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2.1 Introduction 

Our aim in this chapter is to understand Newton's laws of motion. 
From one point of view this is a modest task: Newton's laws are 
simple to state and involve little mathematical complexity. Their 
simplicity is deceptive, however. As we shall see, they combine 
definitions, observations from nature, partly intuitive concepts, 
and some unexamined assumptions on the properties of space 
and time. Newton's statement of the laws of motion left many 
of these points unclear. It was not until two hundred years after 
Newton that the foundations of classical mechanics were care- 
fully examined, principally by Ernst Mach,hnd our treatment is 
very much in the spirit of Mach. 

Newton's laws of motion are by no means self-evident. In 
Aristotle's system of mechanics, a force was thought to be needed 
to maintain a body in uniform motion. Aristotelian mechanics 
was accepted for thousands of years because, superficially, it 
seemed intuitively correct. Careful reasoning from observation 
and a real effort of thought was needed to break out of the 
aristotelian mold. Most of us are still not accustomed to think- 
ing in newtonian terms, and it takes both effort and practice to 
learn to analyze situations from the newtonian point of view. We 
shall spend a good deal of time in this chapter looking at applica- 
tions of Newton's laws, for only in this way can we really come to 
understand them. However, in addition to deepening our under- 
standing of dynamics, there is an immediate reward-we shall be 
able to analyze quantitatively physical phenomena which a t  first 
sight may seem incomprehensible. 

Although Newton's laws provide a direct introduction to classical 
mechanics, it should be pointed out that there are a number of 
other approaches. Among these are the formulations of Lagrange 
and Hamilton, which take energy rather than force as the funda- 
mental concept. However, these methods are physically equiva- 
lent to the newtonian approach, and even though we could use 
one of them as our point of departure, a deep understanding of 
Newton's Taws is an invaluable asset to understanding any system- 
atic treatment of mechanics. 

A word about the validity of newtonian mechanics: possibly you 
already know something a bout modern physics-the development 
early in this century of relativity and quantum mechanics. If so, 

Mach's text, "The Science of Mechanics" (18831, translated the arguments from 
Newton's "Principia" into a more logically satisfying form. His analysis of the 
assumptions of newtonian mechanics played a major role in the development ot 
Einstein's special theory of relativity, as  we shall see in Chap. 10. 
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you know that there are important areas of physics in  which new- 
tonian mechanics fails, while relativity and quantum mechanics 
succeed. Briefly, newtonian mechanics breaks down for systems 
moving with a speed com parable to the speed of light, 3 X 108 m/s, 
and it also fails for systems of atomic dimensions or smaller where 
quantum effects are significant. The failure arises because of 
inadequacies in  dassical concepts of space, time, and the nature 
of measurement. A natural impulse might be to throw out class- 
ical physics and proceed directly to modern physics. We do not 
accept this point of view for several reasons. In  the first place, 
although the more advanced theories have shown us where class- 
ical physics breaks down, they also show us where the simpler 
methods of classical physics give accurate results. Rather than 
make a blanket statement that classical physics is right or wrong, 
we recognize that newtonian mechanics is exceptionally use'ful in  
many areas of physics but of limited applicability in  other areas. 
For instance, newtonian physics enables us to predict eclipses cen- 
turies in advance, but is useless for predicting the. motions of 
electrons in  atoms. It shotlld also be recognized that because 
classical physics explains so many everyday phenomena, it is an 
essential tool for all practicing scientists and engineers. Further- 
more, most of the important concepts of classical physics are pre- 
served in modern physics, albeit in altered form. 

2.2 Newton's Laws 

It is important to understand which parts of Newton's laws are 
based on experiment and which parts are matters of definition. 
In  discussing the laws we must also learn how to apply them, not 
only because this is the bread and butter of physics but also 
because this is essential for a real understanding of the under- 
lying concepts. 

We start by appealing directly to experiment. Unfortunately, 
experiments in  mechanics are among the hardest in  physics 
because motion in our everyday surroundings is complicated by 
forces such as gravity and friction. To see the physical essen- 
tials, we would like t o  elf minate all disturbances and examine very 
simple systems. One way to accomplish this would be to enroll 
as astronauts, for in the environment of space most of the every- 
day disturbances are negligible. However, lacking the resources 
to put ourselves in orbit, we settle for second best, a device 
known as a linear air track, which approximates ideal conditions, 
but only in  one dimension. (Although it is not clear that we can 
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learn anything a bout three dimensional motion from studying 
motion in one dimension, happily this turns out to be the case.) 

Linear air track 

The linear air  track is a hollow triangular beam perhaps 2 m 
long, pierced by many small holes which emit gentle streams of 
air. A rider rests on the beam, and when the air is turned on, the 
rider floats on a thin cushion of air. Because of the air scrspen- 
sion, the rider moves with negligible friction. (The reason for this 
is that the thin film of air has a viscosity typically 5,000 times less 
than a film of oil.) If the track is leveled carefully, and if we elim- 
inate stray air currents, the rider behaves as if it were isolated in 
its motion along the track. The rider moves along the track free 
of gravity, friction, or any other detectable influences. 

Now let's observe how the rider behaves. (Try these experi- 
ments yourself if possible.) Suppose that we place the rider on 
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the track and carefully release it from rest. As we might expect, 
the rider stays a t  rest, at least until a draft hits it or somebody 
bumps the apparatus. (This isn't too surprising, since we leveled 
the track until the rider stayed put when left a t  rest.) Next, we 
give the rider a slight shove and then let it move freely. The 
motion seems uncanny, for the rider continues to move along 
sfowly and evenly, neither gaining nor losing speed. This is con- 
trary to our everyday experience that moving bodies stop moving 
unless we push them. The reason is that in everyday motion, 
friction usually plays an important role. For instance, the air 
track rider comes to a grinding halt if we turn off the air and let 
sliding friction act. Apparently the friction stops the motion. 
But we are getting ahead of owrselves; let us return to the 
properly functioning air track and try to generalize from our 
experience. 

It is possible to make a two dimensional air table analogous to 
the one dimensional air track. (A smooth sheet of glass with a 
f la t  piece of dry ice on it does pretty well. The evaporating dry 
ice provides the gas cushion.) We f ind again that the undisturbed 
rider moves with uniform velocity. Three dimensional isolated 
motion is hard to observe, short of going into space, but let us for 
the moment assume that our experience in one and two dimen- 
sions also holds in three dimensions. We therefore surmise that 
an object moves uniformly in space p~ovided there are no externa! 
influences. 

Newton's First Law 

In  our discussion of the air track experiments, we glossed over an 
important point. Motion has meaning only with respect to a par- 
ticular coordinate system, and in  describing motion it is essential 
to specify the coordinate system we are using. For example, in  
describing motion along the air track, we implicitly used a coor- 
dinate system fixed to the track. However, we are free to choose 
any coordinate system we please, including systems which are 
moving with respect to the track. In a coordinate system moving 
uniformly with respect to the track, the undisturbed rider moves 
with constant velocity. Such a coordinate system is called an 
inertia! system. Not all coordinate systems are inertial; in a coor- 
dinate system accelerating with respect to the track, the undis- 
turbed rider does not have constant velocity. However, it is 
always possible to find a coordinate system with respect to which 
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isolated bodies move uniformly. This is the essence of Newton's 
first law of motion. 

Newton's first law of motion is the assertion that inertial systems 
exist. 

Newton's first law is part definition and part experimental fact. 
Isolated bodies move uniformly in  inertial systems by virtue of the 
definition of an inertial system. In constrast, that inertial systems 
exist is a statement about the physical world. 

Newton's first law raises a number of questions, such as what 
we mean by an '"isolated body," but we will defer these temporarily 
and go on. 

Newton's Second Law 

We now turn to how the rider on the air track behaves when it is 
no longer isolated. Suppose that we pull the rider with a rubber 
band. Nothing happens while the rubber band is loose, but as 
soon as we pull hard enough to  stretch the rubber band, the rider 
starts to move. If we move our hand ahead of the rider so that 
the rubber band is always stretched to the same standard length, 
we find that the rider moves in a wonderfully simple way; its 
velocity increases uniformly with time. The rider moves with con- 
stant acceleration. 

Now suppose that we try the same experiment with a different 
rider, perhaps one a good deal larger than the first. Again, the 
same rubber band stretched to the standard length produces a 
constant acceleration, but the acceleration is different from that  
in the  first case. Apparently the acceleration depends not only 
on what we do to the object, since presumably we do the 
same thing in  each case, but also on some property of the object, 
which we call mass. 

We can use our rubber band experiment to define what we mean 
by mass. We start by arbitrarily saying that the first body has a 
mass ml. (ml could be one unit of mass or x units of mass, where 
x is any number we choose.) We then define the mass of the 
second body to be 

where al is the acceleration of the first body in our rubber band 
experiment and a2 is the acceleration of the second body. 
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Continuing this procedure, we can assign masses to other 
objects by measuring their accelerations with the standard 
stretched rubber band, Thus 

a1 etc. 
m4 = ml - 

a4 

Although this procedure is straightforward, there is no obvious 
reason why the quantity we define this way is particularly impor- 
tant. For instance, why not consider instead some other prop- 
erty, call it properfy 2, such that Zz  = Zl(al/ap)? The reason 
is that mass is useful, whereas property Z (or most other quan- 
tities you try) is not. By making further experiments with the 
air track, for instance by using springs or magnets instead of a 
rubber band, we find that the ratios of accelerations, hence the 
mass ratios, are the same no matter how we produce the uni- 
form accelerations, provided that we do the same thing to each 
body. Thus, mass so defined turns out to be independent of 
the source of acceleration and appears to be an inherent prop- 
erty of a body. Of course, the actual mass value of an individual 
body depends on our choice of mass unit. The important thing 
Is that two bodies have a unique mass ratio. 

Our definition of mass is an example of an operational definition. 
By operational we mean that the definition is dominantly in  terms 
of experiments we perform and not in terms of abstract concepts, 
such as '"mass is a measure of the resistance of bodies to a change 
in  motion." Of course, there can be many abstract concepts hid- 
den in  apparently simple operations. For instance, when we mea- 
sure acceleration, we tacitly assume that we have a clear under- 
standing of distance and time. Although our intuitive ideas are 
adequate for our purposes here, we shall: see when we discuss 
relativity that the behavior of measuring rods and clocks is itself 
a matter for experiment. 

