. The phase s̃l is defined by

s̃l :=
f−(0)

2 l0
.

The equations (3.38) indicate that the classical S-matrix associated with this charged scalar

is unitary with no particle production.

3.5 Spin one on a gauge background

The linearized equation of motion for a gauge field aµ charged under the same gauge group

as the background Aµ is:

Dµ (Dµaν −Dνaµ) + aµ (∂µAν − ∂νAµ) = 0 . (3.39)

Solutions to this equation are simplified by choosing a Lorenz gauge Dµa
µ = 0 along

with3 av = 0; the latter condition actually reduces the Lorenz condition to ∂µa
µ = 0.

3This is of course not possible on a general background, but is possible here because ∂v is a symmetry.
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Solutions are then found by acting on the charged scalar solution with Ra as before in the

gravitational case. This leads to

aµ = ε̃a

(
dxa +

1

k0
(ka + eAa) du

)
eiφ̃k , (3.40)

where ε̃a is a (constant) (d− 2)-dimensional vector which we will take to be null. As in the

gravitational case, we define a polarisation d-vector ε̃µ as

ε̃µ dXµ = ε̃a

(
dxa +

1

k0
(ka + eAa) du

)
. (3.41)

This polarization is on-shell in the sense that K · ε̃ = 0.

With these gauge choices, the inner product is essentially equivalent to (3.22) giving:〈
a−1 |a

−
2

〉
= 2k0 ε̃1 · ε̃2 δ(k0 − l0) δd−2(ka − la) ,〈

a+
1 |ā
−
2

〉
= 0 ,〈

a+
1 |a
−
2

〉
= 2 k0 ε̃1 · ε̃2 δ(k0 − l0) δd−2(ka − la + ca) ei s̃l . (3.42)

So we again have a unitary classical S-matrix with no particle creation, as before.

3.6 Huygens’ principle and tails

The wave equation in flat and plane wave space-times satisfies Huygens’ principle [32].

In intuitive terms, the principle states that waves can propagate in all directions without

scattering off the background metric and generating a tail. The sharp definition is that

there should exist solutions to the wave equation with delta-function support along null

hypersurfaces tangent to every null direction through every point. These are simply given

in the above by Ω δ(φk − c) where c is a constant.

This principle fails for linear fields of spin one and spin two [33], however. We can

construct these fields by spin raising as above. At spin one, to get a field with delta function

support along φk = 0, we must start by raising the spin of a solution to the scalar wave

equation of the form Ωφk Θ(φk) where Θ is the Heaviside step function. With this, the

corresponding spin-one potential is

A = Θ(φk)
εa
k0
Ra (Ωφk Θ(φk)) = Ω εa

(
dxa +

(
kj
k0
Eja + σabx

b

)
du

)
Θ(φk) ,

and the field strength is

F = dA = δ(φk) Ω εa
(

dxa +

(
kj
k0
Eja + σabx

b

)
du

)
∧ dφk

+ Θ(φk) Ω εa
(
σab dxb ∧ du− σbb dxa ∧ du

)
. (3.43)

We see that the field strength has developed a tail in the second line, which is not supported

at φk = 0. This tail can be thought of as the consequence of the interaction between the

impulsive electromagnetic field and the gravitational background. There is a similar story

for the spin-two field where one starts with Φ = φ3
k Θ(φk).
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In these examples, the tail is proportional to the shear of the ∂U null geodesic con-

gruence (i.e., trace-free part of σab). So tails are generally identified by the part of the

field in which the shear appears explicitly. In the free solutions constructed above, terms

contributing to the tails are readily identified: σab x
bdu from ε · dX at spin one and two,

and the spin two correction term C = − i
k0
εaεbσ

abdu2. However, we will see that the con-

tributions to the tail from εµ alone actually drop out of amplitude calculations. So for spin

one fields on a plane wave space-time, the tail terms do not effect the amplitude – even

though they appear explicitly in the scattering states.

This observation is perhaps related to a different definition of tails for the propagation

of gauge fields on a plane wave space-times, in terms of a Green’s function in [57, 58]. That

discussion does not give tails for gauge fields but does for graviton propagation [59], and

indeed we will see that it is the extra correction term C that is important for graviton

amplitudes.

Note that this treatment of tails does not simply extend to fields propagating on

the gauge theory plane wave background because we cannot simply obtain solutions from

arbitrary functions of Φ̃ as it now has charge. So, in the gauge background case, we will

simply take the tail to be those terms in a curved polarization vector that depend explicitly

on the potential A. This is consistent with the fact that such potential terms encode the

memory in the asymptotic regions via (2.27), just as the deformation tensor σab does on a

gravitational background.

4 3-point Amplitudes on the Gravitational Background

We now consider the 3-point amplitudes of scalars, gauge fields and gravitons on the

gravitational sandwich plane wave background. In each case, this calculation is performed

by evaluating the cubic part of the action on solutions to the linearized equations of motion

on the background. For each theory, the amplitude formulae are presented in terms of an

integral over the u variable (in Brinkmann coordinates), which cannot be done explicitly for

general space-times. Stripping off the integration underlying the action integral, together

with the three Φs associated with the three on-shell fields, we are left with a tree-level

integrand expression which is sufficient for exploring the double copy structure of the

amplitudes. See appendix B for further discussion of the scattering amplitudes and tree-

level integrand.

4.1 Scalars

Consider the cubic scalar theory

S[Φ] =
1

2

∫
M

dudv dd−2x

(
gµν∂µΦ ∂νΦ− λ

3
Φ3

)
, (4.1)
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where gµν is the inverse of the plane wave metric (2.4) in Brinkmann coordinates. The

3-point amplitudes of interest are given by evaluating the cubic portion of the action4

− λ

6

∫
M

dudv dd−2xΦ1(X) Φ2(X) Φ3(X) , (4.2)

where Φr(X) are solutions to the linearized equations of motion of (4.1) for r = 1, 2, 3.

