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CHAPTER 5

FORCE AND
NEWTON’S LAWS

In Chapters 2 and 4,&w§éstudied the motion of a parjt‘z‘de.k We did not ask
what “caused” the motion; we simply described it in terms of the vectorsx, v, and a.
In this chapter and the next, we discuss the causes of motion, a field of study called dynamics.

The approach to dynamics we consider in this chapter and the next, which is generally
known as classical mechanics, was developed and successfully tested in the 17th and 18th
centuries. In our century, new theories (special and general relativity and quantum
mechanics) have indicated certain realms far from our ordinary experiences where classical
mechanics fails to give predictions that agree with experiment, but these new theories reduce
to classical mechanics in the limits of ordinary objects.

Without reference to special or general relativity or to quantum mechanics, we can build great

skyscrapers and study the properties of their construction materials; build airplanes that can

carry hundreds of people and fly halfway around the world; and send space probes on complex
missions to the comets, the planets, and beyond. This is the stuff of classical mechanics.

5.1 CLASSICAL MECHANICS

We focus our attention on the motion of a particular
body. It interacts with the surrounding bodies (its environ-
ment) so that its velocity changes: an acceleration is pro-
duced. Table 1 shows some common accelerated motions
and the environment that is mostly responsible for the
acceleration. The central problem of classical mechanics
is this: (1) We are given a body whose characteristics
(mass, volume, electric charge, etc.) we know. (2) We
place this body, at a known initial location and with a
known initial velocity, in an environment of which we
have a complete description. (3) What is the subsequent
motion of the body?

In previous chapters, we have treated physical objects

as particles, that is, as bodies whose internal structures or
motions can be ignored and whose parts all move in ex-
actly the same way. In studying the interaction of 2 body
with its environment, we often must consider extended
objects whose different parts may interact with the envi-
ronment in different ways. For example, a worker pushes
aheavy crate along a rough surface. The worker pusheson
one vertical side of the crate, while the horizontal bottom

. experiences the retarding effect of friction with the floor.

The front surface may even experience air resistance.
Later in the text we treat the mechanics of extended
bodies in detail. For the present, we continue to assume
that all parts of the body move in the same way, so that we
can treat the body as a particle. Under this assumption, it
doesn’t matter where the environment acts on the body;

TABLE 1 SOME ACCELERATED MOTIONS AND THEIR CAUSES

Object Change in Motion Major Cause { Environment)

Apple Falls from tree Gravity (Earth)

Billiard ball Bounces off another Other ball, table, gravity (Earth)

Skier Slides down hill Gravity (Earth), friction (snow), air
resistance

Beam of electrons {in TV set) Focusing and deflection Electromagnetic fields {(magnets and
voltage differences)

Comet Halley Round trip through solar system Gravity (Sun)
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The force laws

~ The laws raf motion

Figure 1 Our program for mechanics. The three boxes on
the left suggest that force is an interaction between a body and
its environment. The three boxes on the right suggest that a
force acting on a body will accelerate it.

our primary concern is with the net effect of the environ-
ment.

This problem of classical mechanics was solved, atleast
for a large variety of environments, by Isaac Newton
(1642~ 1727) when he put forward his laws of motion and
formulated his law of universal gravitation. The proce-
dure for solving this problem, in terms of our present
framework of classical mechanics, is as follows: (1) We
introduce the concept of force F (which we regard for now
as a push or a pull), and we define it in terms of the
acceleration a experienced by a particular standard body.
(2) We develop a procedure for assigning a mass mto a
body so that we may understand the fact that different
bodies experience different accelerations in the same envi-
ronment. (3) Finally, we try to find ways of calculating the
forces that act on bodies from the properties of the body
and of its environment; that is, we look for force laws.
Force, which is basically a means of relating the environ-
ment to the motion of the body, appears both in the laws
of motion (which tell us what acceleration a given body
will experience under the action of a given force) and in
the force laws (which tell us how to calculate the force that
will act on a given body in a given environment). The laws
of motion and the force laws, taken together, constitute
the laws of mechanics, as Fig. 1 suggests.

This program of mechanics cannot be tested piecemeal.
We must view it as a unit and we shall judge it to be
successful if we can say “yes” to these two questions. (1)
Does the program yield results that agree with experi-
ment? (2) Are the force laws simple in form? It is the
crowning glory of Newtonian mechanics that we can in-
deed answer each of these questions in the affirmative.