A second troublesome aspect of operational definitions is that 
they are limited to situations i n  which the operations can actually 
'be performed. In  practice this is usually not a problem; physics 
proceeds by constructing a chain of theory and experiment which 
allows us to employ convenient methods of measurement ulti- 
mately based on the operational definitions. F ~ Y  instance, the 
most practical way to measure the mass of a mountain is to 
observe its gravitational pull on a test body, such as a hanging 
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plumb bob. According t o  the operational definition, we should 
apply a standard force and measure the mountain's acceleration. 
Nevertheless, the two methods are directly related conceptualfy. 

We defined mass by experiments on laboratory obfects; we can- 
not say a priori whether the results are consistent on a much 
larger or smaller scale. In fact, one of the major goals of physics 
is to find the limitations of such definitions, for the limitations 
normally reveal new physical laws. Nevertheless, if an opera- 
tional definition is to be at all useful, it must have very wide appli- 
cability, For instance, our definition of mass holds not only for 
everyday objects on the earth but also, to a very high degree, for 
planetary motion, motion on an enormously jarger scale. It 
should not surprise us, however, if eventually we find situations 
in which Ithe operations are no longer useful. 

Now that we have defined mass, let us turn our attention to 
force. 

We describe the operation of acting on the test mass with a 
stretched rubber band as "applying" a force. (Note that we have 
sidestepped the question of what a force is and have limited our- 
selves t o  describing how to produce it-namely, by stretching a 
rubber band by a given amount.) When we apply the force, the 
test mass accelerates at some rate, a. I f  we apply two standard 
stretched rubber bands, side by side, we find that the mass accel- 
erates at the rate 2a, and if we apply them in opposite directions, 
the acceleration is zero. The effects of the rubber bands add 
algebraically for the case of motion in  a straight line. 

We can establish a force scale by defining the unit force as the 
force which produces unit acceleration when applied to the unit 
mass. It follows from our experiments that F units of force 
accelerate the unit mass by E units of acceleration and, from our 
definition of mass, it will produce F X (1 Jm) units of acceleration 
in mass m. Hence, the acceleration produced by force F acting 
on mass m is a = P/m or, in  a more familiar order, F = ma. In 
the International System of units (Sf), the unit of force is the new- 
ton (N), the unit of mass is the kilogram (kg), and acceleration is 
in meters per second2 (rn/s2). Units are discussed further in  
Sec. 2.3. 

So far we have limited our experiments to one dimension. 
Since acceleration is a vector, and mass, as far as we know, is a 
scalar, we expect that force is also a vector. it is natural to think 
of the force as pointing in  the direction of the acceleration it pro- 
duces when acting alone. This assumption appears trivial, but 
it is not-its justification ties in  experiment. We find that forces 
obey the principle of superposition: The acceleration produced by 
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several forces acting on a body is equal to the vector sum of the 
accelerations produced by each of the forces acting separately. 
Not only does this confirm the vector nature of force, but it also 
enables us to analyze problems by considering one force at a 
time. 

Combining all these observations, we conclude that the total 
force F on a body of mass m is F = ZFa, where Fi is the i t h  applied 
force. If a is the net acceleration, and a$ the acceleration due to 
Fi alone, then we have 

F = ma. 

This is Newton's second law of motion. It will underlie much of 
our subsequent discussion. 

It is important to understand clearly that force Es not merely 
a matter of definition. For instance, if the air track rider starts 
accelerating, it is not sufficient to claim that there is a force acting 
defined by F = ma. Forces always arise from interactions between 
systems, and if we ever found an acceleration without an inter- 
action, we would be in  a terrible mess. It is the interaction which 
is physically significant and which is responsible for the force. 
For this reason, when we isolate a body sufficiently from its sur- 
roundings, we expect the body to move uniformly in an inertial 
system. Tsolation means eliminating interactions. You may 
question whether it is always possible to isolate a body. For- 
tunately, as far as we know, the answer is yes. All known inter- 
actions decrease with distance. (The forces which extend over 
the greatest distance are the familiar gravitational and CouIom b 
forces. They decrease as l / r 2 ,  where r is the distance. Most 
forces decrease much more rapidly. For example, t h e  force 
between separated atoms decreases as l / r 7 . )  By moving the 
test body sufficiently far from everything else, the interactions 
can be reduced as much as desired. 

Newton's Third Caw 

The fact that force is necessarily the result of an interaction 
between two systems is made explicit by Newton's third law. The 
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third law states that forces always appear in  pairs: i f  body b exerts 
force F, on body a, then there must be a force F b  acting on body 
b, due to body a, such that Fb = -Fa. There is no such thing as 
a lone force without a partner. As we shall see in  the next chap- 
ter, the third law leads directly to the powerful law of conservation 
of momentum. 

We have argued that a body can be isolated by removing it 
sufficiently far f rom other bodies. However, the following prob- 
lem arises. Suppose that an isolated body starts to accelerate 
in  defiance of Newton's second law. What prevents us from 
explaining away the difficulty by attributing the acceleration to 
carelessness in  isolating the system? If this option is open to us, 
Newtan" second law becomes meaningless. We need an inde- 
pendent way of telling whether or not there is a physical interac- 
tion on a system. Newton's third law provides such a test. If 
the acceleration of a body is the result of an outside force, then 
somewhere in the universe there must be an equal and opposite 
force acting on another body. If  we find such a force, the 
dilemma is resolved; the body was not completely isolated. The 
interaction may be new and interesting, but as tong as the forces 
are equal and opposite, Newton's laws are satisfied. 

I f  an isolated body accelerates and we cannot find some external 
object which suffers an equal and opposite force, then we are in 
trouble. As far as we know this has never mcurred. Thus New- 
ton's third law is not only a vitally important dynarnical tool, but 
it is also an important logical element in  making sense of the first 
two laws. 

Newton" ssecond law F = ma holds true only in  inertial systems. 
The existence of inertial systems seems almost trivial to us, since 
the earth provides a reasonably good inertial reference frame for 
everyday observations. However, there is nothing trivial about 
the concept of an inertial system, as the following example shows. 

Example 2.1 Astronauts in Space-Inertial Systems and Fictitious Forces 

Two spaceships are moving in empty space chasing an unidentified 
flying object, possibly a flying saucer. The captains of the two ships, 
d and 3, must find out if the saucer is flying freely or if it is accelerating. 
11, B, and the saucer are all moving along a straight line. 

The captain of :i sets to work and measures'the distance to the saucer 
as a function of time. In  principle, he sets up a coordinate system along 
the line of motion with his ship as origin and notes the position of the 
saucer, which he calls xn(t) .  (In practice he uses his radar set to mea- 
sure the distance to  the saucer.) From x ~ ( t }  he calculates the velocity 
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/i 
a* = x A  and the acceleration a~ = f ,,. The results are shown in the 
sketches. The captain of . I  concIudes that the saucer has a positive 
acceleration ad = 1,000 m/s2. Me therefore assumes tha t  its engines 
are on and that the force on the saucer is 

F A  = ~ ~ 3 1  

= 1,00031 newtons, 
1 

1 where Jf is the saucer's mass in kilograms. 
The captain of  3 goes through the same procedure. He finds that  the 

acceleration is an = 950 m/s2 and concludes that the force on the saucer 
is 

/ F B  = no31 

= 95031 newtons. 

This presents a serious problem. There is nothing arb i t ray about 

I force; if different observers obtain different values for the force, a t  
r least one of them must be mistaken. The captains of . l  and B have 

confidence in the laws of mechanics, so they set about resolving the dis- 
=A crepancy. In particular, they recall that Newton's laws hold only in iner- 

tial systems. How can they decide whether or not their systems are 
inertial? 

A's captain sets out by checking to see if all his engines are off. Since 
they are, he suspects that he is not accelerating and that his spaceship 

m 1 defines an inertial system. To check that this is the case, he undertakes 
a simple but sensitive experiment. He observes that a pencil, carefully 

S released at rest, floats without motion. He concludes that the pencil's 
acceleration is negligible and that he is in an inertial system. The rea- 
soning is as follows: as long as he holds the pencil it must have the same 
instantaneous velocity and acceleration as the spaceship. However, 
there are no forces acting on the pencil after it is released, assuming 
that we can neglect gravitational or electrical Interactions with the space- 
ship, air currents, etc. The pencil, then, can be presumed to represent 
an isolated body. I f  the spaceship i s  itself accelerating, it will catch up 
with the pencil-the pencil will appear to accelerate relative to the cabin. 
Otherwise, the spaceship must itself define an inertial system. 

The determination of the force on the saucer by the captain of -4 
must be correct because - I  is in an inertial system. But what can we 
say about the observations made by the captain of B? To answer this 
problem, we look at t he  relation of X A  and xa. From the sketch, 
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where X ( i )  is the position of B relative to A.  Differentiating twice with 
respect to time, we have 

Since system is inertial, Newton's second law for the saucer is 

where F,,,, is t he  true force on the saucer. 
What  about the observations made by the captain of B? The apparent 

force observed by B is 

Using the results of (I) and (23, we have 

will not measure the true force unless f = 0. However, 2 = 0 
only when B moves uniformly with respect to A .  As we suspect, this is 
not  the case here. The captain of B has accidently left on a rocket 
engine, and he is accelerating away from A at 50 m/s2. After shut t ing 
off the engine, he obtains the same value fo r  the force on the saucer 
as does A .  

Although we considered only motion along a line in Example 
2.1, it is easy to generalize the result to three dimensions. If R is 
the vector from the origin of an inertial system to the origin of 
another coordinate system, we have 

Fagparent = Ftrae - 

If # = 0, then F ,,,,,,,, = F ,,,,, which means that the second coor- 
dinate system is also inertial. In  fact, we have merely proven 
what we asserted earlier, namely, that any system moving uni- 
formly with respect to an inertial system is also inertial. 