When evaluating (4.2), there are basically two distinct configurations which need to be

considered: three in states, or one out and two in states (the other configurations are easily

related to these).

The case when all three states are incoming is the easiest. This gives

− λ

6

∫
M

dudv dd−2xΦ−1 (X) Φ−2 (X) Φ−3 (X)

= −λ
6
δd−1

(
3∑
r=1

kr

)∫
du |E−| (Ω−)3 exp

(
iF ij

3∑
s=1

ks iks j
2ks 0

)

= −λ
6
δd−1

(
3∑
r=1

kr

) ∫
du√
|E−|

exp

(
iF ij

3∑
s=1

ks iks j
2ks 0

)
. (4.3)

where

δd−1

(
3∑
r=1

kr

)
:= δ

(
3∑
r=1

kr 0

)
δd−2

(
3∑
r=1

kr i

)
.

The delta functions arise from performing the integrations in dv and dd−2x, with |E−|
an overall Jacobian factor appearing in the second line. Using the relationship (3.2) be-

tween Ω(u) and |E|, the various u-dependent factors left inside the integral can be slightly

simplified in passing to the third line.

The other configuration is a bit more complicated. In this case one has

− λ

6

∫
M

dudv dd−2xΦ−1 (X) Φ−2 (X) Φ+
3 (X) = −λ

6
δ

(
3∑
r=1

kr 0

)∫
dudd−2x (Ω−)2Ω+×

exp

(
i
k3 0

2
(σ−ab − σ

+
ab)x

axb +i (k1 i + k2 i)E
i−
a xa + i k3 iE

i+
a xa +

3∑
s=1

ks iks j
2ks 0

F ijs

)
. (4.4)

Due to the mixed asymptotic conditions, momentum conservation in the v-direction no

longer eliminates the quadratic x-dependence from the exponential, leaving a (d − 2)-

dimensional Gaussian integral. Performing this integral leaves:

− λ

6 (k3 0)
d−2

2

δ

(
3∑
r=1

kr 0

)∫
du (Ω−)2Ω+

√
(2πi)d−2

|A|

× exp

(
− i

2 k3 0
JaJb(A

−1)ab + i
3∑
s=1

ks iks j
2ks 0

F ijs

)
, (4.5)

4A similar calculation has been done for scalar contact interactions of arbitrary valence in certain ho-

mogeneous plane wave backgrounds [60].
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where

Aab := σ−ab − σ
+
ab , Ja := (k1 i + k2 i)E

i−
a + k3 iE

i+
a .

Nevertheless, applying the definition of the tree-level integrand to these results (see earlier

or appendix B), somewhat tautologically gives the extremely simple answer

M3(Φ−1 ,Φ
−
2 ,Φ

±
3 ) = 1 , (4.6)

after stripping off a power of the coupling, overall delta-functions, and ‘universal’ u-

dependent functions that depend on the choice of Φ’s.

This is a general feature. Although the precise form of the amplitude will vary sig-

nificantly between different configurations of incoming and outgoing states – as in (4.3)

versus (4.5), the integrands will be the same. This is the closest thing to CPT symmetry in

flat space-time – interpreted here as the ability to exchange incoming and outgoing states

while simultaneously conjugating polarizations and charges – which survives on a sandwich

plane wave background.

4.2 Gauge theory

The Yang-Mills action on a curved background is:

S[A] =
1

g2

∫
M

tr (F ∧ ∗F ) , (4.7)

where ∗ is the Hodge star and F = [D,D] is the curvature of the connection D = ∇+ A,

for ∇ the Levi-Civita connection. The 3-point amplitude is given by the cubic portion of

the action (4.7) evaluated on linearized states of the form (3.19). In the Lorenz gauge of

section 3, the 3-point amplitude reads:

g fa1a2a3

∫
dudv dd−2x

(
Aa3 A

µ
2 ∂µA1 b −Ab2A

µ
3 ∂µA1 b + cyclic

)
, (4.8)

where fa1a2a3 are the structure constants of the gauge group. As before, there are essentially

two independent configurations in which this amplitude can be evaluated: three in states

or two in states and one out state.

However, some simplifications occur in the amplitude even before the asymptotic be-

haviour of the states has been specified. Evaluated on general linearized free fields, (4.8)

becomes

g fa1a2a3

∫
dudv dd−2x (ε1 · ε3 (K1 · ε2 −K3 · ε2) + cyclic)

3∏
r=1

Ωr eiφr , (4.9)

where the Ωr and φr (r = 1, 2, 3) depend on whether the state is incoming or outgoing. Since

the functional form of the integrand (i.e., the portion of this expression in the parentheses)

is independent of the state configuration, it suffices to identify the integrand in the simplest

configuration. As in the scalar example, this will be the all incoming configuration, since

there are more delta functions in this case.
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Even for the three-incoming configuration, the integrand of (4.9) is a priori a function

of the xa through the polarizations (3.20) and momenta (3.5). However, thanks to the

identities:

Kr · εs =

{
0 if r = s

Ei a(kr 0
ks i
ks 0

εs a − kr iεs a) otherwise
, (4.10)

εr · εs =

{
0 if r = s

−εr · εs otherwise
, (4.11)

it follows that the integrand is actually independent of the xa. This allows the dv and

dd−2x integrals to be done as the only dependence on these variables is in the exponential:

g fa1a2a3 δd−1

(
3∑
r=1

kr

) ∫
du√
|E−|

(ε1 · ε3 (K1 · ε2 −K3 · ε2) + cyclic)

× exp

(
iF ij

3∑
s=1

ks iks j
2ks 0

)
. (4.12)

On the support of the momentum conserving delta functions, this simplifies to

2g fa1a2a3 δd−1

(
3∑
r=1

kr

) ∫
du√
|E−|

(ε1 · ε3K1 · ε2 + cyclic) exp

(
iF ij

3∑
s=1

ks iks j
2ks 0

)
.

