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VECTORS AND KINEMATICS--A FEW MATHEMATICAL PRELIMINARIES 

1.1 l ntroduction 

The goal of this book is to help you acquire a deep understanding 
of the principles of mechanics. The subject of mechanics is a t  
the very heart of physics; its concepts are essential for under- 
standing the everyday physical world as w6ll as phenomena on the 
atomic and cosmic scales. The concepts of mechanics, such as 
momentum, angular momentum, and energy, play a vital role in 
practically every area of physics. 

We shall use mathematics frequently in our discussion of 
physical principles, since mathematics lets us express complicated 
ideas quickly and transparently, and it often points the way t o  new 
insights. Furthermore, the interplay of theory and experiment in 
physics is based on quantitative prediction and measurement. 
For these reasons, we shall devote this chapter to developing some 
necessary mathematical tools and postpone our discussion of the 
principles of mechanics nntil Chap. 2. 

1.2 Vectors 

The study of vectors provides a good introduction to the role of 
mathematics in physics. By using vector notation, physical laws 
can often be written in compact and simple farm. (As a matter 
of fact, modern vector notation was invented by a physicist, 
Willard Gibbs of Yale University, primarily to simplify the appear- 
ance of equations.) For example, here is how Newton's second 
law (which we shall discuss in the next chapter) appears in 
nineteenth century notation: 

Fa = ma, 

F, = ma, 

FE = ma,. 

In vector notation, one simply writes 

Our principal motivation for introducing vectors is to simplify the 
form of equations. However, as we shall see in the last chapter 
of the book, vectors have a much deeper significance. Vectors 
are closely related to the fundamental ideas of symmetry and 
their use can lead to valuable insights into the possible forms of 
unknown laws. 
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Definition of a Vector 

Vectors can be approached from three points of view-geometric, 
analytic, and axiomatic. Although all three points of view are use- 
ful, we shall need only the geometric and analytic approaches in 
our discussion of mechanics. 

/ / 
From the geometric point of view, a vector is a directed line 

segment. In  writing, we can represent a vector by an arrow and 
label it with a letter capped by a symbolic arrow. In  print, bold- 

/ / 
faced letters are traditionally used. 

In order to describe a vector we must specify both its length and 
its direction. Unless indicated otherwise, we shall assume that 
parallel translation does not change a vector. Thus the arrows 
a t  left all represent the same vector. 

I f  two vectors have the same length and the same direction 
they are equaj. The vectors B and C a r e  equal: 

" = C .  

The length of a vector is called its magnitude. The magnitude 
of a vector is indicated by vertical bars or, i f  no confusion will occur, 
by using italics. For example, the magnitude of A is written IAI, 
or simply A. If the length of A is d?, then IAl = A = 4 2 .  

I f  the length of a vector is one unit, we call it a unit vector. A 
unit vector is la beled by a caret; the vector of unit length parallel 
to A is A. It follows that 

and conversely 

The Algebra of Vectors 

Multiplication of a Vector by a Scalar If we multiply A by a positive 
f c=bn scalar b ,  the result is a new vector C = bA. The vector C is 

parallel to A, and its length is b times greater. Thus = A, and 
ICl = bJAl. 

The result of multiplying a vector by -I is a new vector opposite 
in  direction (anti parallel) to the original vector. 

Multiplication of a vector by a negative scalar evidently can 
change both the magnitude and the direction sense. 
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n Addition of Two Vectors Addition of vectors has the simple geo- 
metrical interpretation shown by the drawing. 

A + B  
The rule is: To add B to A, place the tail of B a t  the head of A. 

The sum Es a vector from the tail of A to the head of B. 

Subtraction of Two Vectors Since A - B = A + (-B), in  order t o  
subtract B from A we can simply multiply it by -I and then add. 
The sketches below show how. 

A +  (-a)=A-B A - B  

An equivalent way to construct A - B is to place the head of B 
at the head of A. Then A - B extends from the tail of A to the 
tail of B, as shown in the right hand drawing above. 

It is not difficult t o  prove the following laws. We give a geo- 
metrical proof of the commutative law; try to cook up your own 
proofs of the others, 

A + B = B + A  Commutative law 

Distri butive law 

Proof of the Commutative law of vector addition 

Although there is no great mystery to addition, subtraction, 
and multiplication of a vector by a scalar, the result of "'multiply- 
ingq"ne vector by another is somewhat less apparent. Does 
multiplication yield a vector, a scalar, or some other quantity? 
The choice-is up t o  us, and we shall define two types of products 
which are useful in our applications to physics. 





VECTORS AND KINEMATICS--A FEW MATHEMATICAL PRELlMlNARlES 

Vector Product ("Cross" Product) The second type of product we 
need is the vecfor product. In  this case, two vectors A and B are 
combined to form a third vector C. The symbol for vector product 
is a cross: 

An alternative name is the cross product. 
The vector product is more complicated than the scalar product 

because we have to specify both the magnitude and direction of 
A x B. The magnitude is defined as follows: i f  

C = A x B ,  

then 

1CI = IAI 1BI sin 6, ' 

where 0 is the angle between A and B when they are drawn tail to 
tail. (To eliminate ambiguity, 8 is always taken as the angle 
smaller than R.} Note that the vector product is zero when 0 = 0 

P 
or a, even if [A /  and lBl are not zero. 

When we draw A and B tail to tail, they determine a plane. We 
define the direction of C t o  be perpendicular to the plane of A 
and B. A, B, and C form what is called a right hand triple. Imag- 

____ ine a right hand coordinate system with A and B in the zy plane as 
7 

Y / shown in the sketch. A lies on the x axis and B lies toward the 
/' g/ axis. If A, B, and C form a right hand triple, then C lies on the 

// x axis, We shall always use right hand coordinate systems such as 
/ the one shown at  left. Here is another way to determine the 

direction of the cross product. Think of a right hand screw with 
the axis perpendicular to A and B. Rotate it in the direction which 
swings A into B. C lies in the direction the screw advances. 
(Warning: Be sure not t o  use a left  hand screw. Fortunately, 
they are rare. Hot water faucets are among the chief offenders; 
your honest everyday wood screw is right handed.) 

A result of our definition of the cross product is that 

Here we have a case in  which the order of rnultipIication is impor- 
tant. The vector product is not commutative, (In fact, since 
reversing the order reverses the sign, it is anticommutative.) 
We see that 

for any vector A. 
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We have already shown that the magnitude of A is t h e  area of the 
parallelogram, and the vector product defines the convention for assigning 
a direction to  the area. The direction is defined to be perpendicular to 
the plane of the area; that  is, the direction is' parallel to a normal to the 
surface. The sign of the direction is to some extent arbitrary; we could 
just as well have defined the area by A = D X C. However, once the 
sign is chosen, it b unique. 

1.3 Components of a Vector 

The fact that we have discussed vectors without introducing a 
particular coordinate system shows why vectors are so useful; 
vector owerations are defined without reference to coordinate 
systems. However, eventually we have to translate our results 
from the abstract t o  the concrete, and a t  this point we have to 
choose a coordinate system in which to work. 

Far simplicity, let us restrict ourselves to a two-dimensional 
system, the familiar xy plane. The diagram shows a vector A in  
t h e  xy plane. The projections of A along the two coordinate 
axes are called the components of A. The components of A along 
the x and y axes are, respectively, A, and A,. The magnitude of 
A is IA] = (AZ2 + Ay2)*, and the direction of A is such that it 

AX makes an angle 6 = arctan (A,/AA with the z axis, 
Since the components of a vector define it, we can specify a 

vector entirely by its components. Thus 

l or, more generally, in  three dimensions, 

A 
A = CA,,A,,A,). 