Sometimes we would like to carry out measurements in  non- 
inertial systems. What can we do to  get the correct equations of 
motion? The answer lies in  the relation F ,,,,,, , = F,,, - MR. 
We can think of the last term as an additional force, which we 
call a fictitious force. (The term fictitious indicates that there is 
no real interaction involved.) We then write 
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whereFfictitious = --MR. I -Teredl isthernassof the particleand 
R is the acceleration of the noninertial system with respect to any 
inertial system. 

Fictitious forces are useful in solving certain problems, but  they 
must be treated with care. They generally cause moreconfusion 
then they are worth a t  this stage of your studies, and for that rea- 
son we shall avoid them for the present and agree to use inertial 
systems only. Later on, in Chap. 8, we shall examine fictitious 
forces in detail: and learn how to deal with them. 

Although Newton's laws can be' stated in  a reasonably clear 
and consistent fashion, it should be realized that there are 
fundamental difficulties which cannot be argued away. We shall 
return to these in  later chapters after we have had a chance to 
become better acquainted with the concepts of newtonian physics. 
Some points, however, are well to bear in  mind now. 

1. You have had to take our word that the experiments we used 
to define mass and to develop the second law of motion really give 
the results claimed. It should come as no surprise (although it 
was a considerable shock when it was first discovered) that this 
is not always so. For instance, the mass scale we have set up is 
no longer consistent when the particles are moving at high speeds. 
It turns out that instead of the mass we defined, called the rest 

mass m,, a more useful quantity is m = m o l d 1  - v2/c2, where 
c is the speed of light and v is the speed of the particle. For the 
case v << c, 112, and m,  differ negligibly. The reason that our table- 
top experiments did not lead us to the more general expression 
for mass is that even for the largest everyday velocities, say the 
velocity of a spacecraft going around the earth, u / c  .= 3 X lo-', 
and m and mo differ by only a few parts in 10lO. 

2. Newton" laws describe the behavior of point masses. In the 
case where the size of the body is smalI compared with the inter- 
action distance, this offers no problem. For instance, the earth 
and sun are so small compared with the distance between them 
that for many purposes their motion can be adequately described 
by considering t'he motion of point masses located at the center of 
each. However, the approximation that we are dealing with point 
masses is fortunately not essential, and if we wish to describe the 
motion of large bodies, we can readily generalize Newton's laws, 
as we shall do in  the next chapter. It turns out to be not much 
more difficult to discuss the motion of a rigid body composed of 
1Q2' atoms than the motion of a single point mass. 
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3. Newton" laws deal with particles and are poorly suited for 
describing a continuous system such as a fluid. We cannot 
directly apply F = ma to a fluid, for both the force and the mass 
are continuously distributed. However, newtonian mechanics can 
be extended to deal with fluids and provides the underlying prin- 
ciples of fluid mechanics. 

One system which is particularly troublesome for our present 
formulation of newtonian mechanics is the electromagnetic field. 
Paradoxes can arise when such a field is present. For instance, 
two charged bodies which interact electrically actually interact via 
the electric fields they create. The interaction is not instanta- 
neously transmitted from one particle to the other but propagates 
a t  the velocity of light. During the propagation time there is an 
apparent breakdown of Newton's third law; the forces on the 
particles are not equal and opposite. Similar problems arise in 
considering gravitational and other interactions. However, the 
problem lies not so much with newtonian mechanics as with its 
misapplication. Simply put, fields possess mechanical properties 
like momentum and energy which must not be overlooked. From 
this point of view there is no such thing as a simple two particle 
system. However, for many systems the fields can be taken 
into account and the paradoxes can be resolved within the new- 
tonian framework. 

2.3 Standards and Units 

Length, time, and mass play a fundamental role in  every branch 
of physics. These quantities are defined in terms of certain fun- 
damental physical standards which are agreed to by the scientific 
community. Since a particular standard generally does not have 
a convenient size for every application, a number of systems of 
units have come into use. For example, the centimeter, the ang- 
strom, and the yard are all units of length, but each is defined in 
terms of the standard meter. There are a number of systems of 
units in widespread use, the choice being chiefly a matter af cus- 
tom and convenience. This section presents a brief description 
of the current standards and summarizes the units which we shall 
encounter. 

The Fundamental Standards 

The fundamental standards play two vital roles. In the first 
place, the precision with which these standards can be defined 
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and reproduced limits the ultimate accuracy of experiments. In  
some cases the precision is almost unbelievably high-time, for 
instance, can be measured to a few parts in  10". In  addition, 
agreeing to a standard for a physical quantity simultaneously pro- 
vides an operational definition for that quantity. For example, 
the modern view is that time is what is measured by clocks, and 
that the properties of time can be understood only by observing 
the properties of clocks. This is not a trivial point; the rates of 
all clocks are affected by motion and by gravity (as we shall discuss 
in  Chaps. 8 and 12), and unless we are willing to accept the fact 
that time itself is altered by motion and gravity, we are led into 
contradictions. 

Once a physical quantity has been defined in  terms of a mea- 
surement procedure, we must appeal to experiment, not to pre- 
conceived notions, to understand its properties. To contrast this 
viewpoint with a nonoperafional approach, consider, for example, 
Newton's definition of time: "Absolute, true, and mathematical 
time, of itself, and from its own nature, flows equally without rela- 
tion to anything external." This may be intuitively and philo- 
sophically appealing, but it is hard to see how such a definition 
can be applied. The idea is metaphysical and not of much use in  
physics. 

Once we have agreed on the operation underlying a particular 
physical quantity, the problem is to construct the most precise 
practical standard. Until recently, physical: standards were man- 
made, in the sense that they consisted of particular objects t o  
which all other measurements had to be referred. Thus, the 
unit length, the meter, was defined to be the distance between two 
scratches on a platinum bar. Such man-made standards have a 
number of disadvantages. Since the standard must be carefully 
preserved, actual measurements are often done with secondary 
standards, which causes a loss of accuracy. Furthermore, the 
precision of a man-made standard is intrinsically limited. In  the 
case of the standard meter, precision was found to be limited by 
fuzziness in the engraved lines which defined the meter interval. 
When more accurate optical techniques for locating position were 
developed in  the latter part of the nineteenth century, it was rea- 
lized that the standard meter bar was no longer adequate. 

t e n a h  is now defined by a natural, rather than man-made, 
standard. The meter is defined to be a given multiple of the 
wavelength of a particular spectral line. The advantage of such 
a unit is that anyone who has the required optical equipment can 
reproduce it. Also, as the instrumentation improves, the accuracy 
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of the standard will correspondingly increase. Most of the stan- 
dards of physics are now natural. 

Here is a 'brief account of the current status of the standards of 
length, time, and mass. 

Length The meter was intended to be one ten-millionth of the dis- 
tance from the equator to the pole of the earth along the Dunkirk- 
Barcelona line. This cannot be measured accurately (in fact it 
changes due to distortions of the earth), and in  1889 it was agreed 
to define the meter as the separation between two scratches in a 
platinum-iridium bar which is preserved a t  the International 
Bureau of Weights and Measures, Sgvres, France. In 1960 the 
meter was redefined to be 1,650,763.73 wavelengths of the orange- 
red line of krypton 86. The accuracy of this standard is a few 
parts in  108. 

Recent advances in laser techniques provide methods which 
should allow the velocity of light to be measured to better than 1 
part En 108. It is likely that the velocity of light will replace length 
as a fundamental quantity. In this case the unit of length would 
be derived from velocity and time. 

Time Time has traditionally been measured in terms of rotation of 
the earth. Until 1956 the basic unit, the second, was defined as 
1/86,400 of the mean solar day. Unfortunately, the period of 
rotation of the earth is not very uniform. Variations of up to 
one part in lo7 per day occur due to atmospheric tides and changes 
in the earth's core. The motion of the earth around the sun is 
no2 influenced by these perturbations, and until recently the mean 
solar year was used to define the second. Here the accuracy was 
a few parts in  lo9. Fortunately, time can now be measured in  

terms of a natural atomic frequency. In  1967 the second was 
defined t o  be the time required to execute 9,192,631,770 cycles of 
a hyperfine transition in  cesium 133. This transition frequency 
can be reliably measured to a few parts in 1012, which means 
that time is by far the most accurately determined fundamental 
q uantity. 

Mass Of the three fundamental units, only mass is defined in  
terms of a m;n-made standard. Originally, the kilogram was 
defined t o  be the mass of 1,000 cubic centimeters of water at a 
temperature of 4 degrees Centigrade. The definition is difficult to 
apply, and in 1889 the kilogram was defined to be the mass of a 
platinum-iridium cylinder which is maintained at the l nternational 
Bureau of Weights and Measures. Secondary standards can be 
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compared with it to an accuracy of one part in lo9. Perhaps some- 
day we will learn how to define the kilogram in terms of a natural 
unit, such as the mass of an atom. However, a t  present nobody 
knows how to count reliably the large number of atoms needed 
to constitute a useful sample. Perhaps you can discover a 
met hod. 

Systems of Units 

Although the standards for mass, length, and time are accepted 
by the entire scientific community, there are a variety of systems 
of units which differ in the scaling factors. The most widely 
used system of units is the International System, abbreviated SE 
(for Systsme International dWnit6s). It is the legal system in 
most countries. The SI units are meter, kilogram, and second; 
SI replaces the former mks system. The related cgs system, 
based on the centimeter, gram, and second, is also commonly 
used. A third system, the English system of units, is used for non- 
scientific measurements in Britain and North America, although 
Britain is in  the process of switching to the metric system. It is 
essential to know how to work problems in any system of units. 
We shall work chiefly with S1 units, with occasional use of the cgs 
system and one or two lapses into the English system. 

Here is a table listing the names of units in the Sl, cgs, and 
English systems. 

SI CGS ENGLISH 

Length 1 meter (m) I centimeter (cm) 1 foot (ft) 
Mass 1kilogramCkg) lgxam(g)  1  slug 
Time I second (s) 1 second (s) 1 second (s) 
Acceleration 1 m/s2 1 cm/s2 1 ft/s2 
Force 1 newton (N) 1 dyne 1 pound (Ib) 

= 1 kg.m/s2 = I g.crn/s2 = 1 slug.ft/s2 

Some useful relations between these units systems are: 

The word pound sometimes refers to a unit of mass. 'In this con- 
text it stands for the mass which experiences a gravitational force 
of one pound a t  the surface of the earth, approximately 0.454 kg. 
We shall avoid this confusing usage. 