"5.2 NEWTON’S FIRST LAW

For centuries the problem of motion and its causes was a
central theme of natural philosophy, an early name for
what we now call physics. It was not until the time of
Galileo and Newton, however, that dramatic progress was
made. Isaac Newton, born in England in the year of Gali-
leo’s death, is the principal architect of classical mechan-
ics. He carried to full fruition the ideas of Galileo and
others who preceded him. His three laws of motion were

first presented (in 1686) in his Philosophiae Naturalis
Principia Mathematica, usually called the Principia.

Before Galileo’s time most philosophers thought that
some influence or “force” was needed to keep a body
moving. They thought that a body was in its “natural
state” when it was at rest. For a body to move in a straight
line at constant speed, for example, they believed that
some external agent had to continually propel it; other-
wise it would “naturally” stop moving.

If we wanted to test these ideas experimentally, we
would first have to find a way to free a body from all
influences of its environment or from all forces. This is
hard to do, but in certain cases we can make the forces
very small. If we study the motion as we make the forces
smaller and smaller, we shall have some idea of what the
motion would be like if the external forces were truly zero.

Let us place our test body, say a block, on a rigid hori-
zontal plane. If we let the block slide along this plane, we
note that it gradually slows down and stops. This observa-
tion was used, in fact, to support the idea that motion
stopped when the external force, in this case the hand
initially pushing the block, was removed. We can argue
against this idea, however, by reasoning as follows. Let us
repeat our experiment, now using a smoother block and a
smoother plane and providing a lubricant. We note that
the velocity decreases more slowly than before. Let us use
still smoother blocks and surfaces and better lubricants.
We find that the block decreases in velocity at a slower
and slower rate and travels farther each time before com-
ing to rest. You may have experimented with an air track,
on which objects can be made to float on a film of air; such
a device comes close to the limit of no friction, aseven a
slight tap on one of the gliders can send it moving along
the track at a slow and almost constant speed. We can now
extrapolate and say that if all friction could be eliminated,
the body would continue indefinitely in a straight line
with constant speed. An external force is needed to set the
body in motion, but no external force is needed to keep a
body moving with constant velocity.

It is difficult to find a situation in which no external
force acts on a body. The force of gravity will act on an
object on or near the Earth, and resistive forces such as
friction or air resistance oppose motion on the ground or
in the air. Fortunately, we need not go to the vacuum of
distant space to study motion free of external force, be-
cause, as far as the overall translational motion of a body
is concerned, there is no distinction between a body on
which no external force acts and a body on which the sum
or resultant of all the external forces is zero. We usually
refer to the resultant of all the forces acting on a body as
the “net” force. For example, the push of our hand on the
sliding block can exert a force that counteracts the force of
friction on the block, and an upward force of the horizon-
tal plane counteracts the force of gravity. The net forceon
the block can then be zero, and the block can move with
constant velocity.




This principle was adopted by Newton as the first of his
three laws of motion:

~ Consider a body on which no net force acts. If the
- body is at rest, it will remain at rest. If the body is
. moving with constant velocity, it will continue to do so.

Newton s first law is really a statement about reference
frames. In general, the acceleration of a body depends on
the reference frame relative to which it is measured. How-
ever, the laws of classical mechanics are valid only in a
certain set of reference frames, namely, those from which
all observers would measure the same acceleration for a
moving body. Newton’s first law helps us to identify this
family of reference frames if we express it as follows:

! If the net force acting on a body is zero, then it is pos-
sible to find a set of reference frames in which that
body has no acceleration.

The tendency of a body to remain at rest or in uniform
linear motion is called inertia, and Newton’s first law is
often called the law of inertia. The reference frames to
which it applies are called inertial frames, as we discussed
in Section 4-6. You will recall from that discussion that
observers in different inertial reference frames (moving
with constant velocity relative to one another) all measure
the same value of the acceleration. Thus there is not just
one frame in which the acceleration happens to be zero;
thereisasetofall memal frames in which the acceleration
is zero.