C 
Prove for yourself that (A1 = (As2 + AyZ + A82)b. The vector A 
has a meaning independent of any coordinate system. However, 
the componenis of A depend on the coordinate system being used. 

x To illustrate this, here is a vector A drawn in two diffeyent coordi- 
nate systems. In  the first case, 

I A = (A,Q) (z,y system), 

( while in  the second 

Unless noted otherwise, we shall restrict ourselves to a single 
coordinate system, so that if 
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then 

The single vector equation A = 8 symbolically represents three 
scalar equations. 

All vector operations can be written as equations for com- 
ponents. For instance, multiplication by a scalar gives 

The law for vector addition is 

By writing A and B as the sums of vectors along each of the 
coordinate axes, you can verify that 

We shall defer evaluating the cross product until the next section. 

Example 1.5 Vector Algebra 

Find A + 8, A - B, lAl, ZBI, A B, and the cosine of the angle between 
A and B. 
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Example 1.6 ConstrwctFon of a Perpendicular Vector 

Find a unit vector in the xy plane which is perpendicular to A = (3,5,5). 
We denote the vector by B = (B,,B,,B,). Since B is in the  xy plane, 

B, = 0. For B to be perpendicular to A, we have A B = I]. 

Hence B, = -@,. However, B i s  a unit vector, which means tha t  
B,B+Btr2 = 1. Combining these gives BZ2 +&Bf2 = 1, or Bp = 

1/g = k0.857 and B, = -#I?, = T0.514. 
The ambiguity in sign of B, and 3, indicates that B can point along a 

line perpendicular to A in either of two directions. 

1.4 Base Vectors 

Base vectors are a set of orthogonal (perpendicular) unit vectors, 
oneforeachdimension. Forexample, if wearedeal ingwiththe 
familiar cartesian coordinate system of three dimensions, the base 
vectors lie along the x, y, and x axes. The a: unit vector is denoted 
by t, the y unit vector by ), and the z unit vector by c. 

The base vectors have the following properties, as you can 
readily verify: 

We can write any vector in terms of the base vectors. 

I A The sketch illustrates these two representations of a vector. 
To find the component of a vector in  any direction, take the dot 

product with a unit vector in that direction. For instance, 

A, = A . C .  
Y It is easy to evaluate the vector product A x B with the aid of 

------ the base vectors. 

x A X B = (A,? + d,j + A&) x (B,O + B,j + B,&) 
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Consider the first term: 

(We have assumed the associative law here.) Since t x t = 0, 
i x j = E, and t x /; = -j, we find 

The same argument applied to the y and 2 components gives 

A quick way to derive these relations is to work out the first and 
then to obtain the others by cyclically permuting x, y, z, and 
i, j, k (that is, x--, y, y-z, z +  2, and f--, j,j--, p, c--, t.) A 
simple way to remember the result is to use the following device: 
write the base vectors and the components of A and B as three 
rows of a determinant,qike this 

For instance, if A = t + 3 j  - and B = 41 + j + 3k, then 

1.5 Displlacement and the Position Vector 

So far we have discussed only abstract vectors. However, the 
reason for introducing vectors here is concrete-they are just 
right far describing kinematical laws, the laws governing the 
geometrical properties of motion, which we need to begin our dis- 
cussion of mechanics. Our first application of vectors wilt be to 
the description of position and motion in familiar three dimen- 
sional space. Although our first application of vectors is to the 
motion of a point in space, don't conclude that this is the only 

1 I f  you are unfamiliar with simple determinants, most of the books listed at  the 
end of the chapter discuss determinants. 
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One way in which our displacement vector differs from a mathe- 
matician's vector is that his vectors are usually pure q uamtities, 
with components given by absolute numbers, whereas S has the 
physical dimension of length associated with it. We will use 
the convention that the magnitude of a vector has dimensions 

s 

4 -- 

3 

2 

1 

z application, or even an unusually important one. Many physical 

- quantities besides displacements are vectors. Among these are 
velocity, force, momentum, and gravitational and electric fields. 

To locate the position of a point in space, we start by setting up 
-- a coordinate system. For convenience we choose a three dimen- 
-- sional ~artesian system with axes x, y, and x ,  as shown. 

In  order to measure position, the axes must be marked off in 
-- some convenient unit of length-meters, for instance. 

I I I 1 The position of the point of interest is given by listing the values 
O i 1 4 of its three coordinates, XI, yl, zl. These numbers do not repre- 

sent the components of a vector according to our previous dis- 
cussion. (They specify a position, not a magnitude and direction.) 
However, if we move the point to some new position, xz, 32, 22, 
then the displacement defines a vector S with coordinates S, = x2 

2 - XI, S, = 32 - y1* S, = 2 2  - X I .  

S is a vector from the initial position to the final position-it 
defines the displacement of a point of interest. Note, however, 
that S contains no information about the initial and final positions 

(x2.y2.22) separately-only about the relative position of each. Thus, 
8, = z2 - z1 depends on the difference between the final and 
initial values of the x coordinates; it does not specify x2  or x1 
separately. S is a true vector; although the values of the coordi- 
nates of the initial and final points depend on the coordinate sys- 
tem, S does not, as the sketches below indicate. 
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so that a unit vector is dimensionless. Thus, a displacement of 8 
m (8 meters) in the J direction is S = (8 rn, 0, 0). IS1 = 8 m, and 
S = S/]S( -- P. 

Y Although vectors define displacements rather than positions, it 
is in  fact possible t o  describe the position of a point with respect 
to the origin of a given coordinate system by a special vector, 
known as the position vector, which extends from the origin to the 
point of interest. We shall use the symbol r to denote the 
position vector. The position of an arbitrary point P a t  (x,y,z) is 

X 
written as 

zr Unlike ordinary vectors, r depends on the coordinate system. 
P The sketch to the left shows position vectors r and r' indicating 

the position of the same point in space but drawn in different 
coordinate systems. If R is the vector from the origin of the 
unprimed coordinate system to the origin of the primed coordi- 
nate system, we have 

r' = r - R. 

In contrast, a true vector, such as a displacement S, is inde- 
pendent of coordinate system. As the bottom sketch indicates, 

I Z' 

= (Y; + R) - (r: + R) 
I 

= Y, - r;. 

1.6 Velocity and Acceleration 

Motion in One Dimension 

Before applying vectors to velocity and acceleration in  three 
dimensions, it may be helpful to review briefly the case of one 
dimension, motion along a straight line. 

Let a: be the value of the coordinate of a particle moving along a 
line. r is measured in  some convenient unit, such as meters, 
and we assume that we have a continuous record of position 
versus time, 

The average velocity 9 of the point between two times, t l  and t z ,  
is defined by 

(We shall often use a bar to indicate an average of a quantity.) 
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The instantaneous velocity v is the limit of the average velocity as 
the time interval approaches zero. 

v = lirn 
x(t + 40 - fit) 

A t 4 0  At 

The limit we have introduced in defining v is precisely that 
involved in thedefinition of a derivative. In fact, we have1 

In a similar fashion, the instantaneous acceleration is 

v(t + At) - v(t) 
a = lim 

At-0 At 

The concept of speed is sometimes useful. Speed s is simply the 
magnitude of the velocity: s = Ivl. 

Motion in Several Dimensions 

Our task now is to extend the ideas of velocity and acceleration 
to several dimensions. Consider a particle moving in a plane. As 
time goes on, the particle traces out a path, and we suppose that 
we know the partick's coordinates as a function of time. The 
instantaneous position of the particle at some time t l  is 

1 Physicists generally use the Leibnitz notation d x / &  since this is a handy form 
for using differentials (see Note 1.1). Starting in Sec. 1.9 we shall use Newton's 
notation 2, but only to  denote derFvatives with respect to time. 

'Position at 
time t l  
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where x1 is the value of x at t = t l ,  and so forth. At  time t2 the 
position is 

The displacement of the particle between times f l  and tn is 

rz - r1 = ( x 2  - XI, yz - YI). 