(4.13)

As we saw for the scalar, the amplitude boils down to a u-integration which depends on

the particulars of the background plane wave geometry. The integrand, though, is easily

identified as:

M3(A1, A2, A3) = ε1 · ε3K1 · ε2 + cyclic . (4.14)

Note that although this has the same functional form as the flat space 3-point integrand

for Yang-Mills theory, it is not equal to the flat space result. Indeed, the integrand in this

case is a function of u, given explicitly by

M3(A1, A2, A3) = − ε1 · ε3Eia
(
k1 0

k2 0
k2 i ε

a
2 − k1 i ε

a
2

)
+ cyclic (4.15)

after using (4.10)–(4.11). Note that the tails associated with the asymptotic states do not

contribute to the amplitude, as a result of the identities (4.10)–(4.11).

The other configuration – two incoming states and one outgoing state – is more com-

plicated. The primary reason for this is that the x-dependence of the integrand does not

drop out. Assuming that the scattering states are A−1 , A−2 and A+
3 we now have

εr · ε3 = −εr · ε3 ,

Kr · ε3 = εa3

(
kr 0

k3 i

k3 0
E+ i
a − kr iE− ia

)
+ kr 0ε

a
3x

b (σ+
ab − σ

−
ab) ,

K3 · εr = εar

(
k3 0

kr i
kr 0

E− ia − k3 iE
+ i
a

)
+ k3 0ε

a
rx

b (σ−ab − σ
+
ab) , (4.16)
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for r = 1, 2. The integration over dd−2x is now a rather involved Gaussian integral, which

has the rough structure of (4.5) plus a derivative of this result. Since the integrand is the

primary object of interest here, we will only consider (4.14).

4.3 Gravity

The 3-point amplitude for gravitons on the plane wave background is encoded by extracting

the cubic portion of the Einstein-Hilbert action,

S[g] =
1

κ2

∫
M

ddX
√
−|g|R , (4.17)

perturbed around the plane wave background metric. To do this, a recent perturbative

re-writing of the Einstein-Hilbert action is useful [61]. For perturbations hµν around a

fixed background geometry gµν , this action takes the form:

S[h] =
1

4κ2

∫
ddX

√
−|g|

[
∇µσνρ∇λσκρ

(
σµλδνκ − 2σνλδµκ

)
+ σµν Rµν

]
, (4.18)

where the perturbations are encoded in

σµν = gµν + κhµν +
κ2

2
h2
µν + · · · , σµν = gµν − κhµν +

κ2

2
hµν − · · · ,

and indices are raised and lowered with the background metric (e.g., h2
µν = hµρg

ρσhσν).

On the vacuum plane wave background in Brinkmann coordinates, |g| = −1 and Rµν = 0

so expanding (4.18) to cubic order is straightforward. This leads to the cubic term:

κ

4

∫
dudv dd−2x (hµν∇µhρσ∇νhρσ − 2hρν∇µhρσ∇νhµσ) . (4.19)

We have checked that this matches the cubic contribution from expanding the standard

Einstein-Hilbert action around a plane wave background.

The 3-point amplitude is given by evaluating (4.19) on three of the linearized per-

turbations (3.27). With the transverse-traceless gauge conditions on hµν , the covariant

derivatives in (4.19) reduce to partial derivatives, leaving:

κ

4

∫
du dv dd−2x (hµν1 ∂µh2 ρσ∂νh

ρσ
3 − 2hρν1 ∂µh2 ρσ∂νh

µσ
3 ) + all permutations . (4.20)

A computation gives a typical term in the sum over permutations of external states to be:

hµν1 ∂µh2 ρσ∂νh
ρσ
3 − 2hρν1 ∂µh2 ρσ∂νh

µσ
3 =(

(2ε3 ·K2 ε1 ·K3 ε1 · ε2 − ε1 ·K2 ε1 ·K3 ε2 · ε3) (ε2 · ε3)

− i ε2 · ε3 σ
ab

(
k2 0k3 0

k1 0
ε2 · ε3 ε1 aε1 b − 2k2 0 ε1 · ε2 ε1 bε3 a

))
ei(φ1+φ2+φ3) . (4.21)
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To proceed further, the configuration of the external states must be specified. Building on

the scalar and gauge theory calculations, it is clear that the easiest configuration to treat

is the one with all three states incoming.

In this configuration, identities of the form (4.10)–(4.11) ensure that the only x-

dependence in terms like (4.21) is in the overall exponential. This allows the dv and dd−2x

integrations to be done explicitly, resulting in momentum conserving delta functions. On

the support of these delta functions, the 3-point amplitude for incoming states reads:

κ

2
δd−1

(
3∑
r=1

kr

) ∫
du√
|E−|

[
(ε1 · ε3K1 · ε2 + cyclic)2 − i k1 0k2 0k3 0 σ

abCaCb
]

× exp

(
iF ij

3∑
s=1

ks iks j
2ks 0

)
. (4.22)

where the quantity Ca is defined as

Ca := ε2 · ε3
ε1 a
k1 0

+ ε1 · ε3
ε2 a
k2 0

+ ε1 · ε2
ε3 a
k3 0 .

