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to rest at the bottom of the shell. We choose our origin to coin-
cide with the initial position of the center of the shell. Figure 115
shows that, with respect to this origin, the center of mass of the
ball -shell system is located a distance 4R to the left, halfway
between the two particles. Figure 114 shows that the displace-
ment of the shell is given by

d=14R.

The shell must move to the left through this distance as the ba!i
comes to rest.

The ball is brought to rest by the frictional force that acts
between it and the shell. Why does this frictional force not aﬁ’ect
the final location of the center of mass?

9-4 LINEAR MOMENTUM OF A
PARTICLE _

The momentum of a single particle is a vector p defined as
the product of its mass m and its velocity v:

p=rmv. (19)

Momentum, being the product of a scalar by a vector, is
itself a vector. Because it is proportional to v, the momen-
tum p of a particle depends on the reference frame of the
observer; we must always specxfy this frame.

NeMon in his famous Principia, expressed the second
law of motion in terms of momentum (which he called
“quantity of motlon”). Expressed in modern terminology
Newton’s second law reads:

The rate of change of mOinentum of a body is equal
to the resultant force acting on the body and is in the
direction of that force.

In symbolic form this becomes

_d
SF= (20)

Here 3 F represents the resultant fdrce acting on the par-
ticle.

For a single pamcle of constant mass, this form of the
second law is equivalent to the form F = ma that we have
used up to now. That is, if m is constant, then

dp

F= -a?—-—‘i(mv) m—g——-ma
The relations F = ma and F = dp/dt for single particles
are completely equivalent in classical mechanics.
A convenient relationship between momentum and ki-
netic energy is found by combining K= {mp? and p =
mw, which gives

v
k=2 @n

Momentum at High Speeds (Optional) :
At particle speeds close to the speed of light (a region in which
relativity theory must be used in place of Newtonian mechan-
ics), Newton’s second law in the form F = ma is no longer valid.
However, it turns out that Newton’s second law in the form
F = dp/dt is still a valid law if the momentum p for a single
particle is defined not as mv but as

p -3 .—.——m—v——-—
JT=0v%c2’
in which c is the speed of light. At ordinary speeds (v < ¢), Eq.
22 reduces to Eq. 19.

For relativistic particles, the basic relationship between mo-
mentum and kinetic energy can be shown to be

K=(pcy + (mc?? — mc. V (23)

We shall derive this result in Chapter 21. Figure 12 shows a
comparison between the classical (Eq, 21) and relativistic (Eq,
23) results for particles of a range of velocities. Obviously the
classical result fails at high speed. As expected (see Problem 2‘7},
Eq. 23 reduces to Eq. 21 at ordinary speeds.

No matter in what form we write the kinetic energy, it has
dimensions of mass times velocity squared, which is the same as
momentum times velocity. We can therefore write, using our
notation of Section 1-7 to indicate dimensions, -
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Figure 12 A comparison of the classical (Eq. 21) and relativ-
istic (Eq. 23) relationships between momentum and kinetic
encrgy for electrons emitted in certain radioactive decay pro-
cesses. The circles represent the experimental measurements;
the horizontal and vertical bars passing through the circles
represent the range of uncertainty of these measurements, The
data obviously favor the relativistic relationship. Notice that
at low velocity (small energy and momentum) the two rela-
tionships are indistinguishable.




It is often convenient to express momentum in units of energy
divided by velocity, and convenient choices in working with
particles are eV/c, MeV/c, and so on. This allows us to express
the quantity pc in energy units such as MeV, which makes it
much more convenient in working with expressions like Eq. 23.
For an electron with a momentum given as 1.5 MeV/c, for
example, the term pcin Eq. 23 is 1.5 MeV and the kinetic energy
of the electron can easily be calculated from that equation to be
1.1 MeV.

In the region of very high particle speeds, the particle momen-
tum p can be so great that the term pc in Eq. 23 becomes much
larger than the term mc?, and that equation then reduces to
K= pc to a good approximation. Expressing momentum in
units of energy divided by cis especially useful in this region. For
example, an electron whose momentum is given as 500 MeV/c
has a kinetic energy very close to 500 MeV. (Note that this
.approximation is a very poor one for the 1.5-MeV electron con-
sidered above.) W

- 9.5 LINEAR MOMENTUM OF A
- SYSTEM OF PARTICLES

Suppose that instead of a single particle we have a system
of N particles, with masses m,, m,, . . . , my. We as-
sume that no mass enters or leaves the system, so that the
~ total mass M (=2 m,) of the system remains constant
- with time. The particles may interact with each other, and
external forces may act on them as well. Each particle has
-a certain velocity and momentum in the particular refer-
*ence frame being used. The system as a whole has a total
- momentum P, which is defined to be simply the vector

sum of the momenta of the individual particles in that
same frame, or

P=p,+p,+ - +py

= mlvl + m2V2 + M + vaN' (24)
~ Ifwe compare this relation with Eq. 13, we see at once that
P=Mv, (25)

‘; :Which is an equivalent definition for the momentum of a
_system of particles:

' The total linear momentum of a system of particles is
equal to the product of the total mass of the system
and the velocity of its center of mass.