We can generalize our example by considering the position at  
some time t, and at some later time t + At.? The displacement 
of the particle between these times is 

Ar = r(t + At) - r ( t ) .  

This vector equation is equivalent to the two scalar equations 

Ax = x(t + At) - x(t) 

Ay = g(t + At) - y(0. 

The ve/ocityv of the particle as it moves along the path is defined 
to be 

Ar 
v = lim - 

.A130 At 

- 
dr 

I - - I  

I I dt 

I / Ax I 
which is equivalent to the two scalar equations 

x ( l )  x ( t  + A t )  
Ax dx v, = iim - = -  

a t 4 0  At at 

Extension of the argument to three dimensions is trivial. The 
third component of velocity is 

v, = lim 
z(t + At) - x( t )  - - dz -. 

At-+ 0 At dt 

Our definition of velocity as a vector is a straightforward gem 
eralization of the familiar concept of motion in a straight line. 
Vector notation allows us to describe motion in  three dimensions 
with a single equation, a great economy compared with the three 
equations we would need otherwise. The equation v = drJdt 
expresses the results we have just found. 

t We will often use the quantity A to denote a difference or change, as in the 
case here of Ar and At. However, this implies nothing about the size of the 
quantiw, which may be large or small, as we please. 
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Alternatively, since r = x i  + yj  + zk, we obtain by simple 
differentiation 

as before. 
Let the particle undergo a displacement Ar in time At. In the 

limit At-+ 0, Ar becomes tangent to the trajectory, as the sketch 
indicates. However, the relation 

At'" > At" > Atf  
dr 

Ar = - At 
dt 

= v At, 

which becomes exact in the limit At + 0, shows that v is parallel 
to AK; the instantaneous velocity v of a particle is everywhere 
tangent to the trajectory. 

Example 1.7 Finding v from r 

The position of  a particle is given by 

where a is a constant. Find the velocity, and sketch the trajectory. 

The magnitude od v F5 

In sketching the motion of a point, i t  is usually helpful to look at limiting 
cases. At t = 0, we have 

r(0) = A(i + j) 
v(0)  = aA[ i  - j). 

Caution: We can negfect the cartesian unit vectors when we differentiate, since 
their directions are fixed. Later we shall encounter unit vectors which can change 
direction, and then differentiation is more elaborate. 
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As t 4 m, eat -+ cxl and e-"& -4 0. I n  this limit r + AeuaO, which is a 
vector along the x axis, and v--+ aAeu9; the speed increases without 
limit. 

Similarly, the acceleration a is defined by 

dv dv, dar, dv* a = - - -  - t + - I + - &  
dt dt dt dt 

We could continue to form new vectors by taking higher deriva- 
tives of r, but we shall see in our study of dynamics that r, v, and a 
are of chief interest. 

I Example 1.8 Uniform Circular Motion 

Circular motion ptays an important role in physics. Here we look at the 
simplest and most important case-uniform circular motion, which is  
circular motion at  constant speed. 

------- Consider a particle moving in the xy plane according to  r = r(cos wtT + 
sin wtj), where r and w are constants. Find the trajectory, the velocity, 

1 3 ( y  =rsin ot and the acceleration. 

I 
x Irl = [r2 C O S ~  wt +.rZ sinB 0t3f 

1 

Using the familiar identity sin2 0 + cos2 8 = 1, 
I 

IrI = [rr8(cas2 wt + sin2 at)]* 

/ 
= T = constant. 

/ 
I The trajectory is a circle. 
1 
\ 
\ 
\ 

'----.JL+/ 

j x The particle moves counterclockwise around the circle, starting from 
/ (r,O) at  t = 0. It traverses the circle in a time !?' such that w T =  2 ~ .  

# 
1 w is called the angular velocity of the motion and is  measured in radians 

/' 
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Y l  per second. T, the time required to execute one complete cycle, is 
called the period. 

= rw( -s in  wt? + cos w t j )  

\ I X 

/ We can show that v is tangent to the trajectory by calculating v . r: 
\ 
\ / 

f 
v - r = .r2w(-sin wt cos wt + cos wt sin w t )  

'r '. / = 0. 

Since v is, perpendicular to  r, it is tangent to the circle as we expect, 
Incidentally, it is easy to show that Ivl = rw = constant. 

Y dv 
8 = -  

dt 

= ru2[-cos wtP - sin otj] 

/ = -#+ 

I "" 
I The acceleration is directed radially inward, and is known a s  the centripetal 

\ I 
\ / acceleration. We shall have more to say about it shortly. 

A Word about Dimension and Units 

I Physicists call the fundamental physical units in which a quantity 
is measured the dimension of the quantity. For example, the 
dimension of ve?ocity is distance/tirne and the dimension of 
acceleration is velocity/tirne or (distance/time)/time = distance / 
time2. As we shall discuss in Chap. 2, mass, distance, and time 
are the fundamental physical units used in mechanics. 

To introduce a system of units, we specify the standards of 
measurement for mass, distance, and time. Ordinarily we mea- 
sure distance in meters and time in seconds. The units of velocity 
are then meters per second (m/s) and the units of acceleration 
are meters per second2 (m/s2). 

The natural unit for measuring angle is the radian (rad). The 
angle 8 in radians is S/r, where S is the arc subtended by 8 in a 

/--- 

circle of radius r: 
1 

' 211. rad = 360'. We shall always use the radian as the unit of 
angle, unless otherwise stated. For example, in sin wt, wt  is in 

I radians. u therefore has the dimensions l/time and the units 
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radians per second. (The radian is dimensionless, since it is the 
ratio of two lengths.) 

To avoid gross errors, it is a good idea to check to see that both 
sides of an equation have the same dimensions or units. For 
example, the equation v = areut is dimensionally correct; since 
exponentials and their arguments are always dimensionless, a has 
the units l/s, and the right hand side has the correct units, meters 
per second. 

1.7 Formal Solution of Kinematical Equations 

Dynamics, which we shall take up in the next chapter, enables us 
to find the acceleration of a body directly. Once we know the 
acceieration, finding the velocity and position is a simple matter of 
integration. Here is the formal integration procedure. 

If the acceleration is known as a function of time, the velocity 
can be found from the defining equation 

by integration with respect to time. Suppose we want to find v( t l )  
given the initial velocity v(to) and the acceleration a(t) .  Dividing 

Av(to + at) the time interval t l  - to  into n parts At = (tl - t o ) /%  

v( t I )  = v(lo) + Av(t0 + At) + A ~ ( t o  + 2At) + . . + Av(tl) 

= v(to) + a(to + At) At + z(to + 2At) At + . - + a(t~) At, 

since Av(O = a( t )A t .  Taking the xcomponent, 

The approximation becomes exact in the limit n--+ m(At 3 O), 
and the sum becomes an integral: 

The y and z components can be treated similarly. Corn bining the 
results, 
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This result is the same as the formal integration of dv = a dt. 

Sometimes we need an expression for the velocity at an arbi- 
trary time t, in which case we have 

The dummy variable of in tegrat i~n has been changed from t to t' 
to avoid confusion with the upper limit t. We have designated the 
initial velocity v( to)  by vo to make the notation more compact. 
When t = to, v(i) reduces to vo, as we expect. 

Example 1.9 Finding Velocity from Acceleration 

A Ping-Pong ball is released near the surface of the moan with velocity 
vo = (03, -3) m j s .  It accelerates (downward) with acceleration 
a = {0,0,-2) m/s2. Find its velocity a f te r  5 s. 

The equation 

v(l) = v,, + j;: aGt) dt' 

is equivalent to the three component equations 

Taking these equations in turn with the given values of vo and a, we 
obtain at t = 5 s: 

Position is found by a second integration. Starting with 

we find, by an argument identical to the above, 
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A particularly important case is that of uniform acceleration. If 
we take a = constant and to  = 0, we have 

and 

Quite likely you are already familiar with this in its one dimen- 
sional form. For instance, the s component of this equation is 

where v,, is the x component of Y,. This expression is so familiar 
that you may inadvertently apply it to the general case of varying 
acceleration. Don't! I t  only holds for uniform acceleration. In 
general, the fult procedure described above must be used. 