<To test whether a particular frame of reference is an

inertial frame, we place a test body at rest in the frame and
ascertain that no net force acts on it. If the body does not
remain at rest, the frame is not an inertial frame. Simi-
larly, we can put the body (again subject to no net force) in
motion at constant velocity; if its velocity changes, either
in magnitude or direction, the frame is not an inertial
frame. A frame in which these tests are everywhere passed
is an inertial frame. Once we have found one inertial
frame, it is easy to find many more, because a frame of
reference that moves at constant velocity relative to one
inertial frame is also an inertial frame,
. In this book we almost always apply the laws of classical
mechanics from the point of view of an observer in an
inertial frame. Occasionally, we discuss problems involv-
ing observers in noninertial reference frames, such as an
accelerating car, a rotating merry-go-round, or an orbit-
ing satellite. Even though the Earth is rotating, a reference
frame attached to the Earth can be considered to be ap-
proximately an inertial reference frame for most practical
purposes. For large-scale applications, such as analyzing
the flight of ballistic missiles or studying wind and ocean
currents, the noninertial character of the rotating Earth
becomes important.

Motice that there is no distinction in the first law be-
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tween a body at rest and one moving with a constant
velocity. Both motions are “natural” if the net force act-
ing on the body is zero. This becomes clear when a body at
rest in one inertial frame is viewed from a second inertial
frame, that is, a frame moving with constant velocity with
respect to the first. An observer in the first frame finds the
body to be at rest; an observer in the second frame finds
the same body to be moving with constant velocity. Both
observers find the body to have no acceleration, that is, no

. change in velocity, and both may conclude from the first

law that no net force acts on the body.

If there is a net interaction between the body and ob-
jects present in the environment, the effect may be to
change the “‘natural” state of the body’s motion. To in-
vestigate this, we must now examine carefully the concept
of force.

5-3 FORCE

We develop our concept of force by defining it operation-
ally. In everyday language, a force is a push or a pull. To
measure such forces quantitatively, we express them in
terms of the acceleration that a given standard body expe-
riences in response to that force.

As a standard body we find it convenient to use (or
rather to imagine that we use!) the standard kilogram (see
Fig. 5 of Chapter 1). This body has been assigned, by
definition, a mass m, of exactly 1 kg. Later we shall de-
scribe how masses are assigned to other bodies.

For an environment that exerts a force, we place the
standard body on a horizontal table having negligible fric-
tion and we attach a spring to it. We hold the other end of
the spring in our hand, as in Fig. 2a. Now we pull the
spring horizontally to the right so that by trial and error we
are able to give the standard body a measured constant
acceleration of exactly 1 m/s?. We then declare, as a mat-
ter of definition, that the spring (which is the significant
body in the environment) is exerting on the standard kilo-
gram a constant force whose magnitude we call *“1 new-
ton” {abbreviated 1 N). We note that, in imparting this
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Figure 2 {0} A “particle” P (the standard kilogram) at rest
on a horizontal frictionless surface. (5} The body is acceler-
ated by pulling the spring to the right.
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force, the spring is stretched an amount AL beyond its
normal unextended length L, as Fig. 2b shows.

We can repeat the experiment, either stretching the
spring more or using a stiffer spring, so that we measurean
acceleration of 2 m/s? for the standard body. We now
declare that the spring is exerting a force of 2 N on the
standard body. In general, if we observe this particular
standard body to have an acceleration a in a particular
environment, we then say that the environment is exert-
ing a force F on the standard 1-kg body, where F (in
newtons) is numerically equal to a (in m/s?).

Now let us see whether force, as we have defined it, isa
vector quantity. In Fig. 2b we assigned a magnitude to the
force F, and it is a simple matter to assign a direction to it
as well, namely, the direction of the acceleration that the
force produces. However, to be a vector it is not enough
for a quantity to have magnitude and direction; it must
also obey the laws of vector addition described in Chapter
3. We can learn only from experiment whether forces, as
we defined them, do indeed obey these laws.

Let us arrange to exert a force of 4 N along the x axis
and a force of 3 N along the y axis. We apply these forces
first separately and then simultaneously to the standard
body placed, as before, on a horizontal, frictionless sur-
face. What will be the acceleration of the standard body?
We would find by experiment that the 4-N force in the x
direction produced an acceleration of 4 m/s? in the x di-
rection, and that the 3-N force in the y direction produced
an acceleration of 3 m/s? in the y direction (Fig. 3a).
When the forces are applied simultaneously, as shown in
Fig. 3b, we find that the acceleration is 5 m/s? directed
along a line that makes an angle of 37° with the x axis.
This is the same acceleration that would be produced if
the standard body were experiencing a force of 5 N in that
direction. This same result can be obtained if we first add
the 4-N and 3-N forces vectorially (Fig. 3¢)toa 5-N result-
ant directed at 37° from the x axis, and then apply that
single 5-N net force to the body. Experiments of this kind
show conclusively that forces are vectors: they have mag-

nitude and direction, and they add according to the vector
addition law.

