‘CHAPTER 7

';_ : A fundamental problem of particle dynamics is to find how a particle
will move, given the forces that act on it. By “how a particle will move" we
mean how its position varies with time. In the previous two chapters we solved this problem

R for the special case of a constant force, in which case the formulas for constani acreleratwn cabtle il ‘

can be used to find x(1), completing the so!utmn of the problem.

" The problem is more difficult, however, when the force acfmg on a particle and thus f!s i

acceleration are not constant. We can solve such problems by integration methods, as .
illustrated in Sections 6-5 and 6-7, respectively, for forces depending on time and velocity.
In this chapter, we extend the analysis to forces that depend on the position of the particle, .~
such as the gravitational force exerted by the Earth on any nearby object and the force =~ =~
exerted by a stretched spring on a body to which it is attached. This analysis leads ustothe ~ =~ =
. concepts of work and kinetic energy and to the development of the work-energy theorem, g
which is the central feature of this chapter. In Chapter 8 we consider a broader view of
energy, embodied in the law of conservation of energy, a concept that has plaved a ma;ar
role in the development of physics.

- 7.1 WORK DONE BY A

g 5; CONSTANT FORCE

: '-_ - Consider a particle acted on by a constant force F, and

4 | W=Fs. >
e in a more gencral case, the oonstan: foroe actmg ona

~ assume the simplest case in which the motion takes place
b in a straight line in the direction of the force. In such a

situation we define the work W done by the force on the
particle as the product of the magnitude of the force Fand
the magnitude of the displacement s mmngh wlm:h the
forceacts We write thisas

(1

particle may not act in the direction in which the particle
moves. In this case we define the work done by the force

4 on the particle as the product of the component of the

force along the line of motion and the magnitude of the
displacement s. In Fig. 1, a particle experiences a constant

" force F that makes an angle ¢ with the direction of the

o displacement s of the particle. The work # done by F

during this displacement is, according to our definition,
W= F cos ¢)s. @

Gf course, other fm’ﬂﬁﬁ may also act on ihe particle.
Equation 2 refers only to the work done on the particle by

one pamcuiar fom: F The work clone on the parhc!e by
the other forces must be calculated separately. To find the
total work done on the particle, we add the values of the
work done by all the separate forces. (Alternatively, as we
discuss in Section 7-4, we can first find the net force on the
particle and then calculate the work that would be done
by a single force equal to the net force. The two methods
of finding the work done on a particle are equivalent, and
they always YIEId the same result for the work done on the
particle.) -+ -

- When ¢ is zero, the work done by Fis mmply Fs, in
agreement with Eq. 1. Thus, when a horizontal force
moves a body horizontally, or when a vertical force lifts a
body vertically, the work done by the force is the product
of the magnitude of the force and the distance moved.
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Figure 1 A force F acts on a particle as it undergoes a dis-
placement s. The component of F that does work on the par-
ticle is F cos ¢. The work done by the force F on the particle
is Fs cos ¢, which we can also write as Frs.
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Figure 2 The weightlifter is exerting a great force on the

we:ghts. but at the instant shown he is doing no work because -
he is holding them in place. There is a force but no displace- .

ment. Of course, he probably has already done some work to
have lifted them off the floor to that height.

‘When ¢ is 90°, th

them up (because there is no displacement). If he were to

carry the weights above his head while walking, he would
again (according to our definition of work) do no work on
them, assuming there to be no vertical displacement, be-

- cause the vertical force he exerts would be perpendicular

to the horizontal displacement. Figure 3 shows other ex-
amples of forces applied to a body that do no work on the
body:.

Notice that we can write Eq. 2 either as (Fcos q’J)s or
F{(s cos ¢). This suggests that the work can be calculated

in two different ways, which give the same result: either

we multiply the magnitude of the displacement by the
component of the force in the direction of the displace-
ment, or we multiply the magnitude of the force by the
component of the displacement in the direction of the
force, Each way reminds us of an important part of

the definition of work: there must be a component of s~

in the direction of F, and there must bea component of
F in the direction of s (Fig. 4).

Work is a scalar, although the two quantl‘..es mveived
in its definition, force and displacement, are vectors. In-
Section 3-5 we defined the scalar product of two vectors as
the scalar quantity that we find when we multiply the
magnitude of one vector by the component of a second
vector along the direction of the first. Equation 2 shows
that work is calculated in exactly this way, so work must
be expressible as a scalar product. Comparing Eq. 2 with
Fq. 13 of Chapter 3, we find that we can express work as

W=Fes, ST 3

wﬁsge iize d{;i méxcaie‘s a seaiar {{;r dot) product.

@

B X

1 ®

e force has no component in the direc-

- tion of motion. That force then does no work on the body.
For instance, a weightlifter (Fig. 2) does work in liftingthe
weights off the ground, but he does no work in holding

Figure 3 Work is not neéééiarﬂy done by all the forces ap-
plied to a body, even if the body is in motion. In (a), the
weight and the normal force do no work, because they are

- perpendicular to the displacement (which is in the direction of

the velocity v). Work is done by the frictional force. In (5),
which shows a body attached to a cord and revolving in a hor-
izontal circle, the tension T in the cord does no work on the
body, because it has no ccmpnnent m the dltBCthIl of the dis-
placement. S

Figure 4 (a) The work W interpreted as = (sj{F cos é;}
()] Tile work Wmtsxpreteé as W= {F}(s cos &),

Work can be either positive or negative. If a force hasa
component opposite to the direction of the motion, the
work done by that force is negative. This corresponds to
an obtuse angle between the force and displacement vec-

tors. For example, when you lower an object to the floor,.
the work done on the object by the upward force of your

hand holding the object is negative. In this case ¢ is 180°,

for F points up and s points down. (The gravitational
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force in this case does positive work as the object moves
down.)