(4.23)

The upshot is that the 3-point integrand for gravity on a plane wave space-time is given

by

M3(h1, h2, h3) = (ε1 · ε3K1 · ε2 + ε1 · ε2K2 · ε3 + ε2 · ε3K3 · ε1)2

− i k1 0k2 0k3 0 σ
ab Ca Cb , (4.24)

This structure mirrors what one might have guessed based solely on the structure of the

linearized perturbations (3.27).

So it seems that 3-point amplitudes on a plane wave space-time do not simply obey

double copy as they do in flat space. Indeed, we find that

M3(h1, h2, h3) = (M3(A1, A2, A3))2 − i k1 0k2 0k3 0 σ
ab Ca Cb . (4.25)

Unlike the gluon amplitudes, the tails associated to graviton perturbations do contribute to

the amplitude. Note that they do so in an intrinsically geometric way: the tail contribution

couples via the deformation tensor associated with the background geometry. To find the

‘square root’ of perturbative gravity on a plane wave background, one must instead turn

to Yang-Mills theory in the presence of a background plane wave gauge field.

5 3-point Amplitudes on the Gauge Field Background

The 3-point amplitudes for charged scalars and Yang-Mills theory in a plane wave back-

ground gauge field are now computed. As in the gravitational setting, these amplitudes

reduce to an integral over the u-coordinate which depends on the particulars of the back-

ground, but the tree-level integrands are easily identified.
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5.1 Charged scalars

To obtain a gauge invariant cubic scalar interaction that carries charge with respect to the

background gauge field, the charges of the three fields must add up to zero.

Sint[Φ] =

∫
du dv dd−2x (Φ1Φ2Φ3) , (5.1)

where DµΦr = (∂µ − ierAµ)Φr, with Aµ the background gauge field (2.25). The charges er
as roots encode the commutators.

Armed with the linearized solutions (3.32), we can compute the 3-point amplitudes by

evaluating the cubic portion of the action (5.1). This means that the amplitude can be

reduced to a u-integration fairly straightforwardly in an arbitrary configuration:

δd−1

(
3∑
r=1

kr

) ∫
du exp

(
i

3∑
s=1

fs
2ks 0

)
. (5.2)

Note that the translation action of the gauge field on the total momentum has cancelled

because the charges must add up to zero by gauge invariance. From this expression it is

easy to read off the tree-level integrand for the 3-point scattering of charged scalars on the

plane wave gauge field background:

A3(Φ1,Φ2,Φ3) = 1 . (5.3)

This is independent of the specifics of the configuration as for the gravitational background.

5.2 Gauge theory

Now consider a dynamical gauge field a on the fixed plane wave background A. Although

the background gauge field A is valued in the Cartan of the gauge group, the dynamical

gauge field carries arbitrary colour structure. The dynamical gauge field is governed by

the action

S[a] =
1

g2

∫
tr (F ∧ ∗F − dA ∧ ∗dA) , (5.4)

where F is the curvature of A + a and the kinetic term for the non-dynamical background

field is subtracted.

The cubic term in the action (5.4) is∫
dudv dd−2x tr (aµ aν (∂µaν − ∂νaµ + [Aµ, aν ])) . (5.5)

We must choose the colour structure so as to obtain a non-trivial trace. All non-trivial

examples are essentially the same and are equivalent to taking the SU(2) case with a3 in

the Cartan, and a1, a2 respectively of charge ±1 with respect to the Cartan generator.

In particular the three charges add up to zero. Together with the gauge choices made in

(3.40), the 3-point amplitude reduces to

g fa1a2a3

∫
du dv dd−2x (aµ2 a

ν
3∂µa1 ν − aµ2 a

ν
3∂νa1µ + cyclic) . (5.6)
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Evaluating on the states (3.40) (with arbitrary asymptotics) leads to

ig fa1a2a3 δd−1

(
3∑
r=1

kr

)∫
du [ε̃1 · ε̃3 (K1 · ε̃2 − K3 · ε̃2) + cyclic] exp

(
i

3∑
s=1

fs
2 ks 0

)
. (5.7)

On the support of these delta functions, the result further reduces to:

2ig fa1a2a3 δd−1

(
3∑
r=1

kr

)∫
du [ε̃1 · ε̃3 K1 · ε̃2 + cyclic] exp

(
i

3∑
s=1

fs
2 ks 0

)
. (5.8)

Thus the integrand can be written in terms of on-shell data:

A3(a1, a2, a3) = ε̃1 · ε̃3 K1 · ε̃2 + cyclic , (5.9)

as expected.

This formula hides explicit dependence on the potential. Using (3.35) and (3.41), it

follows that:

Kr · ε̃s =

{
0 if r = s

ε̃as
ks0

(kr 0ks a − ks 0kr a + kr 0esAa − ks 0erAa) otherwise
, (5.10)

ε̃r · ε̃s =

{
0 if r = s

−ε̃r · ε̃s otherwise
. (5.11)

In particular, the background gauge field does enter into the functional form of the inte-

grand (5.9). The explicit form of the integrand is:

A3(a1, a2, a3) = − ε̃1 · ε̃3
k2 0

[(k1 0 k2 · ε̃2 − k2 0 k1 · ε̃2) + A · ε̃2 (k1 0e2 − k2 0e1)] + cyclic .

(5.12)

Crucially, the terms linear in A give a background-dependent correction to the flat space

result analogous to the tail terms involving σab appearing in the gravity integrand (4.24).

In both cases, they encode the memory.

6 The Double Copy

Armed with explicit formulae for the 3-point integrands on both gravitational and gauge

theory plane wave backgrounds, a precise statement of double copy can now be made.