Example 1.10 Motion in a Uniform Gravitational Field 

Suppose that an object moves freely under the influence of gravity so 
that it has a constant downward acceleration g. Choosing the z axis 
vertically upward, we have 

If the object is released a t  1 = 0 with initial veracity vo, we have 

Without loss of generality. we can let ro = 0, and assume that vo, = 0. 
(The latter assumption simply means that we choose the coordinate 
system so that the initial velocity is in the xz plane.) f hen 

x = ~ ~ , l  

2 = voat - +gt2. 

The path of the object is shown in the sketch. We can eliminate time 

x from the two equations for x and z to obtain the trajectory. 
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This is the well-known parabola of free fall projectile motion. How- 
ever, as mentioned above, uniform acceleration is not the most general 
case. 

Example 1.11 Nonuniform Acceleration-The Effect of a Radio Wave 
on an Ionospheric Electron 

The ionosphere is a region of electrically neutral gas, composed of posi- 
tively charged ions and negatively charged electrons, which surrounds 
the earth at a height of approximately 200 km (120 mi). If a radio wave 
passes through the ionosphere, its electric field accelerates the charged 
particle. Because the electric field oscillates in time, the charged 
particles tend to jiggle back and forth. ~h; problem is to find the motion 
of an electron of charge - e  and mass m which is initially at rest, and 
which is suddenly subjected to an electric field E = Eo sin wt (w is the 
frequency of oscillation in radians per second). 

The law of force for the charge in the electric field is F = -eE, and by 
Newton's second law we have a = F/m = -eE/m. (If the reasoning 
behind this is a mystery to you, ignore it for now. It will be clear later. 
This example is meant to be a mathematical exercise-the physics is an 
added dividend.) We have 

-eEo -- + sin wt. 
m 

ED is a constant vector and we shall choose our coordinate system so 
that the x axis lies along it. Since there is no acceleration in the y or 
z directions, we need consider only the x motion. With this understand- 
ing, we can drop subscripts and write a for a,. 

-eEo 
a(t) = - sin wt = a0 sin wt 

m 

where 

Then 

= v~ + jol a. sin wtt dt' 
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and 
t 

z = $0 + J ~ ' ( t ' )  dt' 

= z. + ht [UO - I* (cos wti - 1) dti 
' W  I 

We are given t ha t  xo = yo = 0, so we have 

a0 a0 x = - - t - -  sin wt. 
W w2 

The result is interesting: t h e  second term oscillates and corresponds 
to the jiggling motion of the  electron, which we predicted. The first 
term, however, corresponds to motion with uniform velocity, so in addi- 
tion to the jiggling motion the electron starts to drift away. Can you see 
why? 

1.8 More about the Derivative of a Vector 

In Sec. 1,6 we demonstrated how to describe velocity and accelera- 
tion by vectors. Cn particular, we showed how to differentiate the 
vector r t o  obtain a new vector Y = dr/dt. W e  will want t o  dif- 
ferentiate other vectors with respect to time on occasion, and so 
it is worthwhile generalizing our discussion. 

Consider some vector A(t) which is a function of time. The 
change in A during the intewal from t to t + At is 

AA = A(t It- At) - A(t). 

In complete analogy to the procedure we followed in  differentiat- 
ing r in  See. 1.6, we define the time derivative of A by 

Case I 

A 
Case 2 

It is important to appreciate that dA/dt is a new vector which 
can be large or small, and can point in  any direction, depending on 
the behavior of A. 

There is one important respect in  which dA/dt differs from the 
derivative of a simple scalar function, A can change in  both 
magnitude and direction-a scalar function can change only in 
magnitude. This difference is important. 1 he figure illustrates 
the addition of a small increment AA to A. In the first case AA is 
parallel to A; this leaves the direction unaltered but changes the 
magnitude to IAl + lAA(. In  the second, AA is perpendicular 
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to A. This causes a change of direction but leaves the magni- 
tude practically unaltered. 

En general, A will change in both magnitude and direction. 
Even so, it is useful to visualize both types of change taking place 
simultaneously. In the sketch to the left we show a small incre- 
ment AA resolved into a component vector AAlr parallel to A and a 
component vector &A, perpendicular to A. In the limit where we 

----* L Y  A AAfl take direction, the derivative, while AAL AAll changes changes the t h e  direction magnitude of A but of A not but its not mag- Its 

nitude. 
Students who do not have a clear understanding of the two ways 

a vector can change sometimes make an error by neglecting one 
of them. For instance, if dA/dt is always perpendicular to A, A 
must rotate, since its magnitude cannot change; its time depend- 
ence arises solely from change in direction. The illustrations 
below show how rotation occurs when AA is always perpendicular 
to A. The rotational motion is made more apparent by drawing 

the srrccessive vectors at a common origin. 

Contrast this with the case where AA is always parallel to A. 

A' *- A" A"' 
.) 

u L k - - 
A A A  A' A A '  A A A" 

Drawn from a common origin, the vectors look like this: 
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The following example relates the idea of rotating vectors to cir- 
cular motion. 

Example 1.12 Clrcular Motion and Rotating Vectors 

In  Example 1.8 we discussed the motion given by 

r = ~ ( C O S  wtf + sin wtj ) .  

The velocity is 

v = rw( -sin wtt + cos wtj ) .  

Since 

r e v  = r2w(-coswtsin wt f sin w t c o s w t )  

= 0, 

we see that dr/dt is perpendicular to r. We conclude that t h e  magnitude 
of r is constant, so that t h e  only possible change in r is due to rotation. 
Since the trajectory is a circle, this is precisely the case: r rotates about 
the origin. 

We showed earlier t h a t  a = -w2r. Since r v = 0, it follows that 
a . v = -u2r . v = 0 and dv/& is perpendicular to v. This means that 
the velocity vector has constant magnitude, so that it too must rotate if 
it is to change in time. 

That r indeed rotates is readily seen from the sketch, which shows v 
at various positions along the trajectory. In the second sketch the same 

velocity vectors are drawn from a  common origin, It is apparent that 
each time the particle completes a traversal, the velocity vector has swung 
around through a full circle. 

Perhaps you can show that the acceleration vector also undergoes 
uniform rotation. 

Suppose a vector A(t) has constant magnitude A. The only 
way A(1) can change in time is by rotating, and we shall now 
develop a useful expression for the time derivative dAJdt of such a 
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rotating vector. The direction of dA/dt is always perpendicular 
dr to A. The magnitude of dA/dt can be found by the following 

geometrical argument. 
The change in A in the time interval t to t + At is 

AA = A(t + At) - A(t), 

Using the angle A8 defined in the sketch, 

Ad 
IAAl = 2A sin -' 

2 

For A6 << I, sin A0/2 .r A6/2, as discussed in Note 1.1. We have 

= A ae 
and 

Taking the limit A1 + 0, 

---t -/- For A0 sufficiently small, 

d8/dl  is called the angular velocity of A. 
For a simple application of this result, let A be the rotating 

vector r discussed in Examples 1.8 and 1.12. Then B = wt and 

d 1 $ I = r Z ( w 1 )  = yo or v = rw. 

A b l  and, dividing by At and taking the limit, 

d A  
A(t) 

I 
1 
\ 
\ 
\ '\ 

I Returning now to the general case, a change in A is the result 
I 

J of a rotation and a change in magnitude. 
/ 

-1 
/ AA = AA, + AA!. 
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dA,/dt is zero i f  A does not rotate (dO/dt = O), and dAlr/dt is zero 
if A is constant in magnitude. 

