CHAPTER 16 A

GRAVITATION

Up to now we have discussed the effects of forces, without being too
specific about what determines their magnitude and direction. In this chapter
we study the details of one particularly important force, gravitation. In 1665 Newton
deduced that the force that governs the fall of apples near the Earth is the same as that
which holds the Moon in its orbit. This was the first step toward developing a law of
gravitation that could be applied to any pair of bodies in the universe.

Afier introducing Newton’s law of universal gravitation, we discuss its consequences and its
experimental tests. We show that the Earth’s gravity can be understood as a particular
case of this universal law, and that the motions of the planets can be similarly explained.
We conclude with a look at modern gravitational theory, namely Einstein’s general theory
of relativity, which gives correct results when the gravitational force is strong (where
Newton’s theory fails) and agrees with Newton’s theory when the gravitational force is weak.

As you study this chapter, you should note that many of the basic concepts of dynamics
discussed in previous chapters find an application here. We apply basic laws for forces,
potential energy, the conservation of energy and angular momentum, harmonic motion, and
properties of extended bodies. We also introduce new concepts, including the notion of
Jfields, which will have application in later chapters.

- 16-1 GRAVITATION FROM THE
___ ANCIENTS TO KEPLER

From at least the time of the ancient Greeks, two prob-
lems were the subjects of searching inquiry: (1) the tend-
ency of objects such as stones to fall to Earth when re-
leased, and (2) the motions of the planets, including the
Sun and the Moon, which were classified with the planets
in those times. In early days these problems were thought
of as completely separate. One of Newton’s great achieve-
ments is that he saw them clearly as aspects of a single
problem and subject to the same laws.

The earliest serious attempts to explain the kinematics
of the solar system were made by the ancient Greeks.
Ptolemy (Claudius Ptolemaeus, 2nd century A.D.) devel-
oped a geocentric (Earth-centered) scheme for the solar
system in which, as the name implies, the Earth remains
stationary at the center while the planets, including the
Sun and the Moon, revolve around it. This should not be
a surprising deduction. The Earth seems to us to be a

substantial body. Shakespeare referred to it as “this
goodly frame, the Earth. . . . ” Even today, in naviga-
tional astronomy we use a geocentric reference frame, and
in ordinary conversation we use terms such as “sunrise,”
which implies such a frame.

Because simple circular orbits cannot account for the
complicated motions of the planets, Ptolemy had to use
the concept of epicycles, in which a planet moves around
a circle whose center moves around another circle cen-
tered on the Earth (see Fig. 1a). He also had to resort to
several other geometrical arrangements, each of which
preserved the supposed sanctity of the circle as a central
feature of planetary motions. We now know thatitisnota
circle that is fundamental but an ellipse, with the Sun at
one focus, as we shall discuss.

In the 16th century Nicolaus Copernicus (1473~ 1543)
proposed a heliocentric (Sun-centered) scheme, in which
the Earth (along with the other planets) moves about the
Sun (see Fig. 15). Even though the Copernican scheme
seems much simpler than that of Ptolemy, it was not
immediately accepted. Copernicus still believed in the

343




344 Chapter 16 Gravitation

r—Deferent of Mars

(a) Ep.cyclq of MarsJ ’(bi’ T

sanctity of circles, and his use of epicycles and other ar-
rangements (which are not shown in Fig. 15) was about as
great as that of Ptolemy. However, by putting the Sun at
the center of things, Copernicus provided the correct refer-
ence frame from which our modern view of the solar
system could develop. ‘

To resolve the conflict between the Copernican and
Ptolemaic schemes, more accurate observational data
were needed. Such data were compiled by Tycho Brahe*
- (1546 -1601), who was the last great astronomer to make
observations without the use of a telescope. His data on
planetary motions were analyzed and interpreted by Jo-
hannes Kepler (1571 - 1630), who had been Brahe’s assist-
ant. Kepler found important regularities in the motion of
the planets, which led him to develop three laws (dis-
cussed in Section 16-8) that govern the motion of the
planets,

Kepler’s laws showed the great simplicity with which
planetary motions could be described when the Sun was
taken as the central body, if we give up the notion of
perfect circles on which both the Ptolemaic and Coperni-
can systems were based. However, Kepler’s laws were
empirical; they simply described the observed motions of
the planets without any basis in terms of forces.t It was
therefore a great triumph when Newton was later able to
derive Kepler’s laws from his laws of motion and his law
of gravitation, which specified the force that acts between
each planet and the Sun.

In this way Newton was able to account for the motion
of the planets in the solar system and of bodies falling near
the surface of the Earth with one common concept. He

* See “Copernicus and Tycho,” by Owen Gingerich, Scientific
American, December 1973, p. 86.