Although the force F is an invariant, independent in
both magnitude and direction of our choice of inertial
frames, the displacement s is nor. Depending on the iner-
tial frame from which the measurement is made, an ob-
server could measure essentially any magnitude and direc-
tion for the displacement s. Thus observers in different
inertial frames, who will agree on the forces that act on a
body, will disagree in their evaluation of the work done by
the forces acting on the body. Different observers might
find the work to be positive, negative, or even zero. We
explore this point later in Section 7-6.

Work as we have defined it (Eq. 3) proves to be a very
useful concept in physics. Our special definition of the
word “work” does not correspond to the colloquial usage
of the term. This may be confusing. A person holding a
heavy weight at rest in the air may be working hard in the
physiological sense, but from the point of view of physics
that person is not doing any work on the weight. We say
this because the applied force causes no displacement of
the weight.

If, on the other hand, we consider the weightlifter to be
a system of particles (which we treat in Chapter 9), we find
that microscopically work is indeed being done. A muscle
is not a solid support and cannot sustain a load in a static
manner. The individual muscle fibers repeatedly relax
and contract, and if we analyze the situation in this man-
ner we would find that work is done in each contraction.
That is why the weightlifter becomes tired in supporting
the weight. In this chapter we do not consider this “inter-
nal” work. The word work is used only in the strict sense
of Eq. 3, so that it does indeed vanish in the case of no
displacement of the particle on which the force acts.

The unit of work is determined from the work done by a
unit force in moving a body a unit distance in the direc-
tion of the force. The SI unit of work is | newron-meter,
called 1 joule (abbreviation J). In the British system the
unit of work is the foot-pound. In cgs systems the unit of
work is | dyne-centimeter, called 1 erg. Using the rela-
tions between the newton, dyne, and pound, and between
the meter, centimeter, and foot, we obtain | joule = 10’
ergs = (0.7376 ft-1b.

A convenient unit of work when dealing with atomic or
subatomic particles is the electron-volt (abbreviation eV),
where 1 eV = 1.60 X 10~ J. The work required to re-
move an outer electron from an atom has a typical magni-
tude of several eV. The work required to remove a proton
or a neutron from a nucleus has a typical magnitude of
several MeV (10° eV).

Sample Problem 1 A block of mass m = 11.7 kg is to be
pushed a distance of s = 4,65 m along an incline so that it s
raised a distance of 1 = 2.86 m in the process (Fig. 54). Assum-
ing frictionless surfaces, calculate how much work vou would do
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Figure § Sample Problem 1. (a) A force P moves a block up
a plane through a displacement s. (b) A free-body diagram for
the block.

if you applied a force parallel to the incline to push the block up
at constant speed.

Solution A free-body diagram of the block is given in Fig. 5&.
We must first find P, the magnitude of the force pushing the
block up the incline. Because the motion is not accelerated (we
are given that the speed is constant), the net force parallel to the
plane must be zero. If we choose our x axis parallel to the plane,
with its positive direction up the plane, we have, from Newton’s

second law,
X component: P—mgsin =10,

or

P = mgsin 6 = (11.7 kg)(9.80 m/s?) (2'86 m

4.65m
Then the work done by P, from Eq. 3 with ¢ = 0°, is
W=P-s= Pscos0° = Ps=(70.5 N)(4.65 m) = 328 J.

) =70.5 N.

Note that the angle ¢ (=0°) used in this expression is the angle
between the applied force and the displacement of the block,
both of which are parallel to the incline. The angle ¢ must not be
confused with the angle 6 of the incline.

If you were to raise the block vertically at constant speed
without using the incline, the work yvou do would be the vertical
force, which is equal to myg, times the vertical distance A, or

W= mgh=(11.7 kg)(9.80 m/s?)(2.86 m) = 328 J,

the same as before. The only difference is that the incline permits
a smaller force (P = 70.5 N) to raise the block than would be
required without the incline (mg = 115 N). On the other hand,
vou must push the block a greater distance (4.65 m) up the
incline than vou would if vou raised it directly (2.86 m).

Sample Problem 2 A child pulls a 5.6-kg sled a distance of
s= 12 m along a horizontal surface at a constant speed. What
work does the child do on the sled if the coeflicient of kinetic
friction y, 1s 0.20 and the cord makes an angle of ¢ = 45° with
the horizontal?

Solution  Thesituation isshown in Fig. 6¢ and the forcesacting
on the sled are shown in the free-body diagram of Fig. 65, Pisthe
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Figure 6 Sample Problem 2. (a) A child displaces a sled an .
amount s by pulling with a force P on a rope that makes an
angle :35 with the hm-iz'ong!. (b)A ﬁ'ee-body dmgram for the sied?

child’ spml,mgmesledswumrmcmcuomlfome,mmhef
normaifomeexertedbythemufaoeontheded.'rheworkdone

bythcchlldonthesledu
: W—P-s-Pscos¢

To eva!ual.e ﬂ:us we first must determine P whose value has ntnyk
been gwen To obtain Pwe refertn the f’ree-bodydmmmofﬁs. /

6bic
 The sladﬁs unmlmted, 50 ﬁxat from the second 1aw ef
mcnon we obtain the fbllomns: S e s .