From (5.12), the 3-point integrand for gluons on the gauge theory plane wave background

can be written compactly as:

A3(a1, a2, a3) = F ({kr 0, kr a, ε̃r}) + C({kr 0, kr a, ε̃r}|A) , (6.1)

where the function

F ({kr 0, kr a, ε̃r}) := − ε̃1 · ε̃3
k2 0

(k1 0 k2 · ε̃2 − k2 0 k1 · ε̃2) + cyclic (6.2)
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is the ‘flat’ contribution to the integrand.5 The tail-dependent correction term is

C({kr 0, kr a, ε̃r}|A) :=
ε̃1 · ε̃3

k2 0
A · ε̃2(k1 0e2 − k2 0e1) + cyclic (6.3)

Note that both F and C are real functions, in the sense that they take real values provided

the kinematic data is real-valued.

To double copy the integrand (6.1), one performs a sequence of simple steps:

1. Flip the charge (i.e., the sign of the colour factor of A) to define Ã3 = F − C and

regard this as the conjugate of A3:

|A3|2 := A3 Ã3 = F 2({kr 0, kr a, ε̃r})− C2({kr 0, kr a, ε̃r}|A) (6.4)

2. Replace every spatial (d − 2)-momentum by a curved version using the vielbein of

the gravitational plane wave background (e.g., k1 a → k1 iE
i
a). Replace the gauge

background polarisations ε̃a with gravitational background polarisations εa. This

yields6

F 2({kr 0, kr iE
i
a, εr})− C2({kr 0, kr iE

i
a, εr}|A) . (6.5)

3. Replace the remaining (quadratic) dependence on the background gauge field with

dependence on the background gravitational field using the rule:

eres A
a Ab →

{
i kr 0 σ

ab if r = s

i (kr 0 + ks 0)σab otherwise
, (6.6)

where er is the charge under the background gauge field associated with external

state r = 1, 2, 3.

The final step is motivated by dimensional considerations and suggested by the fact

that Aa encodes the gauge theory memory effect; if it is set to vanish in the in-region it

will generically be a non-zero constant in the out-region remembering an integral of the

field. Thus the quadratic combination Aa Ab is where the memory effect can be seen in

the amplitude. In the gravitational case, the deformation tensor σab can be chosen to

vanish in the past, but is then non-trivial in the future, although now generically falling

off asymptotically as u−1, by (2.13). Therefore, the replacement (6.6) identifies the fields

responsible for memories, albeit with different functional dependence on u. An additional

power of momenta is needed on the gravitational side to ensure that the two combinations

have the same mass dimension.

Steps 1-3 result in an expression of the form

F 2({kr 0, kr iE
i
a, εr})− C2({kr 0, kr iE

i
a, εr}|σ) . (6.7)

5The spurious poles in k0 are associated with our projection of the polarization vectors εa to be orthogonal

to both ∂u and ∂v.
6The latter operation is just a relabelling by removing all tildes. In particular, this replacement implies

ε̃r · ε̃s → εr · εs.
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Working on the support of momentum conservation in the v-direction – which holds regard-

less of the asymptotic configuration of the three external states – a bit of algebra reveals

that

C2({kr 0, kr iE
i
a, εr}|σ) = i k1 0k2 0k3 0 σ

ab Ca Cb , (6.8)

and therefore that the expression (6.7) is in fact equal to the 3-point integrand for gravitons

on the gravitational plane wave background.

There is also a canonical way to map the 3-point integrand for gluons on a gauge theory

background to the 3-point integrand for gluons on a gravity background. This entails a

‘classical’ double copy of the background (in the sense of [21]) while leaving the functional

form of the integrand unchanged. To see how this works, use the integrand expression:

A3(a1, a2, a3) = ε̃1 · ε̃3 K1 · ε̃2 + ε̃1 · ε̃2 K2 · ε̃3 + ε̃2 · ε̃3 K3 · ε̃1 , (6.9)

where Kr a and ε̃r a are given by (3.35), (3.41) for r = 1, 2, 3. Now perform the following

replacements everywhere in (6.9):

kr a → kr iE
i
a , ε̃r a → εr a , er Aa → kr 0 σab x

b . (6.10)

The last of these replacements is motivated by the observation that the non-trivial com-

ponent of the plane wave gauge field, namely xa Ȧa is a linear function of x while the

non-trivial component of the plane wave metric, namely −ËiaEb i xaxb, is quadratic.

After making the replacements (6.10), the polarization vectors in the gauge field back-

ground are mapped directly onto the polarization vectors in the gravitational background:

ε̃r µ → εr µ. Although Kr µ is not quite mapped onto Kr µ, it is easy to see that

Kr · ε̃s → Kr · εs .

Calling this substitution map ψ, it follows immediately that

ψ (A3(a1, a2, a3)) =M3(A1, A2, A3) , (6.11)

where the two integrands have the same kinematic data but are defined on different back-

grounds.

7 Discussion

In this paper we have made a preliminary investigation of how the notion of double copy

generalizes to curved scattering backgrounds starting with the three point amplitude on

sandwich plane waves. We find new features, but see that the double copy nevertheless

does extend to this curved setting: 3-point graviton amplitudes on a plane wave space-time

can be obtained by taking the double copy of 3-point gluon amplitudes on a gauge theory

plane wave background.

This statement can be expressed succinctly by encoding steps 2 and 3 of the double

copy procedure in a ‘replacement map’ ρ, that acts on the spaces of (d − 2)-kinematics
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and background gauge fields. The double copy for 3-point integrands on plane wave back-

grounds is then simply:

M3(h1, h2, h3) = ρ
(
|A3(a1, a2, a3)|2

)
. (7.1)

This is consistent with the usual double copy on flat backgrounds expressed in the KLT

relations. In a flat background, ρ acts trivially and this is the usual squaring relation.

