Name:	 5.	lut	10 N	ς	*******************************
Perm: .					

This test consists of **4 pages** in all. It is closed book. You may use one sheet of equations or notes (one side), and a calculator.

There are **3 problems** each worth 10 points. Write answers on the sheets, and show your work, using blank space for calculations.

And since it's Halloween, everybody will get 1 free point!

You may not, of course, talk with another student during the test, or copy another's paper.

Good luck!

Useful equations and constants

Distance: $1 \text{ km} = 10^3 \text{ m}$ Distance: 1 cm = 0.01 mGravity: $q = 10 \text{ m/s}^2$

Problem 1: Consider the three vectors \vec{A} , \vec{B} , and \vec{C} :

$$\vec{A} = 4\hat{i} + \hat{j}$$

$$\vec{B} = -3\hat{i} + 6\hat{k}$$

$$\vec{C} = 5\hat{j} - 3\hat{k}$$

- (a) Evaluate $\vec{\mathbf{A}} \cdot \vec{\mathbf{B}}$
- (b) Evaluate $3\vec{A} + 2\vec{C}$

(a)
$$\vec{A} \cdot \vec{B} = (42+\vec{1}) \cdot (-32+6)$$

 $= -12(2\cdot 1) + 0 + 0 + 0$
 $= -12$ where we used $2\cdot 2 = 1$
 $2\cdot 3 = 3\cdot h = 4\cdot 2 = 0$,
(b) $3\vec{A} + 2\vec{C} = 12\hat{1} + 3\hat{3} + 10\hat{3} - 6\hat{h}$
 $= 12\hat{1} + 13\hat{3} - 6\hat{h}$

Problem 2: A ball is launched from a vertical cliff of height h = 80m with velocity of magnitude $v_0 = 5$ m/s and direction purely horizontal, as shown below. How far from the base of the cliff does the ball hit the ground? Take g = 10m/s².

Problem 3: A block of mass m slides without friction on a wedge as shown below, under the influence of gravity. Find the magnitude and direction of the force of the block on the wedge in terms of g, m, and θ .