-y component: Psm¢+N-—-mg -0,
Weknawthatfanderclatedby '
== f-ﬂ;N

¥ xcomponent.

These threeequanoﬁs contain three unknown qmmtrues. P f

and N. To find P we eliminate fand N from these equations and
‘solve the remmnmg equatlon for.P You should vcnfy tlm

oos¢+,uksm¢

Wath;z.wﬁlﬁ mg-={5é kg)(98 m{s’)-“sSN and¢=~45°
w&obtam ; :

(. 20)(55 3 A
= Cos 45° + (0.20)(sin 45°)

Thenmths== 12 m,theworkdonebythcchddonthesledxs
: W-Pscoscb=(l3 N)(12 m)(cos 45°)= 110 J.

Thevemcalcomponenlofthepulll’doesnowcrkonlhc
sled. Note, however, that it reduces the normal force between the

sled and the surface (N = mg — Psmnb)andlbmhymducesthe

magnitude of the force of friction (f= u, N).

Would the child do more work, less work, or the same amount.

of work on the sled if P were applied horizontally instead of at
45* from the horizontal? {}é any of the othzr fsames actmg on thg
sted do work on it? :

We nbﬁ consider the work done by a force that is not

. constant. Let the force act only in one direction, which we
~ take to be the x direction, and let it vary in magnitude with

x according to the function F(x). Suppose a body that
moves in the x direction is acted on by this force. What is

- the work done by this variable force when the body moves

from an initial position x; to a final position x;?
InFig.‘?mpIothersusx.Letusdmdethetmal

displacement into a number N of small intervals of equal

width dx (Fig. 7a). Consider the first interval, in which
there is a small displacement Jx from x; to x; + dx. Dur-
ing this small displacement the force F(x) has a nearly
constant value F,, and the small amount ofwork é‘W; it
dmmthalmtervalmappmmately Filhen

Wi=Fdn ;.1 (4)

Lskmse, during the second interval, therclsasmalldu-
plaoementfrom x,+6xtox,+26x,andtheforceF(x)

'(:b}’k .

@ 0.5 TR

Figure 7 (a)Theawaunderﬂlecumofthevaﬁableone-di-
mensional force F(x) is approximated by dividing the regwn
between the limits x; and X, into a number of intervals of
width dx. The sum of the areas of the rectangular strips is ap-
proximately equal to the area under the curve. () A better ap-
proximation is obtained using a larger number of narrower = -
strips. {¢) In the limit 8x — 0, the actual area is obtained,
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has a nearly constant value /,. The work done by the
force in the second interval is approximately 61, =
I, ox. The total work B done by F(x) in displacing the
body from x; to X is approximately the sum of a large
number of terms like that of Eq. 4, in which F has a
different value for each term. Hence

W=61, + MU, + M+ - - -
=Fox+ F,éx+ Fydx+ - - -
or

N
=3 F,ox (5)
n=1

where the Greek letter sigma (2) stands for the sum over
all N intervals from x; to xy.

To make a better approximation we can divide the total
displacement from Xx; to x,into a larger number of inter-
vals, as in Fig. 7b, so that dx is smaller and the value of F,
in each interval is more typical of the force within the
interval. It is clear that we can obtain better and better
approximations by taking dx smaller and smaller so as to
have a larger and larger number of intervals. We can ob-
tain an exact result for the work done by Fifwe letdxgoto
zero and the number of intervals N go to infinity. Hence
the exact result is

N

17! 51)}210 ’2 F, éx. (6)

The relation
Xe
511511'0 > F,ox= L F(x) dx,

as you may have learned in your calculus course, defines
the integral of F with respect to x from x; to x,. Numeri-
cally, this quantity is exactly equal to the area between the
force curve and the x axis between the limits x; and x;(Fig.
7¢). Hence. an integral can be interpreted graphically as
an area. The symbol [ is a distorted S (for sum) and
symbolizes the integration process. We can write the total
work done by F in displacing a body from x; to x, as

W= f " F) d. (7

Because we have eliminated the vector notation from
this one-dimensional equation, we must take care explic-
itly to putin the sign of F, positive if F'is in the direction of
increasing x and negative 1f /7 1s in the direction of de-
creasing v,

As an example of a variable force. we consider a spring
that acts on a particle of mass m (Fig. 8). The particle
moves in the horizontal direction. which we take to be the
x direction. with the origin (x = 0) representing the posi-
tion of the particle when the spring is relaxed (Fig. 84). An
external force 7, acts on the particle in a direction oppo-
site 1o the spring force. We assume that the external force
s abways approsimately cqual 1o the spring force. so that

the particle 15 rivian equilibrium at all times (o = 0},
Let the particie be displaced a distance x from 1ts origl-
nal position at v= 0 (g 8)). Asthe agent exerts a force
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Figure 8 (a) A particle of mass m is attached 1o a spring.
which is in its relaxed position. (b) The particle is displaced a
distance x, where it is acted on by two forces. the restoring
force of the spring and a pull from an external agent.