1 m = 100 cm 
1 kg = 1000 g 
1 N = 105 dyne 

1 in = & f t  = 2.54cm 
1 slug .= 14.6 kg 
I N = 0.224 Ib 
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2.4 Some Applications of Newton's taws 

Newton's laws are meaningless equations until we know how to 
apply them. A number of steps are involved which, once learned, 
are so natural that the procedure becomes intuitive. Our aim in  
this section is to outline a method of analyzing physical problems 
and to illustrate it by examples. A note of reassurance lest you 
feel that matters are presented too dogmatically: There are many 
ways of attacking most problems, and the procedure we suggest 
is certainly not the only one. In  fact, no cut-and-dried procedure 
can ever substitute for intelligent analytical thinking. However, 
the systematic method suggested here will be helpful in getting 
started, and we urge you to master it even i f  you should later 
resort to shortcuts or a different approach. 

Here are the steps: 

1. Mentally divide the system1 into smaller systems, each of which 
can be treated as a point mass. 

2. Draw a force diagram for each mass as follows: 
a. Represent the body by a point or simple symbol, and label it. 
b. Draw a force vector on the mass for each force acting on it. 

Point 2b can be tricky. Draw only forces acting on the body, 
not forces exerted by the body. The body may be attached to 
strings, pushed by other bodies, etc. We replace all these physi- 

A F, cal interactions with other bodies by a system of forces; according 
to Newton's laws, only forces acting on the body influence Its 
motion. 

fi + 

( 'MA AS an example, here are two blocks a t  rest on a table top. 
The force diagram for A is shown at  left. F 1  is the force exerted 
on block A by block B, and W A  is the force of gravity on A, called 

W~ the weight. 
Similarly, we can draw the force diagram for block I?. Wg is 

N the force of gravity on By N is the normal (perpendicular) force 
exerted by the table top on B, and F, is the force exerted by A 
on B. There are no other physical interactions that would pro- 
duce a force on B. 

It is important not to confuse a force with an acceleration; draw 
only real forces. Since we are using only inertial systems for the 
present, all the forces a re associated with physical interactions. 

We For every force you should 'be able to answer the question, "What 

We use "system" here to mean a collection of physical objects rather than a 
coordinate system. The meaning should be clear from the context. 
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exerts this force en the body?" (We shall see how to use so-called 
fictitious forces in Chap. 8.9 

3. Introduce a coordinate system. The coordinate system must 
be inertial-that is, it must be fixed to an inertial frame. With 
the force diagram as a guide, write separately the component 
equations of motion for each body. By equation of motion we 
mean an equation of the form F1, + Fz, + - - . = MG, where 
the x component of each force on the body is represented by a 
term on the left hand side of the equation. The algebraic sign 
of each component must be consistent with the force diagram 
and with the choice of coordinate system. 

For instance, returning to the force diagram for block A, New- 
ton" second law gives 

L Since F, = P J , W A  = - W ~ j ~ w e  have 
I 

0 = ~ A C ~ A ) ~  

and 

The x equation of motion is trivial and normally we omit it, writing 
simply 

The equation of motion for B is 

4. If two bodies in the same system interact, the forces between 
them must be equal and opposite by Newton's third law. These 
relations shouid be written explicitly. 

For example, in the case of the two blocks on the tabletop, 
FI = -Fz. Hence 

Note that Newton's third law never relates two forces acting on 
the same body; forces on two different bodies must be involved. 

The most notorious fictitious force is the centrifugal force. Long experience has 
shown that using this force before one has a really solid grasp of Newton's taws 
invariably causes confusion. Besides, it is only one of several fictitious forces 
which play a role in rotating systems. For both these reasons, we shall strictly 
avoid centrifugal forces for the present. 
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5. In  many problems, bodies are constrained to move along cer- 
tain paths. A pendulum bob, for instance, moves in a circle, and 
a block sliding on a tabletop is constrained to move in a plane. 
Each constraint can be described by a kinematical equation known 
as a constraint equation. Write each constrain; eq uation. 

Sometimes the constraints are implicit in the statement of the 
problem. For the two blocks on the tabletop, there is no vertical 
acceleration, and the constraint equations are 

6. Keep track of which variables are known and which are 
unknown. The force equations and the constraint equations 
should provide enough relations to allow every unknown to be 
found. I f  an equation is overlooked, there will be too few equa- 
tions for the unknowns. 

Completing the problem of the two blocks on the table, we have 

F 1  - W A  = m ~ a ~  
Equations of motion N -- F z  - WB = m ~ a ~  

PI = Fz From Newton's third law 

I Constraint equations 

Al l  that remains is the mathematical task of solving the equations. 
We find 

Here are a few examples which illustrate the application of 
Newton's laws. 

The main point of the first example is to help us distinguish 
between the force we apply to an object and the force it exerts on 
us. Physiologically, these forces are often confused. If you 
push a book across a table, the force you feel is not the force 
that makes the book move; it is the force the book exerts on you. 
According t o  Newton's third law, these two forces are always 
equal and opposite. If one force is limited, so is the other. 

Example 2.2 f he Astronauts' Tug-of-war 

Two astronauts, initially a t  rest in free space, pull en either end of a 
rope. Astronaut Alex played football in high school and is stronger than 
astronaut Bob, whose hobby was chess. The maximum force with which 
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Alex can pull, FA, is larger than the maximum force with which Bob can 
pull, PB. Their masses are M A  and r l f ~ ,  and the mass of the rope, Jf,, 
is negligible. Find their motion if each pulls on the rope as hard as hecan. 

Here are the force diagrams. For clarity, we show the rope as a line. 

Note that the forces FA and F B  exerted by the astronauts act on the 
rope, not on the astronauts. The forces exerted by the rope on the 
astronauts are .FAt and PB'. The diagram shows the directions of 
the forces and the coordinate system we have adopted; acceleration to 
the right is positive. 

By Newton's third law, 

The equation of motion for the rope is 

Only motion along the line of the rope is of interest, and we omit the 
equations of motion in the remaining two directions. There are no con- 
straints, and we proceed to the solution. 

Since the mass of the rope, Jf,, is negligible, we take d l ,  = O in 
Eq. (2). This gives P B  - F A  = O or 

The total force on the rope is F .  to the right and F A  to the left. These 
forces are equal in magnitude, and the total force an the rope is zero. 
In  general, the total force on any body of negligible mass must be effec- 
tively zero; a finite force acting on zero mass would produce an infinite 
acceleration. 

Since F B  = FA, Eq. (1)gives ~i = PA = PB = Fk.  Hence 

The astronauts each pulI with the same force. Physically, there i s  a 
limit to how hard Bob can grip the rope; if Alex tries to pull too hard, 
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the rope slips through Bob's fingers. The force Alex can exert is limited 
by the strength of Bob's grip. I f  the rope were tied to Bob, Alex could 
exert his maximum pull. 

The accelerations of the two astronauts are 

The negative sign means that a~ is to the left. In  many problems the 
directions of some acceleration or force components are initially unknown. 
In writing the equations of motion, any choice is valid, provided we are 
consistent with the convention assumed in the force diagram. I f  the 
solution yields a negative sign, the acceleration or force is opposite to 
the direction assumed. 

The next example shows that in order for a compound system 
to accelerate, there must be a net force on each part of the 
system. 

Example 2.3 Freight Train 

Three freight cars of mass M are pulled with force P by a locomotive. 
Friction is negligible. Find the forceson each car. 

Before drawing the force diagram, it is worth thinking about the system 
as a whole. Since the cars are joined, they are constrained to have the 
same acceleration. Since the total mass is 361, the acceleration is 

P a = -. 
N 3.M ---r A force diagram for the last car is shewn at the left. W is the 

1 
Fl 

weight and N i s  the upward force exerted by the track. The vertical 
I 
L--- ---A acceleration is zero, so that iV = W. F I  is the force exerted by the 

next car. We have 

W F~ = nla  
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- a  Now let us consider the middle car. The vertical forces are as before, 
I-------- 1 
1 -_ and we omit them. F: is the force exerted by the last car, and Fp IS the 

I I force exerted bjl the first car. The equation of  motion is 
F; L------d F2 

PS - P I  = Ma. 

By Newton's third law, PI = P I  = P/3.  Since a = F,QJP, we have 

r------- 1 
The horizontal forces on the first car are P, to the right, and 

- !  - 

to the left. Each car experiences a total force PJ3 to the right. 
Here is  a slightly more general way to look at the problem. Consider 

a string of N cars, each of mass Af, pulled by a force P. The accelera- 

Zion is a = F J(2V.M). To find the force F ,  pulling the last n cars, note 
that F, must give t h e  mass nnlr an acceleration F / ( N M ) .  Hence 

The force is proportional to the number of cars pulled. 

In systems composed of several bodies, the accelerations are 
often related by constraints. The equations of constraint can 
sometimes be found by slrnple inspection, but the most general 
approach is to start with the coordinate geometw, as shown in the 
next exampfe. 
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Example 2A Constraints 

a. WEDGE AND BLOCK 
A block moves on a wedge which in turns moves on a horizontal table, 
as shown in the sketch. The wedge angle is 8. How are the accelera- 
tions of the block and the wedge related? 

As long as the wedge is in contact with the table, we have the trivial 
constraint that the vertical acceleration of the wedge is zero. To find 
the less obvious constraint, let X be the horizontal coordinate of the end 
of the wedge and let z and y be the horizontal and vertical coordinates of 
the block, as shown. Let h be the height of the wedge. 

From the geometry, we see that 

- X )  = (h - y)cote.  

Differentiating twice with respect to time, we obtain the equation o f  
constraint 

z - 2 = -g cot 9. 1 

A few comments are in order. Note that the coordinates are inertial. 
We would have trouble using Newton's second law i f  we measured the 
position of the block with respect to the wedge; the wedge is accelerating 
and cannot specify an inertial system. Second, unimportant parameters, 
like the height of the wedge, disappear when we take time derivatives, 
but they can be useful in setting up the geometry. Finally, constraint 
equations are independent of applied forces. For example, even if fric- 
tion between the block and wedge affects their accelerations, Eq. (1) is 
valid as long as: the bodies are in contact. 

b. MASSES AND PULLEY 
Two masses are connected by a string whlch passes over a pulley accel- 
erating upward at  rate A, as shown. Find how the accelerations of the 
bodies are related. Assume that there is no horizontal moticn. 