+ See “How Did Kepler Discover His First Two Laws,” by
Curtis Wilson, Scientific American, March 1972, p. 92.
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Figure 1 (a) The Ptolemaic view of the
solar system. The Earth is at the center,
and the Sun and planets move around
it. The planets move in small circles

. large circles (deferents). {b) The Coper-
. nican view of the solar system. The Sun-
" is at the center, and the planets move

. around it.

thereby unified into one theory the previously separate
sciences of terrestrial mechanics and celestial mechanics,
The real scientific significance of Copernicus’ work lies in
the fact that the heliocentric theory opened the way for
this synthesis. Subsequently, on the assumption that the
Earth rotates and revolves about the Sun, it became possi-
ble to explain such diverse phenomena as the daily and
the annual apparent motion of the stars, the flattening of
the Earth from a spherical shape, the behavior of the trade-

winds, and many other observations that could not have

been explained so easily in a geocentric theory.

The historical development of gravitational theory can
be viewed as a model example of the way the method of
scientific inquiry leads to insight. Copernicus provided
the appropriate reference frame for viewing the problem, -
and Brahe supplied systematic and precise experimental
data. Kepler used the data to propose some empirical -

laws, and Newton proposed a universal force law from
which Kepler’s laws could be derived. Finally, Einstein
was led to a new theory which explained certain small
discrepancies in the Newtonian theory.

162 NEWTON AND THE LAW ‘
‘ OF UNIVERSAL ARTE
GRAVITATION

In 1665 the 23-year-old Newton left Cambridge Univer-
sity for Lincolnshire when the college was dismissed be-
cause of the plague. About 50 years later he wrote: “In the
same year (1665) I began to think of gravity extending to
the orb of the Moon . . . and having thereby compared
the force requisite to keep the Moon in her orb with the
force of gravity at the surface of the Earth, and found them
to answer pretty nearly.”

Newton's young friend William Stukeley wrote of hav-
ing tea with Newton under some apple trees when Mew-

(epicycles), whose centers travel along
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Figure 2 Both the Moon and the apple are accelerated toward
the center of the Earth, The difference in their motions arises -

because the Moon has enough tangential speed v to maintain

a circular orbit.

ton said that the setting was the same as when he got the
idea of gravitation. “It was occasion'd by the fall of an
apple, as he sat in a contemplative mood . .. and thus

by degrees he began to apply this property of gravitation

tothe motmn of the Earth and the heavenly bodys

(see Fig.2). = :
We can compute the acce!emt:on of the Moon toward

the Earth from its period of revolution and the radius of its

orbit. We obtain 0.0027 m/s* (see Sample Problem 5,

Chapter 4). This value is about a factor of 3600 smaller

than g, the free-fall acceleration at the surface of the Earth.

‘Newton, guided by Kepler's third law (see Problem 58),

sought to account for this difference by assuming that the
acceleration of a falling body is inversely propomona] to
the square of its distance from the Earth..

The question of what we mean by “distance from the
Earth” immediately arises. Newton eventually came to

i regard every particle of the Earth as contributing to the

gravitational attraction it had on other bodies. He made

- thedaringassumption that the mass of the Earth could be

treated as if it were all concentrated at its center (See

. Section 16-5.)

Wecanmattheﬁanhasapamclemthrespecllothe
Sun, for example. It is not obvious, however, that we can

‘treat the Earth as a particle with respect to an apple lo-

cated only a couple of meters above its surface. If we do
make this assumption, a falling body near the Earth’s
surface is a distance of one Earth radius (6400 km) from
the effective center of attraction of the Earth. The Moon is
about 380,000 km away. The inverse square of the ratio
of these distances is (6400/380,000)* = 1/3600, in agree-
ment with the ratio of the accelerations of the Moon and

theapple. In Newton’s words quo!ed abm ¢, itdoesindeed
“answer pretty nearly.” i

There are three overlapping realms in which we can
discuss gravitation. (1) The gravitational attraction be-
tween two bowling balls, for example, although measur-
able by sensitive techniques, is too weak to fall within our
ordinary sense perceptions. (2) The attraction of ourselves
and objects around us by the Earth is a controlling feature
of our lives from which we can escape only by extreme
measures. The designers of our space program have the
gravitational force constantly in mind. (3) On the scale of
the solar system and of the interaction of stars and gal-
axies, gravitation is by far the dominant force. It is remark-
able that all three snuauons can be described by the same
force law. =

- This force law, Newwn s law of nmversal gravrtatlon
can be stated as follows: i

, Every parude in the w:fverse attracts m'(i:;v other par-
ticle with a force directly proportional to the product
of their masses and inversely proportional to the

--square of the distance between them. The direction of

. this force is along the line joining the particles.