F,, on the particle, the spring exerts an opposing force F,.
This force is given to a good approximation by

F,=—kx, (8)

where k 1s a positive constant called the force constant of
the spring. The constant & is a measure of the force neces-
sary to produce a given stretching of the spring: stiffer
springs have larger values of &. Equation 8 is the force law
for springs and is known as Hooke’s law. The minus sign
in Eq. 8 reminds us that the direction of the force exerted
by the spring is always opposite to the direction of the
displacement of the particle. When the spring is stretched,
x > 0 and F, is negative; when the spring is compressed.
x < 0and F,is positive. The force exerted by the spring is
a restoring force: it always tends to restore the particle to
its position at x = 0. Most real springs will obey Eq. 8
reasonably well if we do not stretch them beyond a limited
range.

Let us first consider the work done o# the particle by the
spring when the particle moves from initial position x; to
final position x,. We use Eq. 7 with the force F;:

W,= f ) F.(x)dx= f - (—kx)dx

= Jhx? — 1hxd. )

The sign of the work done by the spring on the particle is
positive if x? > x7 (that is. if the magnitude of the initial
displacement of the particle is greater than that of its final
displacement). Note that the spring does positive work
when 1t acts to restore the particle to its position at v = 0.
If the magnitude of the initial displacement 1s smaller
than that of the final displacement, the spring does nega-
tive work on the particle.

I we are interested in knowing the work done by the
spring on the particle when the particle moves from 1ts
original position at v = ( through a displacement v, we let
x, = {rand v, = v and obtam

o= {(—hkvydve=— 1Ay (1)
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Note that the work done by the spring in compression
through a displacement x is the same as that done in
extension through x, because the displacement x is
squared in Eq. 10; either sign for x gives a ;:sesmve value
for x? and a negative value for .

How much work does the exzemaf agent do when the
particle moves from x; = 0 to x, = x? To keep the particle
in equilibrium, the external force F.,, must be equal in

: magnitude to the spring force but opposxte in sign, so
F,, = +kx. Repeating the calculanon as inEq. 10 fo: the
; Wcrk dane by Lhe exlemal agent’ grves

Won = Hikx?. f m)

Note that thzs is exactly the negative of Eq lO

We can also find W, and W,,, by computing the area

between the appropriate force— dlsplaccment curve and
the x axis from x = 0 to any arbitrary value x. In Fig. 9 the
two straight sloping lines passing through the origin are
plots of the external force against displacement (F,,,
+ kx) and of the spring force against displacement {F ==
—kx). The nght—hand side of the plot (x > 0) com:sponds
to stretchmg the spmlg and the leﬁ-hand mdc (x < i}) to.
compressing it. -

In stretching the sprmg. the work done by the extemai
force is positive and is repmsented by the upper triangle
on the right of Fig. 9 labeled W,,. The base of this tnangle
is +x and its altitude is —i— kx; its area is. therefore

in agreement w1t.h Eq 1L, When the spnng is stretched,
the work done by the spring force is negative and is repre-
sented by the lower triangle labeled W, on the right side of
Fig. 9; this triangle can be shown by a similar geometncal
argument to have an area of — &kxz, in agreement with Eq.
10. , T, c e,

Ps = —h2

‘@ommming Str‘e%:hiag‘i>’

Figuwre 9 The work ¥, done by the spring 'fon;:e is reépre-
sented by the negative areas (shown with gray shading), and
the work W,,, done by the external force, which is in equilib-
rinm with the spring force, is represented by the positive areas
(shown with colored shading), Whether the spring is stretched
{x > 0) or compressed (x < 0}, W, is negative and W_,, is posi-
tive.

In compressing the spring, as the left side of Fig. 9
shows, the work W, done by the external agest is still
positive, and the work W, done by the spring is still nega-

tive, just as we expect from the s:gns of ﬁw forr:es and the

d;spiacement

Sample Problem 3 ‘A spring hangs vertically i in ethbnum A :

block of mass m = 6.40 kg is attached to the spring, but the block
isheldin ptaceso that at first the spring does not stretch. Now the
hand holding the block is slowly lowered, allowing the block to
descend at constant speed until eqmlxtmum is reached, at which

pe;m the hand is removed. ‘A ‘'measurement shows that the
spring has been stretched by a distance s = 0:124 m over its -
previous equilibrium length. Find the work done on the block in- ;

this prooess by. (a) gmwty, (b) the sprmg, and {e) the hand

So!ntmn We are nut gwen the force consxant af the spnng, but

we can find it because we know that at the strctchcd posmon the
block is in equilibrium between the upward sprmg fcrce ané me
downward l‘orcc of grav:ty ‘

ZF-mg ks 0

We have chosen the dawaward &recuﬂn to be pnsmve here :

Solvmg fork,wefind .
k= mg/s = (6. 49 kg)(? 8{) m}s’)f(ﬁ 124 m} 506 N/’m

To find the work done by gravity, W, we note that grawty isa

constant force, and the force and the dlsplacement are parallel,

sewacanuseﬁq 1 ,
W, = Fs*mgsm(ﬁwkg)GSOm[s’)(OlZém} +778.¥‘

T}ns ss pcsmve, because the force and dlsplacemcnt are in the ;
same direction. To find the work W, done by the s;mng, we use

Eq. H}mthx*s ;
W m—-&ks’w»%ﬁﬁé N/m)(o 124 m)‘z—~3 893

Thisis negauve, because the forc: and drsplacement arein oppo— :

site directions.