. Ifwe differentiate Eq. 25 with respect to time we obtain,
for an assumed constant mass M,

‘ dp AV

e == M ZB = M,

7 M 7 R om (26)

 Comparison of Eq. 26 with Eq. 16, £ F,,, = Ma,_,,, allows

- us to write Newton’s second law for a system of particles
in the form:

dap
E Fext - 3‘5— . (2?)
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Equation 27 states that, in a system of particles, the net
external force equals the rate of change of the linear mo-
mentum of the system. This equation is the generalization
of the single-particle equation % F = dp/dt (Eq. 20)to a
system of many particles, when no mass enters or leaves
the system. Equation 27 reduces to Eq. 20 for the special
case of a single particle, since only external forces can act
on aone-particle system. In Section 9-8 we consider modi-
fications of Eq. 27 for systems of variable mass.

. 96 CONSERVATION OF LINEAR
MOMENTUM

Suppose that the sum of the external forces acting on a
system is zero. Then, from Eq. 27,

dp
dr
When the net external force acting on a system is

zero, the total vector momentum of the system re-
mains constant.

= or P=aconstant.

This simple but quite general result is called the law of
conservation of linear momentum. Like the law of conser-
vation of energy, the law of conservation of linear mo-
mentum applies to a vast range of physical situations and
has no known exceptions.

Conservation laws (such as those of energy and linear
momentum, which we have already encountered, and
those of angular momentum and electric charge, which
we shall encounter later in the text) are of theoretical and
practical importance in physics because they are simple
and universal. The laws of conservation of energy and of
linear momentum, for example, go beyond the limita-
tions of classical mechanics and remain valid in both the
relativistic and quantum realms.

Conservation laws all have the following form. While
the system is changing there is one aspect of the system
that remains unchanged. Different observers, each in a
different reference frame, would all agree, if they watched
the same changing system, that the conservation laws ap-
plied to the system. For the conservation of linear mo-
mentum, for example, observers in different inertial refer-
ence frames would assign different values of P to the
linear momentum of the system, but each would agree
(assuming X F,,, = 0) that the value of P remained un-
changed as the particles that make up the system move
about. The force F is an invariant with respect to Galilean
transformations (all inertial observers agree on its meas-
urement). If 2 ¥, = 0 in any inertial frame, then all iner-
tial observers will also find X F,,, = 0 and will conclude
that momentum is conserved.

The total momentum of a system can be changed only
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by external forces acting on the system. The internal
forces, being equal and opposite, produce equal and op-
posite changes in momentum, which cancel each other.
Fora system of partlcies on w}nch no net external force
acts, s
p, + pz -+ + + py=a constant. (28)

The momenta of the mdmdual particles may change, but
their sum remains constant if there is no external force.

Momentum is a vector quantity. Equation 28 is there-
fore equivalent to three scalar equations, one for each
coordinate direction. Hence the conservation of linear
momentum supphes us with three conditions on the mo-
tion of a system to which it applies. The conservation of
energy, on the other hand, supplies us with only one con-
dition on the motion of a system to whxch it apphes,
becauseenergylsasca}ar X

If our system of particles cons:sts of only a single parti-
cle, then Eq. 28 reduces to a statement that when no net
force acts on it the momentum of the particle is a con-
stant, which (for a single particle) is equivalent to stating
that its velocity is a constant. This is s:mply a restatement
of Newton’s first law.

Sample Problem 6 A stream of bullets whose mass mis each
38 g:sﬁredhonzontallythhaspeedvofllOOm/smtcalarge

wooden block of mass M (=12 kg) that is initially at rest on a
horizontal table; see Fig. 13. If the block is free to slide without
friction across the table, what speed will it acqmre after it has
bsorbed 8 bullcts‘? T i

Solntlon Equahon 28 (P constant) is. vahd only for closed
systems, in which no. partxcles leave or enter. Thus our system
must include both the block and the 8 builets, taken together. In
Fig. 13, we have ldenuﬁed thls system by drawmg a closed curve
around if. ‘