We have only investigated the simplest scattering amplitudes (i.e., 3-point amplitudes),

which are generated by contact interactions in the space-time action. Higher-point ampli-

tudes will involve propagator contributions; although explicit forms for propagators on

plane wave backgrounds are known (e.g., [40, 54, 62, 63]), these are significantly more

complicated that those arising from flat space. Nevertheless, the prescription given in sec-

tion 6 seems universal: it dictates how to double copy the data for any n-point scattering

amplitude. Steps 1-3 do not depend on the number of external particles being three. So

one can optimistically conjecture a heuristic form of the double copy for n-point integrands

on plane wave backgrounds:

Mn(h1, . . . , hn) = ρ

 ∑
α,β∈Sn/Zn

An(α)SA[α|β] Ãn(β)

 , (7.2)

where the sum is over distinct colour-orderings for the n-point integrands on the gauge

theory background, ρ is the replacement map defined by steps 2 and 3 of the double copy,

Ãn is the integrand with opposite charges for the background and SA[α|β] is a plane wave

analogue of the KLT matrix (perhaps obtained from the same replacement algorithm for

the momenta). However, now the A and Ã must incorporate the non-trivial propagators

on those backgrounds, and it is likely that these must also be subject to some replacement

to work correctly on a gravitational background.

Our procedure is not a straightforward local identification of integrands. It requires

the replacement of certain structural functions appropriate for propagation on a gauge

theory background by those for a gravitational background. Indeed, colour/kinematics

duality is usually expressed locally in momentum space, and so should not be expected to

be local in space-time. Here we see evidence that a non-local procedure based on Hamilton-

Jacobi functions for propagation of momentum eigenstates from null infinity will do the

trick. Thus, the most optimistic message from this for the general curved colour-kinematic

duality is that although a space-time procedure cannot be local, it can work by referring

to null infinity, using Hamilton-Jacobi generating functions to create the identifications.

It would also be desirable to extend the double copy to other curved backgrounds.

Although plane waves are a very special example of such backgrounds, there is some sense

in which they are universal limits of all space-times [64]. It would be interesting to see in

what sense the results found here inform those for more general space-times.

Finally, we note that our original motivation for considering scattering on plane wave

backgrounds was to provide a space-time result to compare with an alternative calcula-

tion of these amplitudes using ambitwistor string theory [65] adapted to a curved back-

ground [66]. As we will show in [67], ambitwistor strings provide an alternative ‘stringy’
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approach to calculating amplitudes on curved backgrounds which gives pure field theory

amplitudes without α′ corrections, in a way that cleanly manifests the double copy found

here. The use of Hamilton-Jacobi functions to bring in momenta and polarization vectors

from null infinity should then tie in with the work in [68–70] where ambitwistor strings are

formulated at null infinity.
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A The Impulsive Plane Wave

For both gauge theory and gravitational sandwich plane waves, the computation of 3-point

amplitudes (rather than integrands) boils down to performing integrations that depend on

the particulars of the background geometry. In this appendix, we consider the simplest

concrete example of a sandwich plane wave: the impulsive plane wave [71–75]. Impulsive

plane waves correspond to gluing two flat regions together along an infinitesimal burst

of radiation; in other words, the radiation region of the sandwich plane wave has delta

function support. In the case of the impulsive gauge theory background, the scalar and

gluon 3-point amplitudes can be computed in closed form. For the impulsive gravitational

background, the 3-point amplitudes can be written in terms of integrals which are suitable

to numerical approximation.

A.1 Gauge theory background

For an impulsive gauge theory plane wave, we have

Ȧa(u) = δ(u) aa , (A.1)

for aa a set of d−2 constants which characterize the impulsive wave. Using the asymptotic

conditions (3.36), it follows that

A−a (u) = Θ(u) aa , A+
a (u) = −Θ(−u) aa , (A.2)

where Θ(u) is the Heaviside step function. Proceeding from (5.2) it is a straightforward

calculation to obtain the 3-point amplitudes of charged scalars on this background. The

results for the two independent configurations – all incoming or two incoming and one
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outgoing – are given by:

M3(Φ−1 ,Φ
−
2 ,Φ

−
3 ) =

λ

6
δd−1

(
3∑
r=1

kr

)( 3∑
s=1

k2
s

2 ks 0

)−1

−

(
3∑
s=1

k2
s + 2esk

a
saa + e2

sa
2

2 ks 0

)−1
 , (A.3)

and

M3(Φ−1 ,Φ
−
2 ,Φ

+
3 ) =

λ

6
δd−1

(
3∑
r=1

kr

) k2
3 − 2e3k

a
3aa + e2

3a
2

2 k3 0
+
∑
s=1,2

k2
s

2 ks 0

−1

−

 k2
3

2 k0 3
+
∑
s=1,2

k2
s + 2esk

a
saa + e2

sa
2

2 ks 0

−1 , (A.4)

where k2
s := ks ak

a
s for any s = 1, 2, 3.