One way to find the work Wh done by the hami isto fmd the ;

force exerted by the hand as the block is lowered. If the block isin
equilibrium during the entire process, then the upward force F,
exerted by the hand can be found from Newton’s second law
wzth a=0; A ;
E F = —~3¢x F,, + mg G
or ~ , o
F= mg kx

The work can be found from an integral of the form of Eq. 7,
with a negative sign introduced to indicate Ihat ihe farcg 18 oppe«
site to tize dlsplacement.
Je e o ¢ .
, T 4] ol ; ’
= gy + 3 (%‘s) st=—imgs=-389]

A simpler way to obtain this result isto recognize that if the block
{which we treat as a particle) is lowered slowly and uniformly,
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then the net force is zero. and the total work done by all the forces
acting on the particle must therefore be zero:

W= H,+ W, + 1 =0
Wy==H,—H,=—(=389])— 778 =-389J.

Note that the work done by the hand is equal to the work done by
the spring.

7-3  WORK DONE BY A VARIABLE
FORCE: TWO-DIMENSIONAL
CASE (Optional)

The force F acting on a particle may vary in direction as well asin
magnitude, and the particle may move along a curved path. To
compute the work in this general case we divide the pathinto a
large number of small displacements Js, each pointing tangent
to the path in the direction of motion. Figure 10 shows two
selected displacements for a particular situation; it also shows
the force F and the angle ¢ between F and Js at each location.
We can find the amount of work § W done on the particle during
a displacement Js from

SW=F-0s = Fcos ¢ ds. (12)

Here F is the force at the point where we take ds. The work done
by the variable force F on the particle as the particle moves from
to fin Fig. 10 is found approximately by adding up (summing)
the elements of work done over each of the line segments that
make up the path from i to /. If the line segments ds become
infinitesimally small, they may be replaced by differentials ds
and the sum over the line segments may be replaced by an
integral, as in Eq. 7. The work is then found from

f f
W=f F‘ds—*-f F cos ¢ ds. (13)

We cannot evaluate this integral until we are able to say how F'

and ¢ in Eq. 13 vary from point to point along the path; both are

functions of the x and y coordinates of the particle in Fig. 10.
We can obtain an expression equivalent to Eq. 13 by writing F

y
F
F S
7 f
s
¢ Path
of
; s particle
X
a

Figure 10 A particle moves from point / to point falong the
path shown. During its motion it is acted on by a force F that
varies in both magnitude and direction. As s — 0. we replace
the interval by ds. which is in the direction of the instanta-
neous velocity and therefore tangent to the path,

and ds in terms of their components, Thus ¥ = F_i+ F j and
ds = dxi+ dvj.sothatF-ds = F dx + F dy Inthis evaluation
recallthati-i=j-j= landi-j=j'i= 0(see Eq. 14, Chapter 3).
Substituting this result into Eg. 13, we obtain

i
W= f (Fody+ F, dy). ()

Integrals such as those in Eq. 13 and 14 are called line integrals;
to evaluate them we must know how Fcos ¢ or F,and F, vary as
the particle moves along a particular line (or curve). The exten-
sion of Eq. 14 to three dimensions is straightforward.

Sample Problemd4 A small object of mass mis suspended from
a string of length L. The object is pulled sideways by a force P
that is always horizontal, until the string finally makes an angle
&,, with the vertical (Fig. 11a). The displacement is accom-
plished so slowly that we may regard the system as being in
equilibrium during the process. Find the work done by all the
forces that act on the object.

Solution The motion is along an arc of radius L, and the dis-
placement ds is always along the arc. At anintermediate point in
the motion, the cord makes an angle ¢ with the vertical, and
from the free-body diagram of Fig. 115 we see by applying New-
ton’s second law that

X component: P—Tsing=0,
y component: Tcosh~mg=0.
Combining these two equations to eliminate 7, we find

P=mgtan ¢.

Since P acts only in the x direction, we can use Eq. 14 with
F,=Pand F, =0 to find the work done by P. Thus

b
Wp = f Pdx= f mgtan ¢ dx.
0
To carry out the integral over ¢, we must have a single integra-

tion variable; we choose to define xin terms of ¢b. Atan arbitrary
intermediate position, when the horizontal coordinate is x, we

£

(@)

Figure 11 Sample Problem 4. (a) A particle is suspended
from a string of length L and is pulled aside by a horizontal
force P. The maximum angle reached is ¢, . (b) A free-body
diagram for the particle.
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see that x = L sin ¢ and thus dx = L cos ¢ dob. Substituting for
dx, we can now’ carry out the integration:

WP%ff'mgtané{Lmﬁff’d@
o

»mg{,f sin & dp = mgL(wcosqS}

: - =mgL(1 - cos é),,,}
'me F‘g 1 Ea, we can see ihat h= L{i ~ cos sém) and ﬂms :
= mgh. :

The work W, done by the {eonstam} gravitational force mg
can be evaluated using a similar technique based on Eq. 14
(taking F, =0, F, = —mg) to give W, =—mgh (see Problem
16). The minus sign enters because the direction of the vertical
displacement is opposite to the direction of the gravitational
force: The work W, done by the tension in the string is zero,
because T is perpendicular to the displacement ds at every point
cf tﬁe motion. Now you can see that the toml work is zero:

=W+ W + Wy =mgh—mgh+0=0, consistent with
the net force on the pamde bemg zero at aii nmu dunng lts
motion. ‘