We shall use the coordinates shown in the drawing. The length of 
the string, 1, is constant. Hence, if 9, is measured to the  center of the 
pulley of radius R, 

1 = + (yp - Y1) + (32, - ~ 2 ) .  2 

Differentiating twice with respect to time, we find the constraint condition 

0 = 2gp - g1 - g2* 

Using A = ji,, we have 

I A = *(#I f 82) .  

c. PULLEY SYSTEM 
The pulley system shown on the opposite page is used to hoist the block. 
How does the acceleration of the end of the rope compare with the 
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acceleration of the block? Using the coordinates indicated, the length of 
the rope is given by 

where R is the radius of the pulleys. Hence 

The block accelerates half as fast as the hand, and in the opposite 
direction. 

Our exampfes so far have involved l i n e a ~  motion only. Let us 
look at the dynamics of rotational motion. 

A particle undergoing circular motion must have a radial accel- 
eration. This sometimes causes confusion, since our intuitive 
idea of acceleration usually relates to change in speed rather than 
to change in  direction of motion. For this reason, we start with as 
simple an example as possible. 

Example 2.5 Block on String 1 

Mass m whirls with constant speed v a t  the end of a string of length R. 
Find the force on m in the absence of gravity or friction. 

The only force on m is the string force T, which acts toward the center, 
as shown in the diagram. It is natural to use polar coordinates. Note 
that according to the derivation in Sec. 1.9, the radial acceleration is 
a, = P - rd2, where is the angular velocity. a, is positive outward. 
Since T is  directed toward the origin, T = - T i  and the radial equation 
of motion is 

-T = ma, 

= m(i: - ~ 8 2 ) .  

1 T = f i  = Oand 8 = v /R .  Hencea, = - R ( V / R ) ~  = -vP/R and 

I mu2 
\ 
I I 

T=-. 
R 

\ 
\ 

/ 
/ Note that 5" is directed toward the origin; there is no outward force '--' on m. If you whirl a pebble at the end of a strjng, you feel an outward 

force. However, the force you feel does not act on the pebble, it acts 
on you. This force is  equal in magnitude and opposite in direction to 
the force with which you pull the pebble, assuming the string's mass to 
be negligible. 

In  the following example both radial and tangential acceleration 
play a role in circular motion. 
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Example 2.6 Block on String 2 

/-- A, Mass m is whirled on the end of a string length R.  The motion is in a 

/' 
vertical plane in the gravitational field of the earth. The forces on m 

I 1 are the weight IV down, and the string force T toward the center. The 

1 
instantaneous speed is v, and the string makes angle 0 with the hori- 

\ 1 zontal. Find T and the tangential acceleration at this instant. 

\ 1 The lower diagram shows the forces and unit vectors i: and 6. The /' 
\--/ radial force is  - T - TV sin 8, so the radial equation of motion is 

-(T + TV sin 8) = ma, 

= m(T" - rd2). 
', BV The tangential force is - IV cos 8. H m r e  

- tV cos 6 = man 
= m(r8 + 2 f 0 ) .  2 

Since r = B = constant, a, = -R(d2)  = -uS/R, and Eq. (1) gives 

The string can pull but not push, so that T cannot be  negative. This 
requires that mv2/R 2 W sin 0. The maximum value of  W sin 8 occurs 
when the mass is vertically up; in this case mv2/R > IT'. I f  this condi- 
tion is not satisfied, the mass does not follow a circular path but starts to 
fall; r is no longer zero. 

The tangential acceleration is given by Eq. (2). Since f = 0 we have 

a0 = RB; 

- - - W cos 6 
m 

The mass does not move with constant speed; it accelerates tangentially. 
On the downswing the tangential speed increases, on the upswing it 
decreases. 

The next example involves rotational motion, translational 
motion, and constraints. 

Example 2.7 f Re Whirling Block 

A horizontal frictionless table has a small hole in its center. Block -4 on 
the table is connected to block B hanging beneath by a string of  negligible 
mass which passes through the  hole. 

'---__-~' Initially, B is held stationary and ,-I rotates at constant radius ro with 
steady angular velocity wo. I f  B is released at t = 0, what is i t s  accel- 
eration immediately afterward? 

The fo rm diagrams for A and B after the moment of release are shown 
in  the sketches. 
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M A / +  The vertical forces acting on A are in balance and we need not consider 
them. The only horizontal force acting on A is  the string force T. The 

/ ' 
I 

forces on B are the  string force T and the weight F r w ~ .  
\ I 
\ 

It is natural to use polar coordinates r ,  8 for -4, and a single linear 
.-----# 

C ' 
coordinate z for 13, as shown in the force diagrams. As usual, the unit 

t 
vector F is radially outward. The equations of motion are 

- T = - 782) Radial 

0 = niA(r8 f 2 6 )  Tangential 

'I.. 1' Ws - T = d 4 ~ i  Vertical. 

Since the length of the string, l ,  is constant, we have 

Differentiating Eq. (4) twice with respect to time gives us the constraint 
equation 

The negative sign means that i f  A moves inward, B falls. Combining 
Eqs. (I), (3), and (53, we find 

It is important to realize that although acceleration can c'hange instan- 
taneously, velocity and position cannot. Thus immediately after B is 
released, r = ro and 6 = wo. Hence 

z(0) can be positive, negative, or zero depending on the value of the 
numerator in Eq. (6); i f  wo is large enough, block B will begin to rise after 
release. 

The apparently simple problem in the next example has some 
unexpected sw btleties. 

Example 2.8 The Conical Pendulum 

Mass M hangs by a massless rod of length I which rotates atconstantangular 
frequency o, as shown in the drawing on the next page. The mass moves 
with steady speed in a circular path of constant radius. Find a, the angle the 
string makes with the vertical. 

We start with the force diagram. T i s  the string force and TV is the 
weight of the bob. (Note that there are no other forces on the bob. I f  
this is not clear, you are most likely confusing an acceleration with a 



78 NEWTON'S LAWS-THE FOUNDATIONS OF NEWTONIAN MECHANICS 

force-a serious error.) The vertical equation of motion is 

because y is constant and ji is therefore zero. 
To find the horizontal equation of motion note that the bob 

erating in the P direction at rate a, = -u2r. Then 

-T sin a = -JPm2. 

Since z = I sin LY we Rave 

T sin a = l lf lw2 sin ar 

is accel- 

Combining Eqs. (1) and (3) gives 

As we shall discuss in Sec. 2.5, 1i' = lfg, where Ad is the mass and g 
is known as the acceleration due to gravity. We obtain 

This appears to be the desired solution. For w -+ co , cos cu + 0 and 
a --, ~ / 2 .  At high speeds the bob flies out until it is almost horizontal. 
However, at low speeds the solution does not make sense. As w -+ 0, 
our solution predicts cos ar t m, which is nonsense since cos a < 1. 
Something has gone wrong. Here is the trouble. 

Our solution predicts cos ru > 1 for w < 2/s/l. When w = 2/71, 
cos a = 1 and sin ol = 0; the bob simply hangs vertically. 1 n going from 
Eq. (2) to Eq. (3) we divided both sides of Eq. (2) by sin a and, in this case 

13 we divided by 0, which is not permissible. However, we see that we have 
overlooked a second possible solution, namely, sin ol = 0, T = IT', which 
is  true for all values of w .  The solution corresponds to the pendulum 
hanging straight down. Here is a plot of the complete solution. 

Physically, for w j the only acceptable solution is = 0, 

COS o! 

cos a = 1. For w > dg JE there are two acceptable solutions: 

1. cos a = 1 

B 2. cos cr = -. 
Iw2 

cosa = 1 Solution 1 corresponds to the bob rotating rapidly but hanging verti- 

Unstable ' 11 cally. Solution 2 corresponds to the bob flying around at  an angle with 
Stable the vertical. For w > m, solution 1 is unstable-if the system is in 

that state and is slightly perturbed, it will jump outward. Can you see 
w =  fl W 

why this is so? 
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The moral of this example is that  you have to be sure that the mathe- 
matics makes good physical sense. 

2.5 The Everyday Forces of Physics 

When a physicist sets out to design an accelerator, he uses the 
laws of mechanics and his knowledge of electric and magnetic 
forces to determine the paths that the particles will follow. Pre- 
dicting motion from known forces is an impooant part of physics 
and underlies most of its applications. Equally important, how- 
ever, is the converse process of deducing the physical interaction 
byobservingthe motion; th is is  how new lawsare discovered. A 
classic example is Newton" deduction of the law of gravitation 
from Kepler's laws of planetaty motion. The current attempt to 
understand the interactions between elementary particles from 
high energy scattering experiments provides a more contemporary 
illustration. 

Unscrambling experimental observations to find the force can be 
difficult. In  a facetious mood, Eddington once said that force is 
the mathematical. expression we put into the left hand side of 
Newton's second law to obtain results that agree with observed 
motions. Fortunately, force has a more concrete physical reality. 

Much of our effort in the following chapters will be to learn how 
systems behave under applied forces. If  every pair of particles 
in  the universe had its own special interaction, the task would be 
impossible. Fortunately, nature is kinder than this. As far as 
we know, there are only four fundamentally different types of 
interactions in the universe: gravity, electromagnetic interactions, 
the so-called weak interaction, and the strong interaction. 

Gravity and the electromagnetic interactions can act over a 
long range because they decrease only as the inverse square of 
the distance. However, the gravitational force always attracts, 
whereas electrical forces can either attract or repel. In  large 
systems, electrical attraction and repuIsion cancel to a high 
degree, and gravity alone is left. For this reason, gravitational 
forces dominate the cosmic scale of our universe, In  contrast, 
the world immediately around us is dominated by the electrical 
forces, since they are far stronger than gravity on the atomic 
scale. Electrical forces are responsible for the structure of atoms, 
molecules, and more complex forms of matter, as well as the 
existence of light. 