Note that we have two methods of analysis available,
which should produce identical results: (1) Find the accel-
eration produced by each separate force, and add the re-
sultant accelerations vectorially. (2) Add the forces vec-
torially to a single resultant, and then find the acceleration
when that single net force is applied to the body.

5.4 MASS

In Section 5-3 we considered only the accelerations given
to one particular body, the standard kilogram. We were
able thereby to define forces quantitatively. What effect
would these forces have on other bodies? Because our
standard body was chosen arbitrarily in the first place, we
know that for any given body the acceleration will be
directly proportional to the force applied. The significant
question remaining then is: What effect will the same
force have on different bodies?

Everyday experience gives us a qualitative answer. The
same force will produce different accelerations on differ-
ent bodies. A baseball will be accelerated more by a given
force than will an automobile. In order to obtain a quan-
titative answer to this question, we need a method to
measure mass, the property of a body which determines its
resistance to a change in its motion.

Let us attach a spring to our standard body (the stan—
dard kilogram, to which we have arbitrarily assigned a
mass m, = 1 kg, exactly) and arrange to give it an acceler-
ation g, of, say, 2.00 m/s?, using the method of Fig. 2b.
Let us measure carefully the extension AL of the spring
associated with the force that the spring is exerting on the
block.

We now attach two identical standard bodies to the
spring and apply the same force as before (that is, we pull
on the two bodies until the spring stretches by the same

a = 5 mis?

Figure 3 (a) A 4-N force in the x direction gives an acceleration of 4 m/¢? in the x direction,
and a 3-N force in the y direction gives an acceleration of 3 m/s” in the y direction.

{h) When the forces are applied simultanecusly, the resultant acceleration is 5 m/s? in the di-
rection shown. (¢} The same acceleration can be produced by a single 5-N force in the direc-

tion shown.




amount AL). We measure the acceleration of the two
bodies, and obtain the value of 1.00 m/s If we used three
* identical standard bodies and applied the same force, we
would obtain an acceleration of 0.667 m/s?.
From these observations, it appears that, for a given
_ force, the greater the mass, the smaller the acceleration.
‘More precisely, we conclude from many such experi-
-ments that the acceleration produced by a given force is
inversely proportional to the mass being accelerated. An-
‘other way to put this is: the mass of a body is inversely
proportional to the acceleration it receives from the appli-
cation of a given force. The mass of a body can thus be
regarded as a quantitative measure of the resistance of a
body to acceleration by a given force.

This observation gives us a direct way to compare the
masses of different bodies: we simply compare the acceler-
ations we measure from the application of a given force to
each body. The ratio of the masses of the two bodies is

then the same as the inverse ratio of the accelerations
given to these bodies by that force, or

m, _ 4

e (same force F acting).

- Here we are comparing the acceleration a, of the body of
unknown mass m, with the acceleration a, imparted to
the standard body of mass 1.

For example, suppose as above we use a force that gives
an acceleration of 2.00 m/s? to the standard body. We
apply the same force (by stretching the spring by the same

~amount AL) to a body of unknown mass m,, and we
measure an acceleration g, of, say, 0.50 m/s?. We can
then solve for the unknown mass, which gives

a : 2.00 m/s?
g (E‘:’) = (1.00 kg) (‘6.'5’6"15"”;:2) =400 kg,

- The second body, which has only one-fourth the accelera-
tion of the first body when the same force acts on it, has
four times the mass of the first body. This illustrates the
inverse relationship between mass and acceleration for a
given force.
~ Let us now repeat the preceding experiment on the
same two bodies using a common force F’ different from

 that used above. This force will give the standard body an
acceleration of af and the unknown body an acceleration
of a} . From our measurement we would find that the ratio
of the accelerations, aj/a}, is the same as in the previous
experiment, or