Note that in ﬁns problem the (posatwe} work done by the
horizontal force P in effect cancels the (negative) work done by
the vertical force mg. This can occur because work is a scalar: it
has no direction or components. The motion of the particle
depends on the total work done on it, which is the scalar sum of
the values of the work assomatcd wuh each of the individual
forces. W ~ Aok

~7-4 KINETIC ENERGY AND THE
, WORK-ENERGY THEOREM

In this section we consider the effect of work on the mo-
tion of a particle. An unbalanced force applied to a parti-
cle will certainly change the pamcle s state of motion.
Newton’s second law provides us with one way to analyze
this change of motion. We now consider a different ap-
proach that ultimately gives the same result as Newton’s
laws but is often simpler to apply. It also leads us into one
of the many mponant conservation laws that play such
an 1mp0rtant role in our mterpretatmn of physical pro-
cesses.

In thzs dlSCUSSlOI'l we consider not the work done on a
particle by a single force, but the net work W, done by all
the forces that act on the particle. There are two ways to
find the net work. The first is to find the net force, that is,
the vector sum of all the forces that act on the particle,

Fo=F +F,+F+ - - -, (15)

and then treat this net force as a single force in calculating
the work according to Eq. 7 in one dimension or Eq. 13 in
more than one dimension. In the second approach, we
calculate the work done by each of the forces that act on
the particle,

’W;zJ‘Fi»ds, : ‘%zj'Fz‘dsg .

W3==IF3'ds,,- ce

and then, since work is a scalar, we can add the work deng
by each of the individual forces to find the net work:

=W, + W}«I— W,+ - f (i&}'
The two methods give equal results, and the choice be-

tween them is merely a matter of convenience.
We kmw thata net unbalanced force apphed toa parti-

cle will change its state of motion by accelerating it, letus

say from initial velocity v; to final velocity vg. What is the

effect of the work done on the particle by this net unbal-

anced force?

We first look at the answer to tins quasaun in the case of
the constant force in one dimension. Under themﬁuence
of this force, the particle moves from x; to x;, and n
acceierates uaﬁormly from v to vf ‘The work done is

Wnet T m(-xf i xx) md(xf ;)

Because the acceleration 4 is constant, we can use Eq. 20
of Chapter 2, written v} = v} + 2a(x; — x;), to obtain

Wm = %mvf %mv . (1 7),

That is, the result of the net work on the part;cle has been
to bring about a change in the value of the quantity tmp?
from point i to point f. This quantity is called the kinetic
energy K of the partlcie, with the deﬁmtlon '

K=dm? ‘ (13}."

In terms of the kinetic energy K, wecan rewnte Eq. 17 as
= K;— K AK, ( 19)

Equation 19 is the mathematical representanon of an
important result called the work- energy theorem, WhiCh
in words can be stated as follows:

The net work done by the forces acting on a particle is
equal to the change in the kinetic energy of the particle.

Although we have derived it in the case of a constant -
resultant force, the work-energy theorem holds in gen-
eral for nonconstant forces as well. Later in this sectionwe

give a general proof for nonconstant forces.

Like work, kinetic energy is a scalar quantity; unlike
work, kinetic energy is never negative. We have already

mentioned that work depends on the choice of reference
frame, and it therefore should not be surprising that ki-
netic energy does also. Of course, we already know that

observers in different inertial frames will differ in their
measurements of velocity, and they will therefore differin

assigning kinetic energies to particles. Although the ob-
servers disagree on the numbers to be assigned to work
and fo kinetic energy, they nevertheless find the zame

e e e e i, i
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relation to hold between these quantities, namely,
Woee = AK.

For Eq. 19 to be dimensionally consistent, kinetic en-
ergy must have the same units as work, namely, joules,
ergs, foot-pounds, electron-volts, and so on.

When the magnitude of the velocity of a particle is
constant, there is no change in kinetic energy, and there-
fore the resultant force does no work. In uniform circular
motion, for example, the resultant force acts toward
the center of the circle and is always at right angles to the
direction of motion. Such a force does no work on
the particle: it changes the direction of the velocity of the
particle but not its magnitude. Only when the resultant
force has a component in the direction of motion does it
do work on the particle and change its kinetic energy.

The work-energy theorem does not represent a new,
independent law of classical mechanics. We have simply
defined work (Eq. 7, for instance) and kinetic energy (Eq.
18) and derived the relation between them from Newton’s
second law. The work-energy theorem is useful, how-
ever, for solving problems in which the net work done on
a particle by external forces is easily computed and in
which we are interested in finding the particle’s speed at
certain positions. Of even more significance is the work -
energy theorem as a starting point for a broad generaliza-
tion of the concept of energy and how energy can be
stored or shared among the parts of a complex system.
The principle of conservation of energy is the subject of
the next chapter.

General Proof of the Work -~ Energy Theorem

The following calculation gives a proof of Eq. 19 in the
case of nonconstant forces in one dimension. The equiva-
lent calculation in two or three dimensions is left as an
exercise (see Problem 34). We let F,., represent the net
force acting on the particle. The net work done by all the
external forces that act on the particle is just W, =
J F,., dx. With a bit of mathematical manipulation we
can accomplish a change of integration variable and put
this in a more useful form:
dv dvdx  dv dv

Fnctzmar'mzzmzx' dt-mz,)—cvzmvzx-.
Thus

H/netszncgdxzfmv%dx=fmvdv.