The weak and strong interactions have such short ranges that 
they are important only a t  nuclear distances, typically lO-I5 rn. 
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They are negligible even a t  atomic distances, As its 
name implies, the strong interaction is very strong, much stronger 
than the electromagnetic force at  nuclear distances. It is the 
"glue" that binds the atomic nucleus, but aside from this it has 
little effect in  the everyday world. The weak interaction plays a 
less dramatic role; it mediates in  the creation and destruction of 
neutrinos-particles of no mass and no charge which are essential 
to our understanding of matter but which can be detected only by 
the most arduous experiments. 

Our object in  the remainder of the chapter is t o  become familiar 
with the forces which are important in everyday mechanics. Two 
of these, the forces of gravity and electricity, are f undarnentai and 
cannot be explained in simpler terms. The other forces we shall 
discuss, friction, the contact force, and the viscous force, can be 
understood as the macroscopic manifestation of interatomic 
forces. 

Gravity, Weight, and the Gravitational Field 

GraviQ is the most familiar of the fundamental forces. It has 
close historical ties to the development of mechanics; Newton 
discovered the law of universal gravitation in 1666, the same year 
that he formulated his laws of motion. By calculating the motion 
of two gravitating particles, he was able to derive Kepler's em pi ri- 
cal laws of planetary motion. (By accomplishing all this by age 
26, Newton established a tradition which still maintains-that great 
advances are often made by young physicists.) 

According to Newton's law of gravitation, two particles attract 
each other with a force directed along their line of centers. The 
magnitude of the force is proportional to the product of the masses 
and decreases as the inverse square of the distance between the 
particles. 

In  verbal form the law is bulky and hard to use, However. we 
can reduce it to a simple mathematical expression. 

vrl Consider two particles, a and b, with masses Ma and Mb, respec- - - Mb tively, separated by distance r .  Let Fa be the force exerted on 
a Fa Fb particle 6 by particle a. Our verbal description of the magnitude 

of the force is summarized by 

G is a constant of proportionality called the gravitational constant. 
Its value is found by measuring the force between masses in  a 
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known geometry. The first measurements were performed by 
Henry Cavendish in  1771 using a torsion balance. The modern 
value of G is 6.67 X 10-XI N.rn2/kg2. (G is the least accurately 
known of the fundamental constants. Perhaps you can devise a 
new way to measure it more precisely.) Experimentally, G is the 
same for all materials-aluminum, lead, neutrons, or what have 
you. For this reason, the law is called the universal law of 
gravitation. 

The gravitational force between two particles is central (along 
the line of centers) and attractive. The simplest way to describe 
these properties is to use vectors. By convention, we introduce 
a vector r,b from the particle exerting the force, particle a in this 
case, to the particle experfencing the force, particle b. Note that 
(rabl = r .  Using the unit vector = rab/r, we have 

The negative sign indicates that the force is attractive. The force 
on a due to  b is 

* * 
since rb, = - rnb. The forces are equal and opposite, and New- 
ton's third law is automaticaliy satisfied. 

The gravitational force has a unique and mysterious property. 
Consider the equation of motion of particle b under the gravita- 
tional attraction of particle a. 

The acceleration of a particle under gravity is independent of its 
mass! There is a subtle point connected with our cancelation of 
M,, however. The "mass" (gravitational mass) in the law of gravi- 
tation, which measures the strength of gravitational interaction, is 
operationally distinct from the "mass" (inertial mass) which char- 
acterizes inertia in Newton's second law. Why gravitational mass 
is proportional to inertial mass for all matter is one of the great 
mysteries of physics. However, the proportionality has been 
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experimentally verified t o  very high accuracy, approximately 1 
part in I P l x ;  we shall have more t o  say about this in  Chap. 8. 

The Gravitational Force of a Sphere The law of gravitation applies 
only to particles, Mow can we find the gra3itational force on a 
particle due to an extended body like the earth? Fortunately, the 
gravitational force obeys the law of  superposition: the force due 
to a collection of particles is the vector sum of the forces exerted 
by the particles individually. This allows us to mentally divide 
the body into a collection of small elements which can be treated 
as particles. Using integral calculus, we can sum the forces from 

m 

the force between a particle of mass m and a uniform thin spher- 
ical shell of mass M and radius R. The result is 

/ - - ,  where r is the distance from the center of the shell to the particle. 
/ 

/ 
\ 
\ If the particle lies outside the shell, the force is the same as if all 

I M ,  1 F 
1 - the  mass of the shell were concentrated a t  its center. 
/ / 

/ The reason the gravitational force vanishes inside the spherical 
\ 
<-- 1 shell can be seen by a simple argument due to Newton. Consider 

the two small mass elements marked out by a conical surface 
with its apex a t  m. The amount of mass in  each element is pro- 
portional to its surface area. The area increases as (distan~e]~. 
However, the strength of the force varies as I / (d i~tance)~.  Thus 
the forces of the two mass elements are equal and opposite, and 
cancel. The total force on m is zero, because we can pair up all 
the elements of the shell this way. 

A uniform solid sphere can be regarded as a succession of thin 
spherical shells, and it follows that for particles outside it, a sphere 
behaves gravitationally as if its mass were concentrated a t  its 
center. This result also holds if the density of the sphere varies 
with radius, provided the mass distribution is spherically sym- 
metric. For example, although the earth has a dense core, the 
mass distribution is nearly spherically symmetric, so that to good 

r approximation the gravitational force of the earth on a mass m a t  
distance r is 

GM,w * F = - -  
r2 r r > Rsr 

v where Me is the mass of the earth and Re is its radius. 
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At the surface of the earth, the gravitational force is 

and the acceleration due t o  gravity is 

As we expect, the acceleration is independent of m. GM,/R,Vs 
usually called g. Sometimes y is written as a vector directed down. 
toward the center of the earth. 

Numerically, Igl is approximately 9.8 m/s" 980 cm/sZ = 32 f t / s a .  
By convention, g usually stands for the downward acceleration 

of an object measured with respect to the earth's surface. This 
differs slightly from the true gravitational acceleration because of 
the rotation of the earth, a point we shall return to in  Chap. 8. 
g increases by about five parts per thousand from the equator to 
the poles. About half this variation is due t o  the slight flattening 
of the earth about the poles, and the remainder arises from the 
earth's rotation. Local mass concentrations also affect g; a varia- 
tion in  g of ten parts per million is typical. 

The acceleration due to gravity decreases with altitude. We 
can estimate t'his effect by taking differentials of the expression 

We have 

The fractional change in g with altitude is 



NEWTON'S LAWS-THE FOUNDATIONS OF NEWfONlAN MECHANICS 

At the earth's surface, r = 6 X 108 m, and g decreases by one part 
per million for an increase in  altitude of 3 m. 

Weight We define the weight of a body near theearth to be the 
gravitational force exerted on it by the earth. A t  the surface of 
the earth the weight of a mass m is 

The unit of weight is the newton (SI), dyne (cgs), or pound 
(English). Since g = 9.8 m /s2, the weight of I kg mass Is 9.8 N. 
An automobile which weighs 3,200 Ib has mass 

W 3,200 Ib 
m = - =  = PO0 slugs. 

g 32 ft/s 

Our definition of weight is unambiguous. According to our 
definition, the weight of a body is not affected by its motion. 
However, weight is often used in another sense. In  this serise, 
the magnitude of the weight is the magnitude of the force which 
must be exerted on a 'body by i ts surroundings to keep it at rest; 
its direction is the direction of gravitational attraction. The next 
example illustrates the difference between these two definitions, 

Example 2.9 Turtle in an Elevator 

An amiable turtle of mass ill stands in an elevator accelerating at rate a 
Find N, the force exerted on him by the floor of the elevator. 

The forces acting on the turtle a re N and the weight, the true gravita- 
tional force W = Afg. Taking up to be the positive direction, we have 

N - w = nTa, 

N = Mg + M a  

= M(g + a). 

This result illustrates the two senses in which weight is used. 'In the 
sense that weight is the gravitational force, the weight of the turtle, Mg, 
is independent of the motion of the elevator. In contrast, the weight of 
the turtle has magnitude ICr = M(g + a), if the magnitude of the weight 
is taken to be the magnitude of the force exerted by the elevator on the 
turtle. If the turtle were standing on a scale, the scale would indicate a 
weight N .  With this definition, the turtle's weight increases when the 
elevator accelerates up. 

If the elevator accelerates down, a is negative and hT is less than hfg. 
if the downward acceleration equals q, N becomes zero, and the turtle 
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"floats" in the elevator. The turtle is then said to be in a state of 
weightlessness. 

Although the two definitions of weight are both commonly used 
and are both acceptable, w e  shall generally consider weight to 
mean the true gravitational force. This is consistent with our 
resolve to refer all motion to inertial systems and helps us to keep 
the real forces on a body distinct. If the acceleration due to 
gravity is g, the real gravitational force on a body of mass m is 
W = mg. 

Our definition of weight has one minor drawback. As we saw 
in  the last example, a scale does not read mg in an accelerating 
system. As we have already pointed out, systems a t  rest on the 
earth's surface have a small acceieration due to the earth's rotation, 
so that the reading of a scale is not the true gravitational force on 
a mass. However, the effect is small, and we shall treat the sur- 
face of t h e  earth as an inertial system for the present. 

The Gravitational Field The gravitational force on particle b due to 
particle a is 

where is a unit vector which points from a toward b. The ratio 
Fb/Mbr which is independent of Mbn is called the gravitational field 
due to Ma. Denoting the field by G,, we have 

In  general, if the gravitational field at a point in  space is G, the 
gravitational force on mass M a t  that point is 

F = MG. 

The dimension of gravitation field is force/mass = acceleration. 
The acceleration of mass M by gravitational field G is given by 
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We see that the gravitational field at a point is numerically equal 
to the gravitational acceleration experienced by a body located 
there. For example, the gravitational field of the earth is g. 

For the present we can regard the gravitational field as a mathe- 
matical convenience that allows us to focus on the source of the 
gravitational attraction. However, the concept of field has a 
broader significance in physics. Fields have important physical 
properties, such as the ability to store or transmit energy and 
momentum. Until recently, the dynamical properties of the 
gravitational field were chiefly of theoretical interest, since their 
effects were too small to be observed. However, there is now 
lively experimental activity in  searching for such dynarx~ical fea- 
tures as gravitational waves and "black holes." 