my a ai

For example, we apply a greater force so that the exten-
sion of the spring is 1.5A L. We would then find that the
standard mass m, is accelerated to 3.00 m/s* and the un-

known mass m, is accelerated to 0.75 m/s?. We would

deduce the unknown mass to be

ab 3.00 m/s?
m, = (}}?) = (1.00 kg) (g?g‘g%) = 4.00 kg.
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We obtain the same value for the unknown mass m,, no
matter what the value of the common force. The mass
ratio m,/m, is independent of the common force used;
the mass is a fundamental property of the object, unre-
lated to the value of the force used to compare the un-
known mass to the standard mass. In effect, this proce-
dure allows us to measure mass by comparison with the
standard kilogram.

We can extend this procedure to a direct comparison of
the masses of any two bodies. For example, let us first use
our previous procedure to compare a second arbitrary
body with the standard body, and thus determine its mass,
say m,. We can now compare the two arbitrary bodies, m,
and m,, directly, obtaining accelerations a5 and a7 when
the same force F” is applied. The mass ratio, defined as
usual from

my _ ay .

e (same force acting),
turns out to have the same value that we obtain by using
the masses m, and m, previously determined by direct
comparison with the standard.

‘We can show, in still another experiment of this type,
that if objects of mass m, and m, are fastened together,
they behave mechanically as a single object of mass
{m, + m,). In other words, masses add like (and are) sca-
lar quantities. ‘

One practical example of the use of this technique —
assigning masses by comparison of the relative accelera-
tions produced by a given force—is in the precise mea-
surement of the masses of atoms. The force in thiscaseisa
magnetic deflecting force and the acceleration is centripe-
tal, but the principle is exactly the same. For a common
magnetic force acting on two atoms, the ratio of their
masses is equal to the inverse ratio of their accelerations.
Measuring the deflection, as in the mass spectrometer
shown in Fig. 6 of Chapter 1, permits precise mass ratios
to be measured, and defining '*C as the standard then
permits precise values of masses, such as those shown in
Table 6 of Chapter 1, to be obtained.

5-5 NEWTON’S SECOND LAW

We can now summarize all the previously described ex-
periments and definitions in one equation, the funda-
mental equation of classical mechanics,

> F=ma. )

In this equation X F is the (vector) sum of all the forces
acting on the body, m is the mass of the body, and a is its
{vector) acceleration. We shall usually refer to X F as the
resultant force or net force.

Equation 1 isa statement of Newion's second law. Ifwe
write it inthe forma = (£ ¥)/m1, we can easily see that the
acceleration of the body is in magnitude directly propor-
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tional to the resultant force acting on it and in direction
parallel to this force. We also see that the acceleration, for
a given force, is inversely proportional to the mass of the
body.

Note that the first law of motion appears to be con-
tained in the second law as a special case, forif X F =0,
then a = 0. In other words, if the resultant force on a body
is zero, the acceleration of the body is zero and the body
moves with constant velocity, as stated by the first law.
However, the first law has an independent and important
role in defining inertial reference frames. Without that
definition, we would not be able to choose the frames of
reference in which to apply the second law. We therefore
need both laws for a complete system of mechanics.

Equation 1 is a vector equation. As in the case of all
vector equations, we can write this single vector equation
as three scalar equations,

> F,=ma,, > F,=ma,, and > F,=ma,, (2)

relating the x, y, and z components of the resultant force
(2 F,, = F,, and 2 F,) to the x, y, and z components of
acceleration (a,, a,, and a,) for the mass m. It should be
empbhasized that X F, is the algebraic sum of the x com-
ponents of all the forces, X F, is the algebraic sum of the y
components of all the forces, and 3. F, is the algebraic
sum of the z components of all the forces acting on m. In
taking the algebraic sum, the signs of the components
(that is, the relative directions of the forces) must be taken
into account.

In analyzing situations using Newton’s second law, it is
helpful to draw a diagram showing the body in question as
a particle and showing all forces as vectors that act on the
particle. Such a drawing is called a free-body diagram and
is an essential first step both in the analysis of a problem
and in the visualization of the physical situation.

Sample Problem 1 A student pushes a loaded sled whose mass
m is 240 kg for a distance d of 2.3 m over the frictionless surface
of a frozen lake. She exerts a constant horizontal force F of
130 N (=29 1b) as she does so; see Fig. 4a. If the sled starts from
rest, what is its final velocity?