The variable of integration is now the velocity v. Let us
integrate from initial velocity v, to final velocity v,

by U
W = f mody=m f vdv=4tm{i—vdH
o o,

= fmvi — tmwi.

This is identical with Eqg. 19 and shows that the work-
energy theorem holds even for nonconstant forces.

Sample Problem 5 One method of determining the kinetic
energy of neutrons in a beam, such as from a nuclear reactor, is
to measure how long it takes a particle in the beam to pass two
fixed points a known distance apart. This technique is known as
the time-of-flight method. Suppose a neutron travels a distance
ofd=6.2 minatime of t = 160 us. What is its kinetic energy?
The mass of a neutron is 1.67 X 107%7 kg.

Solution We find the speed from

From Eq. 18, the kinetic energy is

K=1mpv? = 4(1.67 X 107% kg)(3.88 X 10* m/s)?
=126X10"18J=79¢V.

In nuclear reactors, neutrons are produced in nuclear fission
with typical kinetic energies of a few MeV. Negative work has
been done on the neutrons in this example by an external agent
(called a moderator), thereby reducing their kinetic energies by a
considerable factor from a few MeV to a few eV.

Sample Problem 6 A body of mass m = 4.5 gis dropped from
rest at a height # = 10.5 m above the Earth’s surface. What will
its speed be just before it strikes the ground?

Solution We assume that the body can be treated as a particle.
We could solve this problem using a method based on Newton’s
laws, such as we considered in Chapter 5. We choose instead to
solve it here using the work~energy theorem. The gain in kinetic
energy is equal to the work done by the resultant force, which
here is the force of gravity. This force is constant and directed
along the line of motion, so that the work done by gravity is

W="F-+s=mgh.

Initially, the body has a speed v, = 0 and finally a speed v. The
gain in kinetic energy of the body is

AK = imv? — tmvi=imv? — 0.
According to the work ~energy theorem, W= AK and so
mgh = tmv?,
The speed of the body is then
v =V2gh = V2(9.80 m/s’)(10.5 m) = 14.3 m/s.

Note that this result is independent of the mass of the object, as
we have previously deduced using Newton’s laws.

Sample Problem 7 A block of mass m = 3.63 kg slides on a
horizontal frictionless table with a speed of v = 1.22 m/s. It is
brought to rest in compressing a spring in its path. By how much
is the spring compressed if its force constant X is 135 N/m?

Solution The change in kinetic energy of the block is
AK=K,— K, =0~ imp?
The work W done by the spring on the block when the spring is
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compressed from its relaxed length through a dzstamﬁ di zs,
corﬂmg to Eq 30 o »

o W= gkd 2
{Esmg thc work-energy theorcm = aﬁK we ebtam

L e
or. it

‘~d%v‘/_*(122 !s)\h?;:i;g "9209

Limitation of the Work - Energy Theorem
We denved the work-energy theorem, Eq. 19, du'ectly
from Newton's second law, which, in the form in which
we have stated it, applies only to particles. Hence the
work—-energy theorem, as we have presented it so far,
likewise applies only to particles. We can apply this im-
portant theorem to real objects only if those objects be-
have like particles. Previously, we considered an ohjecl to
‘behave like a particle if all parts of the object move in
exactly the same way. In the use of the work-energy
theorem, we can treat an extended object as a particle if
the only kind of energy it has is directed kinetic energy.
. Consider, for example, a test car that is crashed head-on
into a heavy, rigid concrete barrier. The directed kinetic
energy of the car certainly decreases as the car hits the
barrier, crumples up, and comes to rest. However, there
are forms of energy other than directed kinetic energy that
enter into this situation. There is internal energy asso-
ciated with the bending and crumpling of the body of the
car; some of this internal energy may appear, for instance,
as an increase in the temperature of the car, and some may
be transferred to the surroundings as heat. Note that, even
though the barrier may exert a large force on the car dur-
ing the crash, the force does no work because the point of
application of the force on the car does not move. (Recall
our original definition of work—given by Eq. | and illus-
trated in Fig. 1 —the force must act through some dis-
tance to do work.) Thus in this case AK # 0, but W=0;
clearly, Eq. 19 does not hold. The car does not behave like
a partlcle every part of it doa m)l move in exactly the
sameway. . .

For similar msons, fmm the work cnergy standpomt,
we cannot treat a sliding block acted on by a frictional
force as a particle (even though we can continue to treat it
as a particle, as we did in Chapter 6, when analyzing its
behavior using Newton’s laws). The frictional force,
which we represented as a constant force f, is in reality
quite comphcated, involving the making and breaking of
many microscopic welds (see Section 6-2), which deform
the surfaces and result in changes in internal energy of the
surfaces (which may in part be revealed as an increase in
the temperature of the surfaces). Because of the difficulty
of accounting for these other forms of energy, and because
the objects do not behave as particles, it is generally not
correct to apply the particle form of the work-energy
theorem to objects subject to frictional forces,

In these examples, we must view the crashing car and
the sliding block not as particles but as systems containing
large numbers of particles. Although it would be correct to
apply the work - energy theorem to each individual parti-
cle in the system, it would be hopelessly complicated todo
s0. In Chapter 9, we begin to develop a simpler method for
dealing with complex systems of particles, and we show
how to extend the wmk»—— energy theorem 0 that we may
'applyltmsuchcases S TS ik

7-5 POWER

In designing a mechanical system, it is often necessary to

consider not only how much work must be done but also

how rapidly the work is to be done. The same amount of

work is done in raising a given body through a given

height whether it takes | second or | year to do so. How-

ever, the rate at which work is done is very different in the

two cases.