Thus the magnitude of the gravitational force F that two
particles of masses m, and m, separated by a dlstance r
exert on each other 5o _
Y % F Gmlml et e TR Tl

()

Here G, called the gfavitatlonal constant, is a universal
constant that has the same value for all pairs of particles.
.. It is important to note that the gravitational forces be-
tween two particles are an action-reaction pair. The first
particle exerts a force on the second particle that is di-
rected toward the first particle along the line joining them.
Likewise, the second particle exerts a force on the first
particle that is directed toward the second particle along
the line joining them. These forcesare equal in magnitude
but oppositely directed.

 The universal constant G must not be confused with the
gthat is the acceleration of a body arising from the Earth’s
gravity. The constant G has the dimensions L*/MT? and
is a scalar, while g is the magnitude of a vector, has the
dimensions L/T2, and is neither universal nor constant.

Notice that Newton's law of universal gravitation is not
a defining equation for any of the physical quantities
(force, mass, or length) contained in it. According to our
program for classical mechanics in Chapter 5, force is
defined from Newton’s second law, F = ma. The force F
on aparticle isassumed to be related in a simple way to the
measurable properties of a particle and its environment.
The law of universal gravitation is such a simple law.
Once G is determined from experiment for any pair of
bodies, that value of G can be used in the law of gravita-
tion to determine the grawtam:mal force between any
other pa:r of bodies,
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Figure 3 (a) The force F,, exerted on m, (by m,) is dlrected
opposite to the displacement, ry3, of m, from m,. (b) The

force F,, exerted on m; (by m,) is directed opposite to the e
plac:emcnt, Iy, of m, from m,. (c) Fi;=— F,, , the forces belng

an acnon—-reacuon palr

Notice also that Eq. | expresses the foncé between parti-

cles. If we want to determine the force between extended

bodies, as, for example, the Earth and the Moon, we must
regard each body as composed of particles. Then the in- -
~ teraction between all particles must be computed. Inte-

gral calculus makes such a calculation possible. Newton’s
motive in developing the calculus arose in part from a

desire to solve such problems. Although it is in general

incorrect to assume that all the mass of a body can be

concentrated at its center of mass for gravitational pur-.

poses, this assumption is correct for spherically s’ym’met-
ric bodies. We often use this result, wh1ch we prove m
‘Section 16-5.

. Experiment strongly suggests that t.he gravltatlonal
 force between two particles is independent of the presence
of other bodies and of the properties of the medium in
which the particles are immersed. The gravitational force
between two bowling balls remains unchanged whether

the balls are in free space, are under water, or are sepa-

rated by a brick wall. The “gravity screens” of science
fiction have no basis in fact.

* The law of universal gravitation is a vector law, whlch
can be expressed as follows. Let the displacement vector
r,; point from the particle of mass m, to the particle of
mass /1,, as Fig. 3a shows. The gravitational force F;,,
exerted on m1, by m, , is given m djmctmn and magmtude
by t.he vector relation !
m m, l‘.i -—~G m;mz r;;
: . 3’12 ra'o
in which r,, isthe magmtude of A The minus 51311 in Eq ;
2a shows that F,, points in a direction opposite tor,,; that
is, the gravitational force is attractive, 71, experiencing a
force directed toward m,. The displacement vector di-
vided by its own magnitude, r,,/r;,, is simply a unit vec-
tor u, in the direction of the displacement, so the last part
of Eq. 2a shows the inverse-square nature of the force.

The force gxerted onm, by nr:2 (see Fi Fg Jb} is s;m:larly

Fy=—GC

??‘2?’!21',
1 =—G 322;'

o i Iy

2by

Note in Egs. 2 and 2b that = “riz (see Figs. 30 and
3b) so that, as we expect, F,, = ~—~ng (see Fig. 3¢); that is,
the gravitational forces acimg on the twc bodies form an
actzcmreacuou pau- AN

16-3 THE GRAVITATIONAL
CONSTANT G

- Determining the value of G would seem to be a simple
~ task. All we need to do is to measure the gravitational o
_ force F between two known masses m, and m, separated " f
by a known distance r. We can then calculate G from
Eq.l.

A large-scale system such as the Earth and the Moon or

the Earth and the Sun cannot serve to determine G. The
distances are large enough that the objects can beregarded

as approximately point masses, but the values of the

masses are not determined independently. In fact, the
.~ masses of these bodies, as we shall soon discuss, are deter-

" mined using the value of G. 3
- Instead, we must turn to a small-scale measurement, in
which we use two laboratory objects of known mass and

measure the force between them. The force is very weak,

‘and the masses must be placed close together to make the
force as large as possible. When we do this, we can usually
no longer regard the masses as point particles, and Eq. 1
may not be applicable. There is, however, one special case

in which we can use Eq. | for large objects. As we prove in
Section 16-5, for spherical mass distributions we can re-

gardtheobjectasapo:ntmassconoentmtedatltsoenwr -

This is not an approximation; it is an exact relationship.
~ The first laboratory determination of G from the force

between spherical masses at close distance was done by

Henry Cavendishin 1798. He used a method based on the

torsion balance, illustrated in Fig. 4. Two small balls, each RE

of mass m, are attached to the ends of a light rod. This
rigid “‘dumbbell” is suspended, with its axis horizontal, by
a fine vertical fiber. Two large balls each of mass M are
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placed near the ends of the dumbbell on opposite sides. o