We conclude this section by stating some formal identities in 
vector differentiation. Their proofs are [eft as exercises. Let 
the scalar c and the vectors A and B be functions of time. Then 

In  the second relation, let A = B. Then 

and we see again that i f  dA/dt is perpendicular to A, the magnitude 
of A is constant. 

1.9 Motion i f i  Plane Polar Coordinates 

Polar Coordinates 

Rectangular, or cartesian, coordinates are well suited to describing 
motion in a straight line. For instance, i f  we orient the coordinate 
system so that one axis lies in the direction of motion, then only a 
single coordinate changes as the point moves. However, rec- 
tangular coordinates are not so useful for describing circular 
motion, and since circular motion plays a prominent role in  physics, 
it is worth introducing a coordinate system more natural t o  it. 

We should mention that although we can use any coordinate 
system we like, Ithe proper choice of a coordinate system can 
vastly simplify a problem, so that the materia[ in this section is 
very much in the spirit of more advanced physics. Quite likely 
some of this material will be entirely new to you. Be patient i f  it 
seems strange or even difficult a t  first. Once you have stddied 
the examples and worked a few problems, it will seem much more 
natural. 

Our new coordinate system is based on the cylindrical coordi- 
nate system. The x axis of the cylindrical system is identical to 
that of the cartesian system. However, position in  the xy plane is 
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described by distance r from the z axis and the angle 8 that r 
makes with the s axis. These coordinates are shown in  the 
sketch. Wesee that 

Y 
0 = arctan-. x 

x Since we shall be concerned primarily with motion in  a plane, 
we neglect the x axis and restrict our discussion to two dimensions. 
The coordinates r and 0 are called plane polar coordinates. In the 
following sections we shall learn to describe position, velocity, and 
acceleration in plane polar coordinates. 

The contrast between cartesian and plane polar coordinates is 
readily seen by comparing drawings of constant coordinate lines 
for the two systems. 

x = constant 
y vanes 0 = constant 

y = constant r varies 
x varies r = constant 

0 varies 

X X 

I 
Cartesian 

She lines of constant x and of constant y are straight and per- 
pendicular to each other. Lines of constant 8 are also straight, 

Y directed radially outward from the origin. In contrast, lines of 
constant r are circles concentric to the origin. Note, however, 

-- 
\ --. that the lines of constant 8 and constant r are perpendicular 

wherever they intersect. 
In  Sec. 1.4 we introduced the base vectors ? and j which point in 

the direction of increasing x and increasing y, respectively. In 
a similar fashion we now introduce two new unit vectors, ': and 8, 

I X 
which point in the direction of increasing r and increasing 8. There 

i is an important difference between these base vectors and the 
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.. 
cartesian base vectors: the directions of i and 6 vary with position, 
whereas P and 3 have fixed directions. The drawing shows this by 
illustrating both sets of base vectors a t  two points in  space. 
Because 2 and 6 vary with position, kinematical formulas can look 
more complicated in  polar coordinates than in  the cartesian system. 
(It is not that polar coordinates are complicated, it is simply that 
cartesian coordinates are simpler than they have a right to be. 
Cartesian coordinates are the only coordinates whose base vectors 
have fixed directions.) 

X 
Although 3 and 8 vary with position, note that they depend on 6 

only, not on r. We can think of i and 6 as being functionally 
dependent on 6. 

The drawing shows the unit vectors t ,  j and F, 8 at a point in  the 
xy plane. We see that 

i: = i c o s  0 + j sin 0 

6 = -i sin 0 + 1 cos 6. 

Before proceeding, convince yourself that these expressions are 
reasonable by checking them at a few particularly simple points, 
such as 8 = 0, and ~ / 2 .  Also verify that ? and 6 are orthogonal 
(i.e., perpendicular) by showing that ? . 6 = 0. 

It is easy to verify that we indeed have the same vector r no 
matter whether we describe it by cartesian or polar coordinates. 
In cartesian coordinates we have 

and in  polar coordinates we have 

* 
r = rr. 

If we insert the above expression for ?, we obtain 

x i  + y j  = r(Fcos 0 + j sin 0). 

We can separately equate the coefficients of i and j to obtain 

as we expect. 
The relation 

is sometimes confusing, because the equation as written seems to 
make no reference to the angle 8. We know that two parameters 



are needed to specify a position in two dimensional space (in 
cartesian coordinates they are J and LJ), but the equation r = l.; 
seems to contain only the quantity 1.. The answer is that i is not 
a fixed vector and we need to know the value of 19 to tell how? k 
oriented as well as the value of 10  to tell how far we are from the 
origin. Although 8 does not occur explicitly in r;, its value must be 
known to fix the direction of i .  This would be apparent if we 
wrote r = rP(0) to emphasize the dependence of on 8, How- 
ever, by common convention ; is understood to stand for p(8). 

The orthogonality of and 6 plus the fact that they are unit 
vectors, ]?I = I, 161 = 1, means that we can continue to evaluate 
scalar products in the simple way we are accustomed to. If 

A = A , i + A g 6  and B = B , ; + B B ~ ,  

then 

Of course, the F's and the 8's must refer to the same point in 
space for this simple rule to hold. + 

Velocity in Polar Coordinates 

Now let us turn our attention to describing velocity with polar 
coordinates. Recall that in ca rtesfan coordinates we have 

(Remember that i stands for clxL./rlt.) 
The same vector, v, expressed in polar coordinates is given by 

The first term on the right is obviously the component of the 
velocity directed radially outward. We suspect that the second 
term is the component of velocity in the tangential (6) direction. 
This is indeed the case, However to prove it we must evaluate 
dF/dt, Since this step is slightly tricky, we shall do it three dif- 

b ferent ways. Take your pick! 
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Evaluating d?/dt 

Method 1 We can invoke the ideas of the last section to find 
diJdt. Since i is a unit vector, its magnitude is constant and 
d;/dt is perpendicular to as 0 increases, rotates. 

l~i;l = IF( A0 = At?, 

and, taking the iimit, we obtain 

As the sketch shows, as 8 increases, i swings in  the 8 direction, 
81 hence 

\ 
& 
- = 84. 

1 
! 

d t 

If this method is too casual for your taste, you may find methods 
2 or 3 more appealing. 

Method 2 
* 
r = tcos t? + j sin 8 

We note that t and j are fixed unit vectors, and thus cannot 
vary in time. 8, on the other hand, does vary as r changes. 
Using 

and 

d 
-(sin 0, = ($ sin 8) d-8 
d t d t 

we obtain 

d3 d d 
- = i - (cos 6) + j - (sin 8)  
dt dt d t 

= -i sin 0 d +)  cos 0 6 
= (-1 sin 8 + j cos 8)  d. 
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However, recall that -F sin B + j cos 8 = 6. We obtain 

Method 3 

The drawing shows r at  two different times, E and t -+ At. The 
coordinates are, respectively, (r,B) and (r f Ar, 8 + A8). Note 
that the angle between and F2 is equal to the angle between 

and G2; this angle is 8 2  - 01 = AO. 
The change in ? during the time At is illustrated by the lower 

drawing. We see that 

A: = 6l sin A8 - (1 - cos A8). 

Hence 

A: sin A0 , (I - cos At?) - = f i r - - -  
At At 

- r l  
At 

- +(A0)3 + . . 
.) - yo)= - + 

At At 
. * ); 

where we have used the series expansions discussed in Note 1.1. 
We need to evaluate 

di. AF 
- = lim -. 
dt &-,O At 

In the limit At + 0, A6 also approaches zero, but AB/At approaches 
the limit dO/dt. Therefore 

The term in  3 entirely vanishes in the limit and we are left with 

as before. We also need an expression for d6Jdt. You can use 
any, or all, of the arguments above to prove for yourself that 
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Since you should be familiar with both results, let" summarize 
them together: 

And new, we can return to our problem. On page 30 we showed 
that 

Using the above results, we can write this as 

As we surmised, the second term is indeed in the tangential 
(that is, 6) direction. We can get more insight into the meaning 
of each term by considering special cases where only one com- 
ponent varies at a time. 