- We define power as the rate at which work is done.
(Here we consider only mechanical power, which results
from mechanical work. A more general view of power as
energy delivered per unit time permits us to broaden the
concept of power to mclude electrical power, solar power,
and so on.) The average power P delivered by an agent
that exerts a particular force on a body is the total work
done by that force on the body dmded by lhe total time
mterva],or ; s L e

ﬁm’;—' art] (20)
The mstantaneous power 4 dehvered by an agent 15 :

dW =it
P-—;.;- (21)
Where d Wxs the small amo unt of work done in the mﬁm
tesimal tnme interval dt If the power is constant m nme,
then}’ Pand e ,
£ W*‘I’fi bt 5 A0t (22)

The SI unﬁ of power is the Joule per secand, winch is
caﬂed 1 watt (abbreviation W), This unit is named in
honor of James Watt (1736~ 1819), who made major im-
provements to the steam engines of his day and pointed
the way toward today’s more efficient engines. In the Brit-
ish system, the unit of power is | ft-1b/s, although a more
common practical unit, the horsepower (hp), is generally
used to describe the power of such devices as electric
motors or automobile engines. One horsepower is defined
to be 550 ft-Ib/s, which is equivalent to about 746 W.

‘Work can also be expressed in units of power X time.
This is the origin of the term k:!nwaﬂ-how which the
electric company uses to measure how much work (in the
form of electrical energy) it has delivered to your house.

One kilowatt-hour is the work done in { hour by an agent

working at a constant rate of 1 kW,

RIGUERIAN T2y (3 En AN
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We can also express the power delivered to a body in
terms of the velocity of the body and the force thatacts on
it. In general, we can rewrite Eq. 21 as

dW _F-ds ds

e = i e

which becomes, after substituting the velocity v for ds/d,

P=F-v. g Ny -

If F and v are parallel to one another, this can be written
P=Fy (24)

Note that the power can be negative if F and v are antipar-
allel. Delivering negative power to a body means doing
negative work on it: the force exerted on the body by the
extemalagcnt:smad:recuonoppometonsd:splaw
ment ds and therefore opposite to v.

Sample Problem8 An elevator has an empty weight of 5160 N

(1160 Ib). It is designed to carry a maximum load of 20 passen-
gers from the ground floor to the 25th floor of a buildinginatime -
of 18 seconds. Assuming the average weight of a passengerto be
710 N (160 Ib) and the distance between floorstobe 3.5 m (11

ft), what is the minimum constant power needed for the elevator
motor? (Assume that all the work that lifis the elevator comes
from the motor and that the elevator has no counterweight.)

~ Solution 'I'hem:mmumtotalfomcthalmustbeexmedmhe,
- ‘mmlamhtofthedevmandmgus,F-SIGON-i—

20(710) N = 19,400 N. The work that must be done is e

_ W-Fs-(19400N)(25X35m)=17><IO‘J
Themlmmumpowanslhmfom

W_17X10°)

4 185 W

Th:smthcmmeasllﬁbp.mughlythcpowcrdehvaedhythe !
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engine of an automobile. Of course, frictional losses and other
inefficiencies will increase the power that the motor must pro-
vide to lift the elevator.

In practice, an elevator usually has a counterweight that falls
asthe elevator cab rises. The motor delivers positive power 1o the
rising cab and negative power to the falling counterweight. Thus
the net power that the motor must provide is greatly reduced.

7-6 REFERENCE FRAMES (Optional)

Newton's laws hold only in inertial reference frames (see Sect:on
6-8), and if they hold in one particular inertial frame then they

~ hold in all reference frames that move at constant velocity rela-

tive to that frame. Certain physical quantities, if observed in

- different inertial frames, always give the same measured result.
. In Newtonian mechanics, these invariant quantities include

force, mass, acceleration, and time. Other gquantities, such as
displacement or velocity, are not invariant when measured from
different inertial frames. For example, we discussed in Section

y thmtdatevdouuesmmumdﬁ'omtwomfmu&amﬁ
~ in relative motion at constant velocity.

Two observers in different inertial frames will measure the

- same acceleration for a particle, and so they must deduce the

same value for the change in its velocity, Ar, but they will in

- general nof measure the same change in its kinetic energy, Ob-

servers in relative motion will also measure different values for
the displacement of a particle, so that (although they measure

‘the same values for the forces acting on the particle, force being
~ aninvariant) they will deduce different values for the work done
- on the particle. In this section we clarify these statements with a

specific numerical example that demonstrates the validity of the

- work-energy theorem from the points of view of observers in
- different inertial frames.

Consider the following example. A worker on a flatbed

g ‘mlroadwxspushmgamte The train is moving at a constant
* speed of 15.0 m/s. The crate has a mass of 12 kg, and in being

pushed forward over a distance of 2.4 m its velocity is increased

~ (relative to the car) at constant acceleration from restto 1.5 m/s.
Fm!Zashowsthemrﬁngandﬁniﬂﬁngpodﬁonsmming,

~ Figure 12 A workeron a flatbed

* railroad car pushing a crate forward, as
viewed by (a) an observer on the train
and () an observer on the ground.

(&)
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