Solution As Fig. 4b shows, we lay out a horizontal x axis, we
take the direction of increasing x to be to the right, and we treat
the sled as a particle. Figure 4b is a partial free-body diagram. In
drawing free-body diagrams, it is important always to include all
forces that act on the particle, but here we have omitted two
vertical forces that will be discussed later in this chapter and that
do not affect our solution. We assume that the force Fexerted by
the student is the only horizontal force acting on the sled. Wecan
then find the acceleration of the sled from Newton’s second law,
or
F 130N

={}.54 m/s%.

Because the acceleration is constant, we can use Eq. 20 of Chap-
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Figure 4 Sample Problems I and 2. (a) A student pushing a
loaded sled over a frictionless surface. (b) A free-body dia-
gram, showing the sled as a “particle” and the force acting on it.
(¢) A second free-body diagram, showing the force acting
when the student pushes in the opposite direction.

ter 2 [v? = v} + 2a(x — x;)] to find the final velocity. Putting
vp = 0 and x — x, = d and solving for v, we obtain

v = V2ad = J(2)(0.54 m/s?)(2.3 m) = 1.6 m/s.

The force, acceleration, displacement, and final velocity of the
sled are all positive, which means that they all point to the right
in Fig. 4b.

Note that to continue applying the constant force, the student
would have to run faster and faster to keep up with the accelerat-
ing sled. Eventually, the velocity of the sled would exceed the
fastest speed at which the student could run, and thereafter the
student would no longer be able to apply a force to the sled. The
sled would then continue (in the absence of friction) to coast at
constant velocity.

Sample Problem 2 The student in Sample Problem | wants to
reverse the direction of the velocity of the sled in 4.5 s. With what
constant force must she push on the sled to do so?

Solution Let us find the (constant) acceleration, using Eq. 15
of Chapter 2 (v = v, + at). Solving for a gives

_vTh_ (— 1.6 m/s) — (1.6 m/s) _
t 45s

a —~0.71 m/s%

This is larger in magnitude than the acceleration in Sample
Problem 1 (0.54 m/s% so it stands to reason that the student
must push harder this time. We find this (constant) force F” from

F’ = ma = (240 kg)(—0.71 m/s*)
=70 N {=—38 Ib).
The negative sign shows that the student is pushing the sled in

the direction of decreasing x, that is, to the left as shown in the
free-body diagram of Fig, 4c.
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Figure 5 Sample Problem 3. (@) A crate on a truck that is
slowing down. (b) The free-body diagram of the crate.

Sample Problem3 A crate whose mass m is 360 kg rests on the
bed of a truck that is moving at a speed v, of 120 km/h, as in Fig.
5a. The driver applies the brakes and slows to a speed v of
62 km/hin 17 s. What force (assumed constant) acts on the crate
during this time? Assume that the crate does not slide on the
truck bed.

Solution We first find the (constant) acceleration of the crate.
Solving Eq. 15 of Chapter 2 (v = v, + at) for a yields

a=2= v _ (62 km/h) — (120 km/h)

t 17s

f_qg km)( 1h }(1000m) 2
(o ) () (220m) - o5 .

Because we have taken the positive sense of the horizontal direc-
tion to the right, the acceleration vector must point to the left.
The force on the crate follows from Newton’s second law:

F=ma
= (360 kg)(—0.95 m/s?) = — 340 N.

This fage acts in the same direction as the acceleration,
namely, :Qe left in Fig. 5b. The force must be supplied by an
external agent, such as the straps or other mechanical means
used to secure the crate to the truck bed. If the crate is not
secured, then friction between the crate and the truck bed must
supply the required force. If there is not enough friction to pro-
vide a force of 340 N, the crate will slide on the truck bed be-
cause, as measured by a ground-based observer, it will slow down
less rapidly than the truck.

5-6 NEWTON’S THIRD LAW

Forces acting on a body result from other bodies that

make up its environment. If we examine the forces acting
on a second body, one that was formerly considered part
of the environment, then the first body is part of the
environment of the second body and isin part responsible
for the forces acting on the second body. Any single force
is therefore part of the mutual interaction between fwo
bodies. We find by experiment that when one body exerts
a force on a second body, the second body alwaysexerts a
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ma Fap Fpa mg

A @r———i> <G B

Fap=—Fpy

Figure 6 Newton’s third law. Body 4 exerts a force F,, on
body B. Body B must then exert a force F,; on body A4, and
Fup=—Fg,.

force on the first. Furthermore, we find these forces
always to be equal in magnitude but opposite in direction.
A single isolated force is therefore an impossibility.