Case 1 I 
I 

Case 1 

1. 6 = constant, vejocity is radial. If 6 is a constant, 6 = 0, and 
v = 6. We have one dimensional motion in a fixed radial 
direction. 

2. r = constant, velocity is tangential. In this case v = rd8. 
Since T is fixed, the motion lies on the arc of a circle. The 
speed of the point on the circle is rd, and it follows that r = re& 

For motion in general, both r and 6 change in time. 
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The next three examples illustrate the use of polar coordinates 
to describe velocity. 

Example 1.13 Circular Motion and Straight Line Motion In Polar Coordinates 

A particle moves in a circle of radius b with angular velocity 6 = at, where 
a is a constant. (a has the units radians per second2.) Describe 
the particle's velocity in polar coordinates. 

Since r = b = constant, v is purely tangential and v = bat& The 
sketches show F, 6, and v a t  a time tl and a t  a later time t2. 

The particle is located at the position 

If the particle is on the x axis at t = 0, Bo = 0. The particle's position 
vector is r = bF, but as the sketches indicate, 6 must be given to specify 
the direction of ?. 

Consider a particle moving with constant velocity v = UP along the 
fine y = 2. Describe w in polar coordinates. 

From the sketch, 

- v, = cos e 
= -u sin 0 

v = u c o s  6t - u s i n  66. 

I / As the particle moves to the right, 8 decreases and i and 6 change direc- 
19 tion. Ordinarily, of course, we try to use coordinates that make the 

x problem as simple as possible; polar coordinates are not well suited here. 
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Example 1.14 Velocity of a Read on a Spoke 

Y I  A bead moves along the spoke of a wheel a t  constant speed u meters per 
1 second. The wheel rotates with uniform angular velocity 6 = w radians 
1 

per second about a n  axis fixed in space. At t = 0 the spoke is along the 
x axis, and the bead is at the origin. Find the velocity at time t 

a. In  polar coordinates 
---- 

X b. In caxtesian coordinates. 

a. We have r = at, f = u, 6 = CJ. Hence 

v = i F  + r86 = ui + utw6. 

To specify the velocity completely, we need to know the direction of  
F and 8. This is obtained from r = (r, 8 )  = (ut,wt). 

b. In cartesian coordinates, we have 

v, = v, cos 8 - ve sin 8 

V ,  = v, sin 8 + vg cos 0. 

Since v, = u, ve = rw = uto, 6 = wt, we obtain 

v = (u cos wt - utw sin wt)i + (u sin wt + utw sos wt ) j .  

Note how much simpler the result is in plane polar coordinates. 

Example 1.15 Off-center Circle 
Y 

A particle moves with constant speed v around a circle of radius b. Find 
its velocity vector in polar coordinates using an origin lying on the circle. 

With this origin, v is no longer purely tangential, as the sketch indicates. 

- v = - v  sin PF + v cos ~6 
L b x A 

\ = -n sin Of + u cas 08. 
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The last step follows since f l  and 6 are the base angles of a n  isosceles 29 triangle and are therefore equal. To complete the calculation, we must 
f ind 6 as a function of time. By geometry, 28 = wt or 8 = wt/2, where 

- --- 
b w = v/b .  

Acceleration in Polar Coordinates 

Our final task is to find the acceleration. We differentiate v 
to obtain 

I f  we substitute the results for &/dt and d6/dt from page 33, we 
obtain 

The term 6 is a linear acceleration in  the radial direction due 
to change in radial speed. Similarly, re6 is a linear acceleration 
in the  tangential direction due to change in  the magnitude of the 
angular velocity. 

The term -re2? is t h e  centripetal acceleration which we 
encountered in Example 1.8. Finally, 2 ~ e 6  is the Coriolis accel- 
eration. Perhaps you have heard of the Coriolis force, a ficti- 
tious force which appears to act in  a rotating coordinate system, 
and which we shall study in Chap. 8. The Coriolis acceleration 
that we are discussing here is a real acceleration which is present 
when r and 8 both change with time. 

The expression for acceleration in polar coordinates appears 
complicated. However, by looking at it from the geometric point 
of view, we can obtain a more intuitive picture. 

The instantaneous velocity is 

Let us look a t  the velocity a t  two different times, treating the radial 
and tangential terms separately. 

X 
The sketch at  left shows the radial velocity P? = v,; at two differ- 

ent instants. The change Av, has both a radial and a tangential 
component. As we can see from the sketch (or from the dis- 
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cussion a t  the end of Sec. 1-33, the radial component of Av, is 
A V ~ ?  and the tangential component is v, A&. The radial com- 
ponent contributes 

to the acceleration. The tangential component contributes 

which is one-half the Coriolis accejeration. We see that half the 
Coriolis acceleration arises from the change of direction of the 
radial velocity. 

The tangential velocity 1.86 = v86 can be treated similarly. The 
change in  direction of 6 gives AVO an inward radial component 
-ve A&. This contributes 

p which we recognize as the centripetal acceleration. Finally, the 
tangential component of AVa is AVO& Since = re,  there are 
two ways the tangential speed can change. If 8 increases by 

/ ~ 6 ,  V e  increases by r A8. Second, i f  r increases by Ar, ve increases 
by Are. Hence Avo = r A B  + AT 8, and the contribution to the 

2, 
acceleration is 

= (r8 + .j.6)6. 
The second term is the remaining half of the Coriolfs acceleration; 
we see that this part arises from the change in tangential speed 
due to the change in radial distance. 

Example 1.16 Acceleration of a Bead on a Spoke 

A bead moves outward with constant speed u along the  spoke of a wheel. 
It starts from the center a t  t = 0. The angular position of the spoke is 
given by 8 = wf ,  where w is a constant. Find the velocity and acceleration. 

We are given that 3 = u and = w. The radial position is given by 
r = ut, and we have 
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The acceleration is 

The velocity is shown in the sketch for several different positions o f  the 
wheel. Note that the radial velocity is constant. f he tangential acceler- 
ation is also constant-can you visualize this? 

Example 1.17 Radial Motion without Acceleration 

A particle moves with 0 = w = constant and T = ro&', where TO and @ 
are constants. We shall show that for certain values of @, the particle 
moves with a, = 0. 

If /3 = f w, the radial part of avanishes. 
It is very surprising at first tha t  when r = r&' the particle moves with 

zero radial acceleration. The error is in thinking that r makes the only 
contribution to &; the  term -r&'is also part of the radial acceleration. 
and cannot be neglected. 

The paradox is that even though a, = 0, the radial velocity .el, = 3 = 
roweat is increasing rapidly with time. The answer is that we can be 
misled by the special case of cartesian coordinates; in polar coordinates, 

because ja,(t) & does not take into account the fact that the unit vectors 
F and 8 are functions of time. 
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Note 1.1 Mathematical Approximation Methods 

Occasionally i n  the course of solving a problem in physics you may find 
that you have become so involved with the mathematics that the physics 
is totally obscured. In  such cases, it is worth stepping back for a moment 
to see if you cannot sidestep the mathematics by using simple approxi- 
mate expressions instead of exact but complicated formulas. I f  you 
have not yet acquired the knack of using approximations, you may feel 
that there is something essentially wrong with the procedure of substitut- 
ing inexact results for exact ones. However, this is not really the case, 
as the following example i2lustrates. 

Suppose that a physicist is studying the free fall of bodies in vacuum, 
using a tall vertical evacuated tube. The timing apparatus is tursled on 
when the falling body interrupts a thin horizontal ray of light located a 
distance L below the initial position. By measuring how long the body 
takes to pass through the light beam, the physicist hopes to determine 
the local value of g, the acceleration duetogravity. The falling bodyin 
the experiment has a height 2. 