When the large masses are in the positions A4, they attract
the small masses according to the law of gravitation, and a
torque is exerted on the dumbbell, rotating it counter-
clockwise as viewed from above. The rod reaches an equi-
librium position under the opposingactions of the gravita-
tional torque exerted by the masses M and the restoring
torque exerted by the fiber. When the large masses are in
the positions B, the dumbbell rotates clockwise to a new
equilibrium position. The angle 26, through which the
fiber is twisted when the balls are moved from one posi-
tion (AA) to the other (BB), is measured by observing the
deflection of a beam of light reflected from the small
mirror attached to the fiber. From the value of # and the
torsional constant of the fiber {determined by measuring

its period of oscillation—see Section 15-3), the torque
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Figure 4 A schematic view of the apparatus used in 1798 by
Henry Cavendish to measure the gravitational constant . The
large spheres of mass M, shown in location 44, can also be
moved to location BB.

can be determined and the gravitational force can be ob-
tained. Knowing the values of the masses m and M and
the separation of their centers, we can calculate G. (See
Sample Problem 1.)

Cavendish’s original experiment gave a value for G of
6.75 X 10" N -m?/kg? In the nearly 200 years since the
time of Cavendish, the same basic technique using the
torsion balance has been used to repeat this measurement
many times, leading to the presently accepted value of G,

G =6.67259 X 107" N-m?/kg?,

with an uncertainty of +0.00085 X 107" N-m?/kg? or
about +0.013%. Compared with the results of measuring
other physical constants, this precision is not impressive;
for example, the speed of light was measured to a preci-
sion of about 10789% before its value was set as a standard.
It is difficult to improve substantially on the precision of
the measured value of G because of its small magnitude
and the correspondingly small value of the force between
the two objects in our laboratory experiments. If we use
two lead spheres of diameter 10 cm (and mass 6 kg), the
maximum gravitational force between them when they
are as close as possible is about 2 X 1077 N, correspond-
ing roughly to the weight of a piece of paper of area
I mm?,

This difficulty of measuring G is unfortunate, because
gravitation has such an essential role in theories of the
origin and structure of the universe. For example, we
would like to know if G really is a constant. Does it change
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with time? Does it depend on the chemical or physical
state of the masses? Does it depend on their temperature?
Despite many experimental searches, no such variations
in G have so far been unambiguously confirmed, but
measurements continue to be refined and improved, and
the experimental tests continue.*

The large gravitational force exerted by the Earth on all
bodies near its surface is due to the large mass of the Earth.
In fact, the mass of the Earth can be determined from the
law of universal gravitation and the value of G calculated
from the Cavendish experiment. For this reason Caven-
dish is said to have been the first person to “weigh” the
Earth. (In fact, the title of the paper written by Cavendish
describing his experiments referred not to measuring G
but instead to determining the density of the Earth from
its weight and volume.) Consider the Earth, of mass M,
and an object on its surface of mass m. The force of attrac-
tion is given both by

GmM;g
R
Here R is the radius of the Earth, which is the separation

of the two bodies, and g is the free-fall acceleration at the
Earth’s surface. Combining these equations we obtain

gRE _ (9.80 m/s?)(6.37 X 10° m)?
G 667X10°" N-m/kg
=597 X 10% kg.

Dividing the mass of the Earth by its volume, we obtain
the average density of the Earth to be 5.5 g/cm?, or about
5.5 times the density of water. The average density of the
rocks on the Earth’s surface is much less than this value.
We conclude that the interior of the Earth contains mate-
rial of density greater than 5.5 g/cm?. The Cavendish ex-
periment has given us information about the Earth’s core!
(See Problem 26.)

F=mg and F=

ME=

Sample Problem 1 In the Cavendish apparatus illustrated in
Fig. 4, suppose M = 12.7 kgand m = 9.85 g. The length L of the
rod connecting the two small spheresis 52.4 cm. The rod and the
fiber form a torsion pendulum whose rotational inertia / about
the central axisis 1.25 X 1072 kg~ m® and whose period of oscil-
lation T is 769 s. The angle 26 between the two equilibrium
positions of the rod 1s 0.516° when the distance R between the
centers of the large and small spheres is 10.8 cm. What is the
value of the gravitational constant resulting from these data?

Solution Let us first find «, the torsional constant of the fiber.