Suppose this were not true. Consider two isolated
bodies 4 and B, and suppose that body 4 exerts a force on
body B, while no force is exerted by B on 4. The total force
on the combination 4 + B is nonzero, and the combined
mass must accelerate. If such a situation could occur, then
we would have a limitless source of energy that could
propel A4 + Bthrough space at no cost: sailboats could sail
by passengers blowing on the sails, and spaceships could
be accelerated by astronauts pushing on the walls. The
impossibility of these actions is a consequence of New-
ton’s third law.

We arbitrarily label one of the forces of the mutual
interaction between two bodies as the “action” force, and
the other is called the “reaction” force. Newton’s third
law can then be stated in traditional form:

To every action there is an equal and opposite reaction.

A more modern version of the third law concerns the
mutual force exerted by two bodies on one another:

When two bodies exert mutual forces on one another,
the two forces are always equal in magnitude and op-
posite in direction.

Formally (see Fig. 6) let body 4 exert a force Fg, on
body B; experiment then shows that body B exerts a force
F .5 on body A. (Note the order of subscripts; the force is
exerted on the body represented by the first subscript by
the body represented by the second.) In terms of a vector
equation,

Fipp=—Fp, 3)

It is important to remember that the action and reac-
tion forces always act on different bodies, as the differing
first subscripts remind us. If they acted on the same body,
there would be no net force on that body and no acceler-
ated motion.

When a bat strikes a baseball, the bat exerts a force on
the ball (the action), and the ball exerts an equal and
opposite force on the bat. When a soccer player kicks the
ball, the foot exerts a force on the ball (the action), and the
ball exerts an opposite reaction force on the foot. When
you push a stalled car, you can feel the car pushing back
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on you. In each case the action and reaction forces act on
different bodies. If our goal were to study the dynamics of
one body — the baseball, for instance— only one force of
the action - reaction pair would be considered; the other is
felt by a different body and would be considered only if we
were studying the dynamics of that body.

The following examples illustrate applications of the
third law.

1. Anorbiting satellite. Figure 7 shows a satellite orbiting
the Earth. The only force that acts on it is Fg, the force
exerted on the satellite by the gravitational pull of the
Earth. Where is the corresponding reaction force? It is
F s, the force acting on the Earth owing to the gravita-
tional pull of the satellite.

You may think that the tiny satellite cannot exert much
of a gravitational pull on the Earth but it does, exactly as
Newton’s third law requires, That is, considering magni-
tudes only, Frg = Fgg. (Recall that the magnitude of any
vector quantity is always positive.) The force Fyzs causes
the Earth to accelerate, but, because of the Earth’s large
mass, its acceleration is so small that it cannot easily be
detected.

2. A book resting on a table. Figure 8a shows a book
resting on a table. The Earth pulls downward on the book
with a force Fpe. The book does not accelerate because

Figure 7 A satellite in Earth orbit. The forces shown are an
action -reaction pair. Note that they act on different bodies.

this force is canceled by an equal and opposite contact
force F; exerted on the book by the table.

Even though Fy; and Fy; are equal in magnitude and
oppositely directed, they do not form an action-reaction
pair. Why not? Because they act on the same body— the
book. They cancel each other and thus account for the fact
that the book is not accelerating.

Each of these forces must then have a corresponding
reaction force somewhere. Where are they? The reaction
to Fggis Fp, the (gravitational) force with which the book
attracts the Earth. We show this action-reaction pair in
Fig. 86. ‘

Figure 8¢ shows the reaction force to Fy,. It is Fy5, the
contact force on the table owing to the book. The action -
reaction pairs involving the book in this problem, and the
bodies on which they act, are

first pair: FB‘E = —-FEB (bOOk and Earth)
and
FBT _— FTB (book and table).