For a freely falling body starting from rest, the distance s traveled in 
time E is 

whlch gives 

The time interval t2 - t l  required for the body to fall from sr = L centi- 
meters to s2 = + 2) centimeters is 

If tz  - t l  is measured experimentally, g is given by 

This formula is exact under the stated conditions, but it may not be the 
most useful expression for our purposes. 

Consider the factor 

In  practice, L will be large compared with 1 (typical values might be L = 
100 cm, 1 = 1 cm). Our factor is the small difference between two large 
numbers and is hard to evaluate accurately by using a slide rule or ordi- 
nary mathematical tables. Here is a simple approach, known as the 
method of power series expansion, which enables us to evaluate the factor 
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to any accuracy we please. As we shall discuss formally later in this Note, 

the quantity 1/= can be written in the series form 

for -1 < x < I. Furthermore, if we cut off the series at  some point, the 
error we incur by this approximation is of the order of the first neglected 
term. We can put the factor in a form suitable for expansion by first 

extracting l / j ; :  

The dimensionless ratio l / L  plays the part of x i n  our expansion. Expand- 

ing 2/11 + l /L in the series form gives 

We see that if E/L is much smaller than 1, the successive terms decrease 
rapidly. The first term in the bracket, *(E/L), is the largest term, and 
extracting it from the bracket yields 

Our expansion is now in its final and most useful form. The first 

factor, 1/(2d\/Z), gives the dominant behavior and is a useful first approx- 
imation. Furthermore, writing the series as we have, with leading term 
1, shows clearly the contributions of the successive powers of EJL. For 
example, if l /L  = 0.01, the term Q(I/L)2 = 1.2 X 10-5 and we make a 
fractional error of about 1 part in lo5 by retaining only the preceding 
terms. In many cases this accuracy is more than enough. For instance, 

if the time interval tt - t l  in the falling body experiment can be measured 

ta only 1 part in 1,000, we gain nothing by evaluating 4~ + 2 - dx to 
greater accuracy than this. On the other hand, if we require greater 
accuracy, we can easily tell how many terms of  the series should be 
retained. 

Practicing physicists make mathematical approximations freely (when 
justified) and have no compunctions a bout discarding negligible terms. 
The ability to do this often makes the difference between being stymied 
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by impenetrable algebra and arithmetic and successfully solving a 
problem. 

Furthermore, series approximations often allow us to simplify compli- 
cated algebraic expressions to  bring out the essential physical behavior. 

Here are some helpful methods for making mathematical approxi- 
mations. 

1 THE BINOMIAL SERIES 

This series is valid for -1 < x < 1, and for any value of n. (If n is 
a n  integer, the series terminates, the last term being xn.) The series 
is exact; the approximation enters when we truncate it. For n = 4, as 
i n  our example, 

I f  we need accuracy only to O ( x a }  {order of x2), we have 

where the term O(ss) indicates that terms of order x9 and higher are not 
being considered. As a rule of thumb, the error is approximately the 
size of the first te rm dropped. 

The series can also be applied i f  1x1 > 1 as follows: 

Exa rnples: 

I - 1 
4. 2 - : for small x, this expression is zero to f i rs t  

4 4 1 - x  
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approximation. However, this approximation may not be adequate. 
Using the binomial series, we have 

Notice that the terms linear in x also cancel. To obtain a nonvanishing 
result we had to go to a high enough order, in this case-to order x2. It 
is clear that for a correct result we have to expand all terms to the same 
order. 

2 TAYLOR'S SERIES1 

Analogous to the binomial series, we can try to represent an arbitrary 
function f(x) by a power series in x: 

(0 

j(r) = oo + a ~ z  + atx+ . - = a&. 
k = 0 

For x = 0 we must have 

Assuming for the moment that it is permissible to differentiate, we have 

Evaluating a t  x = 0 we have 

Continuing this process, we find 

where f(kl(x) is the kth derivative of f ( x ) .  For the sake of a less cum- 

bersome notation, we often write fck)(O) to stand for f (k j  (z) 

in mind tha t  flk)(0) means that we should differentiate f(x) Jc times and 
then set x equal to 0.  

The power series for f(x), known as a Taylor series, can then be 
expressed formally as 

f(z) = f(o) + f (0)s + f"(0) f fltl(0) ZJ + - - - . 
2! 3! 

This series, if it converges, allows us to find good approximations to f ( x )  
for small values of z (that is, for values of x near zero). Generalizing, 

1 Taylor's series is discussed in most elementary calculus texts. See the list a t  
the end of the chapter. 
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gives us the behavior of the function In the neighborhood of the point a. 
An alternative form for this expression is 

Our formal manipulations are valid only if the series converges. The 
range of convergence of a Taylor series may be - rn < z < o~ for 
some functions (such as ez) but quite limited for other functions. (The 
binomial series converges only i f  -1 < x < 1.) The range of canver- 
gence is hard to find without considering functions of a complex vari- 
able, and we shall avoid these questions by simply assuming that we are 
dealing with simple functions for which the range of convergence is either 
infinite or is readily apparent. Here are some examples: 

a. The Trigonometric Functions 
Let f(x) = sin x, and expand about x = 0. 

f(0) = sin (0) = 0 

f (0) = cos (0) = 1 

f "(0) = - sin (0) = 0 

f"'(0) = -COS (0) = -1, etc. 

Hence 

Similarly 

These expansions converge for all values of x but are particularly use- 
ful for smallvaluesof x. To O(z2), s inx  = x, cosx = 1 - x2/2. 

The figure below compares the exact value for sin x with a Taylor 
series in which successively higher terms are included. Note how each 

\ 
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term increases the range over which the series is accurate. If an infinite 
number of  terms are included, the Taylor series represents the function 
accurately everywhere. 

b. The Binomial Series 
We can derive the binomial series introduced in the last section by letting 

Then 

c. The Exponentiaf Function 
If we let f ( x )  = sz, we have f (x) = j (x),  by the definition of the expo- 
nential function. Similarly fck)(x)  = f ( x ) .  Sincef{O) = eO = 1, we have 

This series converges for  all values of z. 
A useful result from the theory of the Taylor series i s  that if the series 

converges at  all, it represents the function so well that we are allowed to 
differentiate o r  integrate the series any number of times. For example. 

= COS 2. 

Furthermore, the f aylar series for the product of two functions is the 
product of the individual series: 
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1 
= {sin (2x11. 

2 

The Taylor series sometimes comes in handy in the  evaluation of inte- 
grals. To estimate 

let z = 1 + x. We then have 

The approximation should be better than 1 part in 100 or so, for x always 
lies in the interval 0 5 x 5  0.1. In  this range, ex 1 + x  Is a goad 
approximation to two or three significant figures. 

3 DIFFERENTIALS 
Consider f(x), a function of t he  independent variable x. Often we need 

to have a simple approximation for the change in f (x )  when x is changed 
to x + Ax. Let us denote the change by Af = f(x f Ax) - f(s). I t  
is natural to turn to the Taylor series. Expanding the Taylor series for 
f(x) about the point x gives 

where, for example, f ($3 stands for dfJdx evaluated at  the point x. 
Omitting terms of order (Ax)2 and higher yields the simple linear apprax- 
imation 

Af = j (x f Ax) - f(x) = f ' ( ~ )  AX. 

f his approximation becomes increasingly accurate the smaller t he  
size of Ax. However, for finite values of Ax, the expression 



46 VECTORS AND KINEMATICS-A FEW MATHEMATICAL PRELl MlNARlES 

has to be considered to be an approximation. The graph at  left shows 
a comparison of A j  = f{x + Ax) - f ( x )  with the linear extrapolation 
f(s) Ax. It is apparent that Aj, the actual change in f(x3 as x is  
changed, is generally not exactly equal to Af for finite Ax. ------ 

As a matter of notation, we use the symbol dx to stand for Ax, the 
increment in z. d x i s  known as thedifferentialof x; it can beaslargeor  
small as we please. We define df, the differential of f ,  by 

df = f ( x )  dx. 