The 3-point amplitudes for gluons on the impulsive gauge theory background follow

similarly from (5.8). A calculation leads to:

M3(a−1 , a
−
2 , a

−
3 ) = 2 g δd−1

(
3∑
r=1

kr

)( 3∑
s=1

k2
s

2 ks 0

)−1

F ({kt, ε̃t})

−

(
3∑
s=1

k2
s + 2esk

a
saa + e2

sa
2

2 ks 0

)−1(
F ({kt, ε̃t})− aa

(
ε̃1 · ε̃3
k2 0

ε̃2 a(e2k1 0 − e1k2 0)

+
ε̃1 · ε̃2
k3 0

ε̃3 a(e3k2 0 − e2k3 0) +
ε̃2 · ε̃3
k1 0

ε̃1 a(e1k3 0 − e3k1 0)

))]
, (A.5)

and

M3(a−1 , a
−
2 , a

+
3 ) = 2 g δd−1

(
3∑
r=1

kr

) k2
3 − 2e3k

a
3aa + e2

3a
2

2 k3 0
+
∑
s=1,2

k2
s

2 ks 0

−1

×
(
F ({kt, ε̃t}) + e3 a

a

(
k2 0

k3 0
ε̃1 · ε̃2 ε̃3 a − ε̃2 · ε̃3 ε̃1 a

))

−

 k2
3

2 k0 3
+
∑
s=1,2

k2
s + 2esk

a
saa + e2

sa
2

2 ks 0

−1 (
F ({kt, ε̃t})− aa

(
ε̃1 · ε̃3
k2 0

ε̃2 a(e2k1 0 − e1k2 0)

−e2 ε̃1 · ε̃2 ε̃3 a + e1
k3 0

k1 0
ε̃2 · ε̃3 ε̃1 a

))]
, (A.6)

where the function F of the kinematic data is defined by (6.2).

In each of these expressions a Hartle-Hawking contour deformation is used to dampen

rapidly oscillating contributions to the u-integrations near u = ±∞. This is the same as

the prescription on Minkowski space, and corresponds to selecting the physical vacuum.
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A.2 Gravitational background

For an impulsive gravitational wave, the non-trivial metric componentH(u,x) in Brinkmann

coordinates has delta function support:

H(u,x) = δ(u)Hab x
a xb , (A.7)

with Hab a trace-free and constant (d− 2)× (d− 2) matrix. Assuming that Hab is corank

zero with distinct eigenvalues, it can be diagonalized using rotations in the xa-plane. So

without loss of generality, we take

Hab = λ(a) δab ,

d−2∑
a=1

λ(a) = 0 . (A.8)

The vielbein Eai must solve the equation

Ëa i = λ(a) δab δ(u)Ebi , (A.9)

subject to incoming or outgoing boundary conditions (3.6). In each case, one finds

E−a i = δai
(
1 + uλ(a) Θ(u)

)
, E+

a i = δai
(
1− uλ(a) Θ(−u)

)
, (A.10)

so the transverse metric γij(u) is given in incoming or outgoing coordinates by:

γ−ij (u) = δij
(
1 + uλ(i) Θ(u)

)2
, γ+

ij (u) = δij
(
1− uλ(i) Θ(−u)

)2
, (A.11)

where λ(i) is identified with λ(a) using δia. This demonstrates that the impulsive grav-

itational wave is two copies of Minkowski space glued together along a single pulse of

gravitational radiation. While the metrics (A.11) are continuous across the pulse at u = 0,

they have discontinuous first derivatives.

To compute 3-point amplitudes, it is also important to have the inverse vielbeins:

Ei−a = δia
(
1 + uλ(a) Θ(u)

)−1
, Ei+a = δia

(
1− uλ(a) Θ(−u)

)−1
, (A.12)

leading to expressions for F ij± (u):

F ij− (u) =
u δij

1 + uλ(i) Θ(u)
, (A.13a)

F ij+ (u) =
u δij

1− uλ(i) Θ(−u)
. (A.13b)

So in both cases F ij(u) gets an infinite series of O(u2) corrections upon crossing the pulse

at u = 0.

Even at the level of scalar amplitudes, the situation on the gravitational background

is more complicated than on the gauge theory background. Unlike (A.3)–(A.4), on the

impulsive gravitational wave (relatively) compact expressions for the u-integrations are

not available. Instead, we find explicit expressions which could be evaluated (numerically
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or possibly analytically) when the momenta and eigenvalues {λ(a)} are specified. For

instance, one finds:

M3(Φ−1 ,Φ
−
2 ,Φ

−
3 ) =

λ i

6
δd−1

(
3∑
r=1

kr

) ( 3∑
s=1

k2
s

2 ks 0

)−1

+i

∞+iε∫
0

du
d−2∏
a=1

(1 + uλ(a))
− 1

2 exp

(
iu

3∑
s=1

d−2∑
i=1

k2
s i

2ks 0 (1 + uλ(i))

) , (A.14)

for the all-incoming configuration.

The expression for the two-incoming, one-outgoing configuration is similarly given in

terms of u-integrals over the in- and out-regions:

M3(Φ−1 ,Φ
−
2 ,Φ

+
3 ) = −λ

6

√
(2πi)d−2

kd−2
3 0

δ

(
3∑
r=1

kr 0

)

×

 0∫
−∞−iε

du∏d−2
a=1

√
λ(a)

exp

(
− i

2 k3 0
JaJb(A

−1)ab + i

3∑
s=1

ks iks j
2 ks 0

F ijs

)

+

∞+iε∫
0

du

d−2∏
a=1

(λ(a) + uλ2
(a))
− 1

2 exp

(
− i

2 k3 0
JaJb(A

−1)ab + i

3∑
s=1

ks iks j
2 ks 0

F ijs

) . (A.15)

Here, the F ijs (u) are given by (A.13), while

Aab(u) =
−λ(a) δab

1 + |u|λ(a)
, (A.16)

and

Ja(u) =
k1 a + k2 a + k3 a + uλ(a)(k3 a Θ(u)− (k1 a + k2 a) Θ(−u))

1 + |u|λ(a)
. (A.17)

B Classical S-matrix & Tree-level integrands

This appendix reviews the notion of classical S-matrix which is used throughout the paper,

as well as providing a precise definition for the tree-level integrand. On a sandwich plane

wave background (for either gauge theory or gravity), the tree-level S-matrix for a theory

encodes the evolution of asymptotic free states from the in-region of the space-time (i.e.,

u < u1) through the non-trivial, or radiation region (u1 ≤ u ≤ u2), to the out-region

(u > u2) as governed by the classical theory.