3. Pushing a row of crates. Figure 9 shows a worker W
pushing two crates, each of which rests on a wheeled cart
that can roll with negligible friction. The worker exerts a
force F,j on crate 1, which in turn pushes back on the
worker with a reaction force Fy,, . Crate 1 pushes on crate
2 with a force F,,, and crate 2 pushes back on crate 1 with
a force F,,. (Note that the worker exerts no force on crate
2 directly.) To move forward, the worker must push back-
ward against the ground. The worker exerts a force Fgy
on the ground, and the rection force of the ground on the
worker, Fyq, pushes the worker forward. The figure
shows three action-reaction pairs:

second pair;

F,, = —F,, (crate | and crate 2),
F,w=—Fy, (worker and crate 1),
Fue=—Fgu (worker and ground).

The acceleration of crate 2 is determined, according to
Newton’s second law, by the net force applied to it:

Fy =mya,.

AFBT Figure 8 (a) A book rests on a table,
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= which in turn rests on the Earth. (b) The
—-—%—E— book and the Earth exert gravitational
% forces on each other, forming an action-
T reaction pair. {¢) The table and book
© W exert action-reaction contact forces on
each other.
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Figure 9 A worker pushes against crate 1, which in turn
pushes on crate 2. The crates are on wheels that move freely,
so there is no friction between the crates and the ground.

The net force on crate 1 determines its acceleration,
Fiw— Fy;=may,

where we have written the vector sum of the forces as the
difference in their magnitudes, because they act on crate 1
in opposite directions. If the two crates remain in contact,
their accelerations must be equal. Letting a represent the
common acceleration and adding the equations gives

Fip=(m; + mya.

This same equation would result if we considered crates 1
and 2 to be a single object of mass m, + m,. The net
external force acting on the combined object is F, ;. The
two contact forces at the boundary between crates 1 and 2
do not appear in the equation describing the combined
object. Nor do the internal atomic forces that bind the
object together; each internal force forms an action-
reaction pair acting on separate parts (individual atoms,
perhaps) and such pairs sum to zero when we add together
the separate parts to make the combined whole.

Note that in this example the worker is the active agent
that is responsible for the motion, but it is the reaction
force of the ground that makes this possible. If there were
no friction between the worker’s shoes and the ground,
the worker could not move the system forward.

4. Block hanging from a spring. Figure 10a shows a block
hanging at rest from a spring, the other end of which is
fixed to the ceiling. The forces on the block, shown sepa-
rately in Fig. 105, are its weight W (acting down) and the
force F exerted by the spring (acting up). The block is at
rest under the influence of these forces, but they are nor an
action -reaction pair, because once again they act on the
same body. The reaction force to the weight W is the
gravitational force that the block exerts on the Earth,
which is not shown.

The reaction force to F (the force exerted on the block
by the spring) is the force exerted by the block on the
spring. To show this force, we illustrate the forces acting
on the spring in Fig. 10c¢. These forces include the reaction
to F, which we show as a force F’ (= —F) acting down-
ward, the weight w of the spring (usually negligible), and
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Figure 10 (a) A block hangs at rest supported by a stretched
spring. (b} The forces on the block. (¢) The forces on the spring.

the upward pull P of the ceiling. If the spring is at rest, the
net force must be zero: P+ w+ F/ = (.

The reaction force to P acts on the ceiling. Since we are
not showing the ceiling as an independent body in this
diagram, the reaction to P does not appear.

_5-7 UNITS OF FORCE

Like all equations, Newton’s second law (F = ma) must
be dimensionally consistent. On the right side, the dimen-
sions are, recalling from Chapter 1 that [ ] denotes the
dimensions of, [m][a] = ML/T?, and therefore these must
also be the dimensions of force:

[F]= ML/T>.

No matter what the origin of the force —gravitational,
electrical, nuclear, or whatever—and no matter how
complicated the equation describing the force, these di-
mensions must hold for it.

In the SI system of units, mass is measured in kg and
acceleration in m/s% To impart an acceleration of | m/s?
toamassof 1 kg requiresa force of 1 kg- m/s?. This some-
what inconvenient combination of units is given the
name of newton (abbreviated N):

I N=1kg -m/s.

If we measure the mass in kg and the acceleration in m/s?,
Newton’s second law gives the force in N.

Two other systems of units in common use are the cgs
{centimeter~gram -second) and the British systems. In
the cgs systemn, mass is measured in grams and accelera-
tion in cm/s®. The force unit in this system is the dyne