This notation is illustrated in the lower drawing. Note that dx and 
Ax are used interchangeably. On the other hand, df and Af are different 

x x + AX quantities. df is a differential defined by df = y(x )  dx, whereas Af is 
the actual change f(x + dx )  - f@). Nevertheless, when the linear 
approximation is justified in a problem, we often use df to represent 

Af. We can always do this when eventually a limit will be taken. Here 

------ are some examples. 

1 1. &sin 8)  = cas 17 dB. 
af 2 d(xeaP) = (exP + 2x2ex2) dx. 

df 1 3. Let V be the volume of a sphere of radius r :  

Y = *r3 

I I dV = 4.1rr2 dr. 

4. What is the fractional increase in the volume of the earth if its average 
radius, 6.4 X 10%, increases 'by 1 rn? 

One common use o f  differentials is in changing the variable of integra- 
tion. For instance, consider the integral 

A useful substitution is t = x2. The procedure is first to solve for a in 
terms of t, 

and then to take differentials: 
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This result is exact, since we a re effectively taking the limit. The original 
integral can now be written in terms of 1: 

where t ,  = u2 and t2  = b2. 

Some References to Calculus Texts 

A very popular textbook is  G. B. Thomas, Jr., "Calculus and Analytic 
Geometry," 4th ed., Addison-Wesley Publishing Company, Inc., Reading, 
Mass. 

The following introductory texts in calculus are also widely used: 
M. H. Protter and C. B. Morrey, "Calculus with Analytic Geometry," 
Addison-Wesley Publishing Company, Inc., Reading, Mass. 
A. E. Taylor, "Calculus with Analytic Geometry," Prentice-Hall, lnc., 
Englewood Cliffs, N.J. 
R. E. Johnson and E. L. Keokemeister, 'Calculus With Analytic Geometry," 
Allyn and Bacon, Inc., Boston. 

A highly regarded advanced calculus text is R. Courant, "Differential and 
Integral Calculus," l nterscience Publishing, I nc., New York. 

I f  you need to review calculus, you may find the following helpful: Daniel 
Kleppner and Norman Ramsey, 'Quick Calculus," John Wiley & Sons, 
Inc., New York. 

Problems 1.1 Given two vectors. A = 121 - 3j + 7k) and 8 = (51 + j $. 2&), find: 
(a )  A + B; (b )  A - B; Cc) A B; (dl A X B. 

Ans. (a )  71 - 2 j  4- 9k; (c) 21 

1.2 Find the cosine of the angle between 

A = (31 + j + k) and B = (-21 - 3 j  - Q. 
Ans. -0.305 

1.3 The direction cosines of a vector are the cosines of the angles ft 
makes with the coordinate axes, The cosine of the angles between the 
vector and the x, y, and z axes are usually called, in turn a, D, and y. 
Prove that  a2 -+ f12 "+ y2 = I, using either geometry or vector algebra. 

1.4 Show that  if lA - &I = IA + El, then A is perpendicular to B. 

1.5 Prove that the diagonals of an equilateral parallelogram are per 
pendicular. 

1.6 Prove the law of sines using the cross product. I t  should only take 

a couple of lines. (Hint: Consider the area of a triangle formed by A, 
B, C, where A + B + C = 0.) 
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Height 

I 

1.7 Let and Ib be unit vectors in the xy plane making angles 8 and 
# with the x axis, respectively. Show that 6 = cos8t  -+sin ej, b = 
cos $P + sin 45, and using vector algebra prove that 

cos (8 - 4) = cos 6 cos 4 + sin 8 sin 4. 

1.8 Find a unit vector perpendicular to 

A = ( i + j - k )  and B = ( Z P - j + 3 G ) .  

Ans. ii = +(2i - 5 j  - 3&)/1/38 
1.9 Show that the volume of a parallelepiped with edges A, 6 ,  and C is  

given by A .  QB X C). 

1.10 Consider two points located at r, and r2, separated by distance 
r = Irl - rzl. Find a vector A from the origin to a point on the line 
between r, and r2 at  distance zr from the point a t  r,, where x is some 
number. 

1.11 Let A be an arbitrary vector and let ii be a unit vector in some fiyea 
direction. Show that A = (A fi)h f (6 X A) X fi. 

0 
/--\, 1 .  The acceleration of gravity can be measured by projecting a body -++ upward and measuring the time that it takes to pass two given points 

in both directions. 
Show that if the time the body takes to pass a horizontal line d in both 

R f 1 ; '1) 

directions is TA, and the time to go by a second line B in both directions 
is TB, then, assuming that the acceleration is constant, its magnitude is 

' C - - - - T A  1 
8h 

I 1 Q = I 

Th2 - Tg2 
Time where h is the height of line B above line A. 

1.13 An elevator ascends from the ground with uniform speed. A t  
time TI a boy drops a marble through the floor. The marble falls with 
uniform acceleration g = 9.8 m/s2, and hits the ground Tz seconds 
later. Find the height of the elevator at time T,. 

Ans. clue. If TI = T2 = 4 s, h = 39.2 m 

1.14 A drum of radius R rolls down a slope without slipping. Its axis 
has acceleration a parallel to the slope. What is the drum's angular 
acceleration a? 

1.15 By relative velocity we mean velocity with respect to a specified 
coordinate system. (The term velocity, alone, is understood to be rela- 
tive to the observer's coordinate system.) 

a. A point is observed to have velocity VA relative to coordinate system 
A. What i s  its velocity relative to coordinate system 3, which is displaced 
from system A by distance R? (R can change in time.) 

Ans. V B  = V A  - dR/& 

b. Particles a and b move in opposite directions around a circle with. 
angular speed w ,  as shown. A t  1 = 0 they are both at the point r = lj, 
where I is the radius of the circle. 

Find the velocity of a relative to b. 
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1.16 A sportscar, Fiasco I, can accelerate uniformly to 120 mi/h in 30 s. 
Its maximum bra king rate cannot exceed 0.7g. What is the minimum 
time required to go -$ mi, assuming it begins and ends at rest? (Hint: 
A graph of velocity vs. time can be helpful.) 

1.17 A particle moves in a plane with constant radial velocity i = 4 m/s. 
The angular velocity is constant and has magnitude # = 2 rad/s. When 
the particle is 3 m from the origin, find the magnitude of (a) the velocity 
and (b) the acceleration. 

Ans. ( a )  u = 1/52 m/s 

1.18 The rate of change of acceleration is sometimes known as "jerk.'" 
Find the direction and magnitude of  jerk for a particle moving in a circle 
of radius R at angular velocity o. Draw a vector diagram showing the 

Y .  instantaneous position, velocity, acceleration, and jerk. 

1.19 A tire rolls in a straight line without slipping. I ts center moves 
with constant speed V. A small pebble lodged in the tread of the tire 
touches the road at t = 0. Find the pebble's position, velocity, and 
acceleration as functions of time. 

1.20 A particle moves outward along a spiral. Its trajectory is given 
by r = Af?, where A is a constant. A = (l/.lr) rn/rad. 8 increases in 
time according to 8 = crt2/2,  where or is a constant. 

a. Sketch the motion, and indicate the approximate velocity and accel- 
eration at a few points. 

b. Show that the radial acceleration is zero when 8 = I / &  rad. 
c. At what angles do the radial and tangential accelerations have equal 

magnitude? 

1.21 A boy stands alt the peak of a hill which slopes downward uniformly 
at angle 4. At what angle 6 from the horizontal should he thraw a rock 
so that it has the greatest range? 

Ans. clue. If 4 = 60Q, 0 = 15' 
-. . 