Rather than work out the curved space Feynman rules, we use a definition of the

classical S-matrix in which tree-level amplitudes are given by extracting certain multi-

linear pieces of the classical action evaluated on a perturbative solution to the non-linear

equations [76–78]. In general this has the interpretation of the field-theoretic Hamilton-

Jacobi generating function for the evolution and gives the tree-level contribution to the
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S-matrix. For the 3-point calculations in the body of the paper, there is no need to iterate

the perturbative solution, but here we present the general framework.

Let S[Φ] be the classical action, a functional of some fields Φ which is defined on the

sandwich plane wave background (gravitational or gauge theoretic – at this stage it makes

no difference). We assume that this action takes the generic form:

S[Φ] =

∫
ddX (Lkin + Lint) , (B.1)

where Lkin is the kinetic portion of the action, which is quadratic in Φ and governs the free

theory, and Lint contains all higher-point interactions.

Define the following object:

Φ[n](X) :=
n∑
i=1

εi ϕi(X) +

∫
ddY ∆(X,Y )

δLint

δΦ

∣∣∣∣
Φ=

∑n
j=1 εjϕj(Y )

. (B.2)

This is essentially an integral form of the full non-linear equations from the action S with

data given by the first term on the right hand side. Here, the {εi} are n parameters that

will eventually be thought of as infinitesimal; {ϕi} are n solutions to the free equations

of motion of Lkin with specified asymptotic behaviour; and ∆(X,Y ) is a Green’s function

defined by Lkin. There are precise formulae for various useful definitions of this ∆(X,Y )

(e.g., advanced, retarded, Feynman) in scalar, gauge, and gravitational theories on plane

wave backgrounds [54, 63], though we will not make explicit use of them here. Specifying

the asymptotic behaviour of the free solution ϕi boils down to saying whether it looks like

an ‘in’ or ‘out’ state.

Both the in- and out-regions are flat, so asymptotically free states ϕi should look like

free states in Minkowski space in at least one of these regions. In a momentum space

representation, such free states in Minkowski space are modelled on massless plane wave

momentum eigenstates, ei k·X for k2 = 0. Unlike Minkowski space, in the sandwich plane

wave a state which looks like ei k·X in the in-region will not look like ei k·X in the out-region.

This is a consequence of the ‘memory’ relations (2.13), (2.27). Hence, the specification of

asymptotic behaviour for ϕi boils down to stating whether it is an incoming or outgoing

state, denoted respectively as ϕ−i or ϕ+
i . An incoming state is one which looks like a

free solution in Minkowski space the in-region; an out state looks like a free solution in

Minkowski space in the out-region. More precisely,

ϕ−i |in ∼ ei k·X ∼ ϕ+
i |out , (B.3)

for both the gravitational and gauge theory backgrounds.

The n-point tree-level scattering amplitude for the states {ϕi} – with their given

asymptotic configuration of in and out states – is then a multi-linear piece of the clas-

sical action:

M (0)
n (ϕ1, . . . , ϕn) =

∂nS[Φ[n]]

∂ε1 · · · ∂εn

∣∣∣∣∣
ε1=···=εn=0

. (B.4)

For flat backgrounds, this agrees with the usual definition of the S-matrix and would also

correspond with a Feynman diagram definition for sandwich plane waves.

– 33 –



For the purposes of investigating the double copy, a notion of tree-level integrand closely

related to the tree-level amplitude is useful. Indeed, it is actually this tree-level integrand

that appears in the KLT relations of the standard double copy. From the definition (B.4) it

is straightforward to see that the tree-level scattering amplitude will always take the form:

M (0)
n =

∫
ddXMn(X)

n∏
i=1

fi(X) , (B.5)

where each of the fi(X) is a solution to the free scalar wave equation on the plane wave

background. The objectMn is defined to be the tree-level integrand; generically, it will be

formed of polarizations, momenta and propagators and depends on the background geome-

try. It captures everything that is encoded by the kinematic numerators and denominators

which would result from a conventional Feynman diagram approach. In more heuristic

terms, the tree-level integrand is what remains after removing the final integral that forms

the action functional in (B.4), along with ‘universal’ spin-independent functions.

In Minkowski space, it is easy to see that

n∏
i=1

fi(X) = ei(k1+···+kn)·X ,

so the effect of isolating Mn is to strip off an overall momentum conserving delta func-

tion. On non-trivial backgrounds such as the sandwich plane wave, the result of the final

ddX integrals is more complicated, but the principle is the same: Mn contains all of the

information which one could expect to be ‘squared’ in taking the double copy. Another in-

teresting property of the integrand is that it is functionally independent of the asymptotic

conditions of the states being scattered. This enables the investigation of double copy by

considering the computationally simplest configuration of incoming and outgoing states.

Clearly, there is a sense in which the tree-level integrand is not a gauge-invariant

object, just as one can add boundary terms to an action. This lack of gauge invariance

is analogous to the statement that individual Feynman diagrams – or individual terms

contributing to (B.4) – are not gauge invariant. However, once a gauge for performing

perturbative calculations has been fixed (i.e., specific linearized solutions {ϕi} and a Green’s

function ∆(X,Y ) have been consistently chosen), the object Mn is well-defined. In our

calculations, we always work in a Lorenz or de Donder gauge, so the resulting expressions

for the integrand should be viewed as expressions in these particular gauges. Their integrals,

however, do not depend on the gauge choice.

Throughout the paper, the tree-level integrand for theories on the gravitational plane

wave background is denoted byMn, and the tree-level integrand for theories on the gauge

theory plane wave background by An.
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