For the momcnt we con&der only the honzontal direction.
No external horizontal force acts on the system of block +
bullets. The forces that act when the bullets strike the block are
internal forces and donot contnbute 10 Foyes whxch has no hon-
zontal component:

Because no (horizontal) external forces act, we can apply the
law of conservation of momentum ( Eq. 28). Theinitial (horizon-
tal) momentum, measured while the bullets are still in flight and
the block is at rest, is s ~

i P; = N(mv),

System boundary

|

Figure 13 Sample Problem 6. A gun fires a stream of bullets
toward a block of wood. We analyze the system that we define
10 be the block plus the bullets in flight.

in which mpis the momentum of an individual bulletand N = 8,
The final momentum, measured when all the bullets are in the
block and the block is sliding over the table with speed V, is

=(M+Nm)V.
Conservation of momentum requires that

P=P;
or
N(mv) = (M + Nm)V.

Solving for V yields.

. Nm (8)(3.8 X 10~3 kg)

VTN ket @03 X 107k O™
=28m/s.

With the choice of system that we made, we did not have to 3
consider the forces exerted when the bullets h1t the block Those -

forces are all internal.
In the vertical direction, the external forces are the weight of
the bullets, the weight of the block, and the normal force on the

block. While the bullets are in flight, they acquire a small vertical ;
momentum component asa result of the action of gravity. When

the bullets strike the block, the block must exert on each bulleta

force with both horizontal and vertical components. Along with
the vertical force on the bullet; which is necessary to change its
vertical momentum to zero, there must (according to Newton’s

third law) be a corresponding increase-in the normal force ex~

erted on the block by the horizontal surface. This increase is not ;

only from the welght ofthe nnbedded bullet; it has an additional
contribution arising | from the rate of change of the vemcal mo-

mentum of the bullet. When all the bullets have come to rest
relat:ve to the block, ‘the normal force will equal the combmed :

welghts of block and imbedded bullets.

" For sxmphclty in solvmg this problem, we have assumed that
the bullets are fired so rapidly that all 8 are in flight before the
first bullet strikes the block. Can you solve this problem without
making this assumption?

Suppose the system boundary is enlarged so that it includes
the gun, which is fixed to the Earth. Does the horizontal mo-
mentum of this system change before and after the firing? Is
there a horizontal external force?

Sample Problem 7  As Fig. 14 shows, a cannon whose mass M
is 1300 kg fires a 72-kg ball in a horizontal direction with a
muzzle speed v of 55 m/s. The cannon is mounted so that it can
recoil freely. (a) What is the velocity V¥ of the recoiling cannon
with respect to the Earth? (b) What is the initial velocity vg of the
ball with respect to the Earth?

Solution (a) We choose the cannon plus the ball as our system.
By doing so, the forces associated with the firing of the cannon
are internal to the system, and we do not have to deal with them.
The external forces acting on the system have no horizontal
components. Thus the horizontal component of the total linear
momentum of the system must remain unchanged as the can-
non is fired.

We choose a reference frame fixed with respect to the Earth,
and we assume that all velocities are positive if they point to the
right in Fig. 14.

ik iaieia, a8
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System boundary

Figure 14 Sample Problem 7. A cannon of mass M fires a
ball of mass m. The velocities of the ball and the recoiling
cannon are shown in a reference frame fixed with respect to
the Earth. Velocities are taken as positive to the right.

Before the cannon is fired, the system has an initial momen-
tum P, of zero. After the cannon has fired, the ball has a horizon-
tal velocity v with respect to the recoiling cannon, v being the
ball’s muzzle speed. In the reference frame of the Earth, how-
ever, the horizontal velocity of the ball is » + V. Thus, the total
linear momentum of the system after firing is

Pi=MV+m@+V),

in which the first term on the right is the momentum of the
recoiling cannon and the second term that of the speeding ball.

Conservation of linear momentum in the horizontal direction
requires that P, = Py, or

O=MV+m@v+V)
Solving for V yields

my _ (12kg)55m/s) _
M+m 1300 kg + 72 kg

V== —2.9 m/s.
The minus sign tells us that the cannon recoils to the left in Fig.
14, as we expect it should.

(b) The velocity of the bail with respect to the (recoiling)
cannon is its muzzie speed v. With respect to the Earth, the
velocity of the ball is

vp=v+V
= 55 m/s + (—2.9 m/s) = 52 m/s.

Because of the recoil, the ball is moving a little slower with
respect to the Earth than it otherwise would. Note the impor-
tance in this problem of choosing the system (cannon + bail)
wisely and being absolutely clear about the reference frame
(Earth or recoiling cannon) to which the various measurements
are referred.