* Fora list of references to measurements of G, see “The Newto-
nian Gravitational Constant.” by George T. Gillies, Metrologia,
Vol. 24, p. 1, 1987. A discussion of these experiments and others
testing the inverse-square law can be found in “Experiments on
Gravitation,” by Alan Cook, Reporis on Progress in Physics.
Vol. 51, p. 707, 1988.
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The period of torsxoaai oscﬂlauon is g}veu by Eq 21 of Chap—-

ter 13, ; ;
T=2z \F :
: : K
Soixang for ylelds :
Al (4n7)(1.25 X 1{3“3 kg m?) g
T =834X 107*N-m.

The rod is in cqulhbnum under ihe mﬂaeacs of two opposing
torques resulting from the actions of the fiber and of the iarge
spheres. The magnitude of the torque exerted by the fiber is
related to the angular. dlSp!accment ] accorémg to Eq 17 of
Chapter 15, : ,

& 6516” Erzrad
, = -8
; 1= x& (834)(10 Nm}( X 36{}“)

: —-375)( IO"“N m,

Thxs torque is balanced by the total torque due to the gravzta-
tional force exerted by each large sphere on the nearby small
sphere. The force F on each small sphere is equal to GMm/R?,
and the moment arm is one-halfthe Iength Loftherod. Thetotal
gravxtanonal lorque 1s then ,

1= {21?)(!../2) FL= ;Gﬁf"" i
Solvmg for G yxelds ¥ e
TG _BI5% 10-ON- m)((} 108 mp

MmL (127 kg)(0.00985 kg)(0.524 m)
=6.67X 107" N-m¥kg2.

Sample Pieblem 2 Caleuiate, the éraviiationai forces (a) be»
tween two 7.3-kg bowling balls separated by 0.65 m between
their centers and (b) between the Earth and the Moon..
Solutmu {a} Usmg Eq 1 we havc =25 ~

(6. 67 X 101 N- m’fkg )(7 3 kg)(? 3 kg}

Fe= Gm;mz
, r? : (0 65 H}F
=84X1 0“9N

by Usmg data fm‘ the Earth and the Moon fmm Appe ndn C
we find

(6 67X 10-" N- m%kg‘)(fi 98 X 102 kg){'f' 36 X 101‘ kg)
‘ (3.82 X 10* my?

~201 X 109N,

164 GRAVITY NEAR THE
‘ EARTH'S SURFACE

Let us assumne, for the time being, that the Earth is spheri-
cal and that its density depends only on the radial distance
from its center. The magnitude of the gravitational force

TABLE 1 VARIATION OF g, WITH
. ALTITUDE
Altitude ' 2
(km} : (m/s?
-0 9.83
5 9.81
10 9,80
50 ; - 9.68
100 ~ 9.53
4004 b 8.70
35,700 s ' ' 0.225
380, 0(}{}*

0.0027
@A typm.l spaae simﬁie altitude.” . .

5 The altitude of communication satellites.
¢ The distance to the Moon.

acting on a particle of mass m, located at an external point
a distance r from the Earth’s center can then be wrstten,
from Eq i as

m which My is tha méss of thé Eérih i This ‘grairit‘atiohai
force can also be wntten, from Newton s second law, as

Hcre Sois the free~fa11 acceieratxon due only tothe grama-
tional pull cf the Earth, Comb:mng the two equanons
above gwes ‘
: d GM E

. rz 5 |

3

i g;;

Table 1 shows some. values of g{, at vancus altJtudes
above the surface of the Earth, calculated from this equa-
tion. Note that, contrary to the impression that gravity
dmps tozeroinan orbiting satellite, we ﬁndg,D = 8.7 m/s?
at typmal space shuttle alntudes i
The real Earth djﬁ'ers from our model Earth in three
ways ~

1 Tke Eartiz s cmst is m}z amfom There are local den-
sity vanat;ons everywhere The precise measurement of
local variations in the free-fall acceleration gives informa-
tion that is usefni for example, for oil prospecting. Figure
5 showsa grawty survey over an underground salt dome.
The contours connect poznts w:th the same free-fall accel-
eration, plotted as deviations from a convenient reference
value. The unit, named to honor Galileo, is the mllhgaL
wherﬁ 1 gal 10° mgal = 1 cm;f's2 :

% Tize Earthisnota Spkere The Earth is apprommatcly
an ellipsoid, flattened at the poles and bulging at the equa-
tor. The Earth’s equatorial radius is greater than its polar
radius by 21 km. Thus a point at the poles is closer to the
dense core of the Earth than is a point on the equator. We
would expect that the free-fall acceleration would increase
as one proceeds, at sea level, from the equator toward the
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Figure 5 A surface gravity survey over an underground salt
dome in Denmark. The lines connect points with the same
value of g. The difference between the value of g on a contour
and the value at the center is in units of milligal, equivalent
to 1073 m/s? or about 107¢ g. It is clear that something buried
here is exerting a force centered in this region. Oil is often
found in such formations.

poles. Figure 6 shows that this is indeed what happens.
The measured values of g in this figure include both the
equatorial bulge effect and effects resulting from the rota-
tion of the Earth.