The Electrostatic Force 

We mention the electrostatic force only in  passing since its full 
implications are better left  to a more detailed study of electricib 
and magnetism. The salient feature of the electrostatic force 
between two particles is that the force, like gravity, is an inverse 
square central force. The force depends upon a fundamental 
property of the particle called its electric charge q. There are two 
different kinds of electric charge: like charges repel, unlike 
charges attract. 

For the sake of convenience, we distinguish the two different 
kinds of charges by associating an algebraic sign with q, and for 
this reason we talk about negative and positive charges. The 
electrostatic force Fb on charge gb due to charge q, is given by 
Coulomb's law: 

k is a constant of proportionality and ?,I, is a unit vector which 
points from a to b. If q,and gbare both negative or both posi- 
tive, the force is repulsive, but if the charges are of different sign, 
Fb is attractive. 

In the SI system, the unit of charge is the coulomb, abbreviated 
C. (The coulomb is defined in terms of electric currents and 
magnetic forces.) In  this system, k is found by experiment ta be 



SEC. 2.5 T'HE EVERYDAY FORCES OF PHYSICS 87 

In analogy with the gravitational field, we can define the elec- 
tric field E as the electric force on a body divided by its charge. 
The electric field at r due to a charge q a t  the origin is 

Contact Forces 

8y contact forces we mean the forces which are transmitted 
between bodies by short-range atomic or molecular interactions. 
Examples include the pull of a string, the surface force of sliding 
friction, and the force of viscosity between a moving body and a 
fluid. One of the achievements of twentieth century physics is 
that these forces can now be explained in  terms of the funda- 
mental properties of matter. However, our approach will empha- 
size the empirical properties of these forces and the techniques 
for dealing with them in physical problems, with only brief men- 
tion of their microscopic origins. 

Tension-The Force of a String We have been taking the "string" 
force for granted, having some primitive idea of this kind of force. 
The following example is intended to help put these ideas info 
sharper focus. 

Example 2.10 Block and String 3 

Consider a block of mass A f  in free space pulled by a string of mass m. 
A force F is applied to the string, as shown. What is the force that the 
string "transmits" to the block? 

The sketch shows the force diagrams. FJ is the force of the string 
a~ 

F; 
on the block, P: is the force of the block on the string, a , ~  is the accel- - 

,,,,,,,,,,, ,F eratian of the black, and a. is  the acceleration of the string. The equa- 
tions of motion aye 

Assuming t ha t  the string i s  inextensible, it accelerates at the same rate 
as the block, giving the constraint equation as = a ~ .  Furthermore, 
F1 = P: by Newton's third law. Solving for the acceleration. we find 
that 
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as we expect, and 

The force on the block is  less than F; the string does not transmit the 
full applied force. However, if the mass of  the string is negligible com- 
pared with the block, F 1  = F to good approximation. 

We can think of a string as composed of short sections inter- 
acting by contact forces. Each section pulls the sections to either 
side of it, and by Newton's third taw, it is pulled by the adjacent 

A B  
> I,-,=Ir / / I  sections. The magnitude of the force acting between adjacent 

sections is called tension. There is no direction associated with 
A 

b t ) -B- tension. In  the sketch, the tension a t  A is F and the tension at  
F F  F' F' B is F'. 

Although a string may be under considerable tension (for exarn- 
ple a string on a guitar), if the tension is uniform, the net string 
force on each small section is zero and the section remains at  rest 
unless external forces act on it. If there are external forces on 
the section, or i f  the string is accelerating, the tension generally 
varies along the string, as Examples 2.11 and 2.12 show. 

Example 2.11 Dangling Rope 

A uniform rope of mass 11f and length L hangs from the limb of a tree. 
Find the tension a distance x from the bottom. 

The force diagram for the lower section of the rope is shown in the 
sketch. The section is pulled up by a force of magnitude T(x) ,  where 
T ( z )  is the tension at x. The downward force on the rope is  its weight 
JV = Mg(x/L) .  The total forceon the section iszerosincei t  i s a t  rest. 

At the bottom of the rope the tension is zero, while a t  the top the tension 
equals the total weight of the rope Jfg. 

The next example cannot be solved by direct application of 
Newton's second law. However, by treating each small section 
of the system as a particle, and taking the limit using calculus, we 
can obtain a differential equation which leads to the solution, 
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The technique is so useful that it is employed time and again in 
physics. 

Whirling Rope 

A uniform rope of mass Jf and length L is pivoted at one end and whirls 
with uriform angular velocity w. What i s  the tension in the rope at  dis- 
tancer  from the pivot? Neglect gravity. 

Consider the small section of rope between r and r + Ar. The length 
of the section is dr and i t s  mass is Am = JI ArJL. Because of its cir- 
cular motion, the section has a radial acceleration. Therefore, the forces 
pulling either end of the section cannot be equal, and we conclude that 
the tension must vary with r. 

The inward force on the section is  T(r) ,  t'he tension at r, and the out- 
ward force is T(r + Ar). Treating the section as a particle, i ts inward 
radial acceleration is rw2. [This point can be confusing; it is jus t  as rea- 
sonable to take the acceleration to be ( r  + Ar)w2. However, we shall 
shortly take the limit Ar + 0, and in this limit the two expressions give 
the same result.] 

The equation of motion for the section is 

The problem is to find T(r), but we are  not yet ready to do this. l-low- 
ever, by dividing the last equation by Ar and taking the limit Ar -+ 0, we 
can find a n  exact expression for dT/dr. 

dT - -  - lim T(r  + AT)  - T(T )  
dr  ot+o Ar  

To find the tension, we integrate. 

where To is the tension at r = 0. 
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To evaluate To we need one additional piece of information. Since 
the end of the rope at P = L is free, the tension there must be zero. 
We have 

Hence, To = -&hFwzL, and the final result can be written 

When a pulley is used to change the direction of a rope under 
tension, there is a reaction force on the pulley. As every sailor 
knows, the  force on the pulley depends on the tension and the 
angle through which the rope is deflected. Working out this prob- 
lem in detail provides another illustration of how calculus can be 
applied to a physical problem. 

Example 2.13 Pulleys 

A string with constant tension T is deflected through angle ZOO by a 
smooth fixed pulley. What is the force on the pulley? 

Intuitively, the magnitude of the force is ZT sin 00. To prove this 
result, we shall find the force due to each element of the string and then 
add them vectorially. 

Consider the section of string between 8 and 8 4- $8. The force dia- 
gram is  drawn below, center. AP is the outward force due to the pulley 

T 

The tension in the string is constant, but the forces T a t  either end of  
the element are not parallel. Since we shall shortly take the limit At?-+ 0, 
we can treat the element like a particle. For equilibrium, the total force 
is zero. We have 

A0 
AF - 2T sin - = 0. 

2 

For small AO, sin (AOJ2) = A0/2 and 
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Thus the element exerts an inward radial farce of magnitude T A0 on the 
pulley. 

The element at angle 8 exerts a force in the x direction of (T At?) cos 8.  
The total force in the x direction is 2T cos 0 A8, where the sum is over 
all elements of the string which are touching the pulley. In the limit 
A0 - 0, the sum becomes an integral. The total force in the x direction 
is therefore 

Tension and Atomic Forces The force on each element of a string 
in  equilibrium is zero. Nevertheless, the string will break if the 
tension is too large. We can understand this qualitatively by 
looking a t  strings from the atomic viewpoint. An idealized model 
of a string is a single long chain of rnoIecules. Suppose that force 
F is applied to molecule 1 a t  the end of the string. The force 
diagrams for rnolecufes 1 and 2 are shown in the sketch below. In 

E F' F f  F" F'" F"' --- 
1 2 3 

equilibrium, F = F' and F' = F", so that F" = F. We see that 
the string "transmits'9the force F. To understand how this 
comes about, we n e e d  to look at the nature of intermolecular 
forces. 

Qualitatively, the force between two molecules depends on the 
distance r between them, as shown in  the drawing. The inter- 
molecular force is repulsive at small distances, is zero at some 
separation r,, and is attractive for r > r,. For large values of r 
the force falls to zero. There are no scales on our sketch, but r o  
is typically a few angstroms (1 A = 10-lo m). 

When there is no applied force, t h e  molecules must be a dis- 
tance ro apart; otherwise the intermolecular forces wouid make 
the string contract or expand. As we pull on the string, the mole- 
cules move apart slightly, say to r = rz, where the intermolecular 
attractive force just balances the applied force so that the total 
force on each molecule is zero. If the string were stiff like a 
metal rod, we could push as well as pull. A push makes the 
molecules move slightly together, say t o  r = rl, where the inter- 
molecular repulsive force balances the applied force. The change 
in  the length depends on the slope of the interatomic forcq curve 
at ro. The steeper the curve, the less the stretch for a given pull. 

The attractive intermotecular force has a maximum value F,,,, 
as shown in the sketch. If  the applied pull is greater than F,,, 
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the intermole~ular force is too weak to restore balance-the mole- 
cules continue to separate and the string breaks. 

For a real string or rod, the intermolecular forces act in  a three 
dimensional lattice work of atoms. The breaking strength of most 
materials is considerably less than the limit set by F,,. Breaks 
occur at points of weakness, or "'defects,'"n the lattice, where 
the molecular arrangement departs from regularity. Microscopic 
metal "whiskers" seem to  be nearly free from defects, and they 
exhi bit breaking strengths close to the theoretica I maximum. 

the  Normal Force The force exerted by a surface on a body in  
contact with it can be resolved into two components, one perpen- 
dicular to the surface and one 'tangential to the surface. The 
perpendicular component is called the normal force and the tan- 
gential component is called friction. 

The origin of the normal force is similar to the origin of tension 
in  a string. When we put a book on a table, the molecules of the 
book exert downward forces on the molecules of the table. The 
molecules composinb ihe upper layers of the tabletop move down- 
ward until the repulsion of the molecules below balances the force 
applied by the book. From the atomic point of view, no surface 
is perfectly rigid. Althoughcompression alwaysoccurs, it isoften 
too slight to notice, and we shall neglect it and treat surfaces as 
rigid. 