Sample Problem8 Figure 15 showstwo blocks, connected by a
spring and free to slide on a frictionless horizontal surface. The
blocks, whose masses are m, and m,, are pulled apart and then
released from rest. What fraction of the total kinetic energy of
the system will each block have at any later time?

Solution We take the two blocks and the spring (assumed
massless) as our system and the horizontal surface on which they
slide as our reference frame. We assume that velocities are post-
tive if they point to the right in Fig. 15.

The initial momentum P, of the system before the blocks are
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System boundary

No friction—

Figure 15 Sample Problem 8. Two blocks, resting on a fric-
tionless surface and connected by a spring, have been pulled
apart and then released from rest. The initial total momen-
tum is zero, and so it must remain zero at all subsequent
times. Velocities are taken as positive to the right.

released is zero. The final momentum, at any time after the
blocks are released, is

Py=m v, + myvy,

in which v, and v, are the velocities of the blocks. Conservation
of momentum requires that P, = P, or

0=mv, +my, .
Thus we have
vy, m

TR (29)

the minus sign telling us that the two velocities always have
opposite directions. This holds at every instant after release, no
matter what the individual speeds of the blocks.

The kinetic energies of the blocks are K, = 4m v} and K, =
1m,v3. The fraction we seek, for the block of mass m,, is

= K, _ 3m v
: K, +K, tmi+imws

Substituting v, = —v, (m,/m,) leads, after a little algebra, to

—_mn
m,+m,’

fi

Similarly, for the block of mass m,,

m,
m +m,’

f2=

Thus, although the kinetic energy of the oscillating system varies
with time, the division of this energy between the two blocksis a
constant, independent of time, the least massive block receiving
the largest share of the available kinetic energy. If, for example,
m, = 10m,, then

_ 10m,
m, + 10m,

In this case, the lighter block (m,) gets 91% of the available
kinetic energy and the heavier block (1,) gets the remaining 9%.
In the limit m, > m,, the lighter block gets essentially all the
kinetic energy.

“The expressions for f; and f;, apply equally well 1o a stone
falling in the gravitational field of the Earth. Let m, represent the
mass of the Earth and w1, the mass of the stone. In the reference
frame of their center of mass, the sione takes nearly all the
kinetic energy (f; = 1) and the Earth takes very little (f; = 0).
The magnitudes of the linear momenta of the stone and Earth

n,

m = (.09.

1, =091 and f,=
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Figure 16 (a) The mass distribution

sion. The vertical scale gives the frac-
tion of fissions that result in a frag-
ment with the mass number given by
1 the horizontal scale. (b) The energy
distribution for fragments emitted in
fission.
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are equal, but the small velocity of the Earth is compensated by
its enormous mass. This argument justifies neglecting the kinetic
energy of the Earth when we used the conservation of energy in
Chapter 8 to analyze objects falling in the Earth’s gravity.~

Another practical example of this effect occurs in the case of
nuclear fission, in which a heavy nucleus such as 33U splits into
two lighter fragments. The fragments are driven apart by their
mutual electrical repulsion from an initial position in which they
are very close together and nearly at rest. From Eq. 29, we expect
the ratio of the kinetic energies to be

..If‘:i. - M = m‘ =_-£z.2 ‘
; ﬁmzl’z nt, Uz m;

That is, the heavxer fragment gets the smaller kinetic energy.
Fission is a statistical process, in which there is a distribution
of possible masses of the fragments and a corresponding distri-
bution in the fragment kinetic energies. Figure 164 shows the
mass distribution and Fig. 165 shows the kinetic energy distribu-
tion. Note that fission into fragments of equal mass is very rare;
one fragment usually has a mass number of about 138 and the
other about 94. A typical mass ratic m,/m, is thus about
94/138 = 0.68. A typical kinetic energy ratio K /K, is about

67 MeV/99 MeV = 0.68, equal to the typical mass ratio, as
expected. Thus the sharing of kinetic energy between the fission
fragments is done according to the restriction that momentum is
conserved.

97 WORK AND ENERGY IN A SYSTEM' -
OF PARTICLES (Optional)

Figure 17 shows a skater pushing away from a railing, gaining
kinetic energy in the process: If you ask the skater where this
kinetic energy comes from, he will probably tell you that, judg-
ing by his muscular exertions, the required energy must come
from his own store of internal energy. Let us try to verify this
claim by applying conservation of energy to the system consist=
ing of the skater alone.
From Eq. 28 of Chapter & we have

AU+ AK  + AE = W, (30)

In deriving Eq. 33 of Chapter 8, we divided the kinetic energy of
a system into two terms: AK,,,, which represented the internal

of the fragments emitted in nuclear fis- :-