3. The Earth is rotating. Figure 7a shows the rotating
Earth from a position in space above the north pole. A
crate of mass m rests on a platform scale at the equator.
This crate is in uniform circular motion because of the
Earth’srotation and is accelerated toward the center of the
Earth. The resultant force acting on it must then point in
that direction.

Figure 7b is a free-body diagram for the crate. The
Earth exerts a downward gravitational pull of magnitude
mg,. The scale platform pushes up on the crate with a
force mg, the weight of the crate. These two forces do not
quite balance, and we have, from Newton’s second law,

F=mg, — mg=ma
or
gﬁ — g =4,

in which ais the centripetal acceleration of the crate. For g
we can write @R, where 15 the Earth’s angular rota-
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9.84 -

9.83

P I (O % Pty o
0 107 20° 30° 40° 50° 60° 70° BO° 90°
@Y Latitude

Figure 6 The variation of g with latitude at sea level. About
65% of the effect is due to the rotation of the Earth, with the
remaining 35% coming from the Earth’s slightly flattened shape.
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Figure 7 (a) A crate on the rotating Earth, resting on a plat-
form scale at the equator. The view is along the Earth’s rota-
tional axis, looking down on the north pole. (b) A free-body
diagram of the crate. The crate is in uniform circular motion
and is thus accelerated toward the center of the Earth.

tion rate and R is its radius. Making this substitution
leads to

) 2m\?
& —g= 'Ry = T Re, 4

in which T = 24 h, the Earth’s period of rotation. Substi-
tuting numerical values in Eg. 4 yields

& — £ = 0.034 m/s>,

We see that g, the measured free-fall acceleration on the
equator of the rotating Earth, is less than g,, the expected
result if the Earth were not rotating, by only 0.034/9.8 or
.35%. The effect decreases as one goes to higher latitudes
and vanishes at the poles.
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Sample Problem 3 (a) A neutron star is a collapsed star ef
extremely high dens;ty The blinking pulsar in the Crab nebulais
the best known of many examples. Consider a neutron star with
a mass M equal to the mass of the Sun, 1. 99X 10°kg, and a
radius R of 12 km. What is the free-fall acceleration at its sur-
face? Ignore rotational effects. (b) The asteroid Ceres has a mass
of 1.2 X 10* kg and a;aémsofé?ﬁkm What is the free-fall
acceleration at 1!5 surface‘? ~ ;

Soh.mon {a) From Eq. 3 we have.

_GM _ {éﬁ?Xi{}*”N m’/kgﬁ)ﬂ 99X103‘3kg}
&= R (12,000 mpP
=92>< G*’mjsl ;

Even though pulsars rotate extremciy rapzdiy, rotanonai aﬁ'ects

have oniy a small influence on the value of g, because of the ‘

small size of pulsars. :
() In the case of the asteroid Ceres, we have

GM _ (6.67X 10-" N-m/kg?)(1.2 X 102 ke)
o= pa = @I X10°mp
“036m/sz

There is quite a contrast bemeen the grawtanonai forcesonthe

surfaces of these two bodles* i

165 GRAVITATIONAL EFFECT OF A
SPHERICAL DISTRIBUTION OF
'MATTER (Optional) ‘

We now prove a result we have already used: a spherically sym-
metric body attracts particles outside it as if its mass were con-

centrated at its center. We begin by conmdenng a uniformly
dense spherical shell of mass M whose thickness ¢ is small com- ;

pared to its radius R (Fig. 8). We seek the gmmamnai force it
exerts on an external particle Pofmassm. =

We assume that each particle of the shell exerts on Pa l‘o:ce %
thatis pmpartmnai 1o the mass of the particle, inversely propor-

Figure 8 Gravitational attraction of a section of a spherical
shell of matier on a particle of mass mat P,

tional to the square of the distance between that particle of the
shell and P, and directed along the line joining them. We must
then obtain the resultant force on P, attributable to all pa:ts of
the spherical shell. ~

Asmall panofihesﬁeﬁamamctsmmthafamﬁ Asmall
part of equal mass at B, equally far from m but diametrically

opposite A, attracts m with a force F,. The resultant of these two g |
- forces on m is F, + Fy. Each of these forces has a componem

F cos a along the symmetry axis and a component F sin o per-
pendicular to the axis. The perpendicular components of F,

- and F cancel, as they do for all such pairs of opposite points. To
- find the resultant force on P for all points on the shell, we need
- consider only the components parallel to the axis. e
- Let us take as our element of mass of the shell a circular strip
- dM. ts radius is R sin 8, its length is 27(R sin 6), its width is
(=R dﬂ and its thcknm is 7. Hence ithas a volume :

av= ZmR’ sin Bdﬂ

LetLhedens:tyoftheshellbep.sothatthcnmssw:ﬂunthestnpls &

dM=pdV= 2nipR? sin 6 df.

Every pamcle inthe nng.mchasoncofmassdm,aw atu'actsP 4
- witha ferce that has an axial componeut

o d szMdm‘cosag s

: Addmg the coninbuﬂons for aIi the pamcles in the rmg gwes

dF,, + de =%—— (cos a)(dmA + dm,, el

‘ ori :

where dM is the total mass of the ring and dF is the total force on
mexerted by the ring.

~ Substitutmg for dM, we obiam

sde@

dF~2xGr mR’ cdsaf ~ f,(S}

The vanabies x, a, and 6 are related. From the ﬁgure we see that

casa:‘“"r 'R_xmﬁ R L

Usmg the law of cosmes, x3 =2+ R2—2rR cos 0, we obiam

PRy

Rceos = "T*' k (7]
D:ﬁ‘erennazmg Eq.7 gives
sin 8 d@ o dx. ; {B}

We now pui Eq 7mm Eq 6a.ndthcn putEqs 6and$mm£q 5.

As a result we ehrmnatc # and & and obtam ‘

nGrme ( iy
T2\ X2

dF =

+ 1) dx. ©)
This is the force exerted by a}s m‘cuiar strip dM on ihe parn-
cle m.

We must now consider every element of mass in the shell by
summing over all the circular strips in the entire shell. This
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involves an integration over the shell with respect to the variable
x, which ranges from a minimum valueof r— Rtoa ma:umum
value r + R. Thenwdedmtegmlm o

1 r+R 2 2 2 r+R
f ( = +l)dx [—{’—m+x] =4R,
—R x* X - r—R
wl:uch gives for the force, using Eq. 9, 3

F=| dF="G"""’“{4R) e (10)
2 —R 7
where A

M= 4:LR’tp

is the tota] mass sfthe shell. Equation 10 is emﬂy the same
result we would obtain for the force between particles of mass M
and m separated by a distance r. Wehavctherefomproved the
following important general result:

- A uniformly dense .s'pkerim;' shell attracts an external poinf
mass as if all the mass of the shell were concentrated at its .
center. ~ ‘

A solid sphere can be regarded as composed of a large number
- of concentric shells. If each spherical shell has a uniform density,
even though different shells may have different densities, the
same result applies to the solid sphere. Hence a body such as the
Earth, the Moon, or the Sun, to the extent that they are such
spheres, may be regarded gravitationally as point particles to
bodies outside them. ;

Keep in mind that our proof applies only to spheres and only
when the density is uniform overthcqﬂmorafunchonof
radius alone.

Force on an Interior Particle

Wenuwmveanothumpommmﬂtthefomumwwa
spherical shell on a particle inside it is zero. Figure 9 shows the
particle at point P inside the shell. Notice that r is now smaller
than R. The integration over x;, nawmththehmnsk—?tc
r+ R, gives

I (’i_mﬂ dx= [——(”_Rz)+x|‘~
R—r x*

and so F = 0. Thus we obmnanotbergcnemlmslm.

A uniform spherical shell of matter exerts nogravuauam!
jbrce ona particle located ms:de u ;

This last result, ahhough not obvious, is phusiblc because the
mass elements of the shell to the left and to the right of min Fig. 9
now exert forces of opposite directions on m. There is more mass
on the left that pulls m to the left, but the smaller mass on the
right is closer to m; the two effects exactly cancel only if the force
varies precisely as an inverse square of the separation distance of
two particles. (See Problem 29.) Important consequences of this
result will be discussed in the chapters on electricity. There we
shall see that the electrical force between charged particles also
depends inversely on the square of the distance between them.

The above result for a particle inside a spherical shell implies
that the gravitational force exerted by the Earth on a particle
decreases as the particle goes deeper into the Earth, assuming a
constant density for the Earth. As the particle goes deeper, more

o Vi _J';tdﬂ'

Figure 9 Gravitational attraction of a section of a spherical
shell of matter on a particle of mass m at a point P inside the
i

of the Earth’s mass is in shells that are external to the location of
the particle, and the net force on the particle from those shells is
zero. The gravitational force becomes zero at the center of the
Earth. Hence g would be a maximum at the Earth’s surface and
decrease both outward and inward from that point if the Earth

* had constant density. Can you imagine a spherically symmetric

distribution of the Earth’s mass which would not give this result?
(See Problem 26.)

: Sample Problem4 Suppose a tunnel could be dug through the
‘Earth from one side to the other along a diameter, as shown in *

Fig. 10. (a) Show that the motion of a particle dropped into the
tunnel is simple harmonic motion. Neglect all frictional forces
and assume that the Earth hasa uniform density. (b) If mail were

delivered through this chute, how much time would elapse be-

tween deposit at one end and delivery at the other end?

Solution (@) The gravitational attraction of the Earth for the
particle at a distance r from the center of the Earth arises entirely
from that portion of matter of the Earth in shells internal to the

?;ga:re 10  Sample Problem 4. A pamclc moves in a tunnel
through the Eanh o A SR ;
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position of the particle. The external shells exert no force on the
particle. Let us assume that the Farth’s density is uniform with
the value p. Then the mass A inside a sphere of radius r and
volume V* is
' 4ar?
M = pV’ mp—?)— .

This mass can be treated as though it were concentrated at the
center of the Earth for gravitational purposes. Hence the radial
component of the force on the particle of mass m is

GM'm
7

F=-

The minus sign indicates that the force is attractive and thus
directed toward the center of the Earth.

Substituting for M, we obtain

panr’m _ dnm\
F=“G“-3—r§-'~‘“ GPT r=—kr.

Here Gpdnm/3 is a constant, which we have called k. The force is
therefore proportional to the displacement r but oppositely di-
rected. This is exactly the criterion for simple harmonic motion.

(b The period of this simple harmonic motion is

g ey [ 3 3
T=2n T 2n Gt G

With p = 5.51 X 10? kg/m?, we have

iz in
=y Gp \/(6.67 X 10~ N-m¥/kg?)(5.51 X 10° kg/m?)
= 5060 s = 84.4 min.

The time for delivery is one-half period, or about 42 min. This
time is independent of the mass of the mail. It can be shown that
the same period results if the tunnel is dug along any chord
instead of along a diameter.

The Earth’s density is not really uniform. What would be the
effect on this problem if we took p to be some function of 7, rather
than a constant?

Testing the Inverse-Square Law

As we discuss in Section 16-8, Kepler’s laws give direct evidence
for a 1/r? gravitational force. We can therefore regard the 1/r?
law to be well tested at distances of the order of the size of the
solar system (10'* m). Small exceptions in the motion of the
inner planets are explained by Einstein’s general theory of rela-
tivity, which supersedes Newton’s law when the gravitational
force is intense but which reduces to Newton’s law when the
force is weaker; see Section 16-10.

We would therefore like to test the 1/r? law at laboratory
distances. Because the force is so weak, it is difficult to make such
atest by repeating the Cavendish experiment with different sepa-
rations between the masses. A more precise method makes use of
the vanishing of the gravitational force on a test particle inside a
spherical shell. If we could isolate a test particle, say on one arm
of a torsion balance, and then surround it with a spherical shell,
any slight rotation of the balance as the test particle moves
within the shell would indicate a deviation from the 1/77 law,
The rotation could be detected by a suitable mechanism at-
tached to the other arm of the balance.

Unfortunately, surrounding a test mass with a spherical shell

Torsion
balance Electrostatic

detector

Figure 11 A test mass inside a long cylinder. For a 1/r? force,
the gravitational attraction between the test mass and the cyl-
inder should vanish (neglecting effects of the ends). A torsion
balance allows changes in the force on the test mass to be
measured at different locations inside the cylinder.

and moving it inside present great technical difficulties; as an’
alternative a long cylinder is used instead. From a calculation
similar to the one we used for the spherical shell, it can be shown -
that the gravitational force exerted by a long cylindrical shell oni -

a test mass inside the cylinder vanishes if the cylinder is infinitely

long; for a cylinder of finite length a small but easily calculable

correction must be applied.

Figure |1 shows the geometry for a typical experiment. Asthe
test mass is moved in a horizontal plane, variationsin the gravita-
tional force between the cylinder and the test mass would be
detectable with the torsion balance. If the gravitational force
between particles had a variation other than 1/r2, the force on
the test mass would not vanish and would vary as the test mass

moves in the horizontal plane.

Such experiments show that the force is indeed of the form

1/r? at laboratory distances (centimeters to meters). One way of

expressing the results of these experiments is to assume the force |

to be of the form 1/r*** where & = 0 in the Newtonian theory,

and then to show that the experiment places a small upper limit
on 4. The present upper limit on & is about 1074 at the best

precision obtainable from laboratory studies, there appears to be

no deviation from the 1/7? form of the law of gravitation. By
comparison, experiments testing the 1/72 force between electric =
charges (see Section 29-6) give an upper limit of about 10~ %on é

inthat case. %

16-6 GRAVITATIONAL
_POTENTIAL ENERGY

In Chapter 8 we discussed the gravitational potential en-
ergy of a particle (mass 1) and the Earth (mass M). We
considered only the special case in which the particle re-
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