The normal force on a body, generally denoted by N ,  has the 
following simple properv: for a body resting on a surface, 1V is 
equal and opposite to the resultant of all other forces which act 
on the body in a direction perpendicular to the surface. For 
instance, when you stand still, the normal force exerted by the 
ground is equal to your weight. However, when you walk, the 
normal force fluctuates as you accelerate up and down. 

Friction Friction cannot be described by a simple formula, but 
macroscopic mechanics is hard to understand without some idea 
of the properties of friction. 

Friction arises when the surface of one body moves, or tries to 
move, along the surface of a second body. The magnitude of the 
force of friction varies in a complicated way with the nature of the 
surfaces and their relative velocity. In fact, the only thing we 
can always say about friction is that it opposes the motion which 
would occur in its absence. For instance, suppose that we try 
to push a book across a table. I f  we push gently, the book 
remahs at rest; the force of friction assumes a value equal and 
opposite to the tangential force we apply. In  this case, the force of 
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friction assumes whatever value is needed to keep the book at rest. 
However, the friction force cannot increase indefinitely. I f  we 
push hard enough, the book starts to slide. For many surfaces 
the maximum value of the friction is found to be equal to p N ,  
where N is the norma! force and p is the coefficient of friction. 

When a body slides across a surface, the friction force is directed 
opposite to the instantaneous velocity and has magnitude p N .  
Experimentally, the force of sliding friction decreases slightly when 
bodies begin ta slide, but for the most past we shall neglect this 
effect. For two given surfaces the force of sliding friction is 
essentially independent of the area of contact. 

It may seem strange that friction is independent of the area of 
contact. The reason is that the actual area of contact on an 
atomic scale is a minute fraction of the total surface area. Fric- 
tion occurs because of the interatomic forces at  these minute 
regions of atomic contact. The fraction of the geometric area in 
atomic contact is proportional to the normal force divided by the 
geometric area. If the normal force is doubled, the area of 
atomic contact is doubled and the friction force is twice as large. 
However, if the geometric area is doubled while the normal force 
remains the same, the fraction of area in  atomic contact is halved 
and the actual area in atomic contact-hence the friction force- 
remains constant. (Nonrigid bodies, like automobile tires, are 
more complicated. A wide tire is generally better than a narrow 
one for good acceleration and braking.) 

In  summary, we take the force of friction f to behave as follows: 

1. For bodies not in relative motion, 

f opposes the motion that would occur in its absence. 

2. For bodies in relative motion, 

f is directed opposite to the relative ~elocity. 

Example 2.14 Block and Wedge with Friction 

f A block of mass m rests on a fixed wedge of angle 6. The coefficient of 
friction is p. (For wooden blocks, p is of the order of 0.2 to 0.5.) Find 
the value of 0 at which the block starts to slide. 

X 
In  the absence of friction, the black would slide down the plane; hence 

the friction force f points up the plane. With the coordinates shown, we /a- - 
have 

/ 
m x =  WsinB-  f 
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and 

When sliding starts, f has its maximum value pNIV, and x = 0. The 
equations then give 

W sin Om, = pN 

W cos Om,, = N .  

Hence, 

tan Om,, = f .~.  

Notice that as the wedge angle is gradually increased from zero, the fric- 
tion force grows in magnitude from zero toward its maximum value pN, 
since before the block begins to  slide we have 

Example 2.15 The Spinning Terror 

The Spinning Terror is an amusement park ride-a large vertical drum 
which spins so fast that everyone inside stays pinned against the wall 
when the floor drops away. What  is the minimum steady angular velocity 
w which allows the floor to be dropped away safely? 

Suppose that  the radius of the drum is R and the mass of the body is 
Af. Let p be the coefficient of friction between the drum and Af. The 
forces on Jf are the weight U', the friction force f ,  and the  normal force 
exerted by the wall, N ,  as shown below. 

The radial acceleration is Rw2 toward the axis, and the radial equation 
of motion is 

Uu By the law of static friction, 
l -  

+ 
Since we require M to be in vertical equilibrium, 

S = J f g ,  

and we have 

N 
318 5 pMRw2 ___---- --- w = M g  or 0 

w2 > -' ccx 
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The smallest value of  w that will work is 

For cloth on wood p is at least 0.3, and if the drum has radius 6 ft, then 
wmi, = [32/(0.3 X 6)]* = 4 rad/s. The drum must make a t  least w / 2 ~  = 
0.6 turns per second. 

Viscosity 

A body moving through a liquid or gas is retarded by the force of 
viscosity exerted on it by the fluid. Unlike the friction force 
between dry surfaces, the viscous force has a simple velocity 
dependence; it is proportional to the velocity. A t  high speeds 
other forces due to turbulence occur and the total drag force can 
have a complicated velocity dependence. (Sports car designers 
use a force proportional t o  the square of the speed to account 
for the drag forces.) However, in many practical cases viscosiv 
is the only important drag force. 

Viscosity arises because a body moving through a medium 
exerts forces which set the nearby fluid into motion. By New- 
ton's third law the fluid exerts a reaction force on the body. 

We can write the viscous retarding force in  the form 

where C is a constant which depends on the fluid and the geom- 
etry of the body. F, is always along the line of motion, because it 
is proportional t o  v. The negative sign assures that F, opposes 
the motion. For objects of simple shape moving through a gas 
at  low pressure, C can be calculated from first principles. We 
shall treat it as an empirical constant. 

When the only force on a body is the  viscous retarding force, 
the equation of motion is 

What we have here is a differential equation for v. Since the 
force is along the line of motion, only the magnitude of r changes1 

Formally, this is proved as follows. SFnce v = tG, dv/dt = dvJdl .ii + v &/dl.  
The equation of motion is -CvG = m dvJdt G + nw dC/dt. Because O is a unit 
vector, d?/dt is perpendicular to G. The other terms of the equation lie in the C 
direction, so that dG/& must be zero. The same conclusion follows more directly 
from the simple physical argument that a force directed alongthe line of motion 
can change the speed but cannot change the direction of motion. 
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and the vector equation reduces to the scalar equation 

The task of solving such a differential equation occurs often in 
physics. A few differential equations are so simple and occur so 
frequently that it is helpful to be thoroughly familiar with them 
and their solutions. The equation of the form m dvJdt + Cu = 0 
is one of the most common, and the following example should 
make you feel at home with it. 

Example 2.16 Free Motion in a Viscous Medium 

A body of mass m released with velocity vo in a viscous fluid is retarded 
by a force Cv. Find the motion, supposing that no other forces act. 

f he equation of motion is 

dv 
m - f  dt C V = O ,  

which we can rewrite in the standard form 

If you are familiar with the properties of the exponential function ear, 
then you know tha2(d/dx)pz = aeaz, or ( d / d x ) e x  - aeaX = 0. Thissug- 
gests that we use a trial solution v = eat, where a is a constant to be 
determined. Then dv/dt = aeat, and substituting this in Eq. (1) gives us 

This holds true a t  all times i f  a = -C/m.  Hence, a solution is  

However, this cannot be the correct solution; v has the dimension of 
velocity whereas the exponential function is dimensionless. Let us try 

where A is a constant. Substituting this in Eq. {I) gives 
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so that the solution is acceptable. But r4 can be any constant, whereas 
our solution must be quite specific. To evaluate ;I we make use of the 
given initial condition. An initial condition is a specific piece of informa- 
tion about the motion at some particular time. We were given that 
v = v o  at t = 0. Hence 

Since so = 1, it follows that = vo, and the full solution is 

We solved Eq. (1) by what might be called a common sense approach- 
we simply guessed the answer. This particular equation can also be 
solved by formal integration after appropriate "separation of the 
variables." 

/' = - 1; dt Note the correspondence between jhe limits: u is the 
veloctty a t  time i and V D  1s t h e  veloc~ty a t  time 0. 

vo u 

0.37~~ 1 ----- -'+ - Before leaving this problem, let us look at the solution in a little more 
detail. The velocity decreases exponentially in time. If we let T = m/c, 

', I then we have v = ~ ~ e ' ( 1 ~ .  7 is a characteristic time for the system; it is 
%I 7 t the time for the velocity to drop to e-I = 0.37 of  its original velocity. 

The Linear Restoring Force: Hooke" Law, the Spring, 
and Simple Harmonic Motion 

In the mid-seventeenth century Robert Hooke discovered that the 
extension of a spring is proportional to the applied force, both for 
positive and negative displacements. The force F g  exerted by a 
stretched spring is given by Hooke's law 

where k is a constant called the spring constant and a: is the dis- 
placement of the end of the spring from its equilibrium pasition. 
The magnitude of F s  increases linearly with displacement. The 
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negative sign indicates that Fs is a restoring force; the spring 
force is always in the direction that tends to restore the spring to 
i ts equilibrium length. A force obeying Hooke's law is called a 
linear restoring force. 

If t h e  spring is stretched by an applied force Fa, then x > 0 and 
Fs is negative, directed toward the origin. 

If the spring is compressed by Fa, then x < 0 and FS is positive. 
I Hookeys law is essentially empirical and breaks down for large 
I 
I 

x < O  displacements. Taking a jaundiced view of affairs, we could 
I FS > 0 rephrase Hooke's law as "extension is proportional t o  force, as 
I long as it is." However, this misses the important point. For 

x < O  x = O  x>O sufficiently small displacements Hooke's law is remarka bIy accu- 
rate, not only for springs but also for practically every system near 
equilibrium. Consequently, the motion of a system under a 
linear restoring force occurs persistently throughout physics. 
By looking at the intermolecular force curve on page 91, we can 

see why the linear restoring force is so common. If  the force 
curve is linear in the neighborhood of the equilibrium point, then 
the force is proportional to the displacement from equilibrium. 
This is almost always the case; a sufficiently short segment of a 
curve is generally linear to good approximation. Only in  patho- 
logical cases does the force curve have no linear component. I t  
is also apparent that the linear approximation necessarily breaks 
down for large displacements. We shall return to these consider- 
ations in Chap. 4. 

In  the following example we investigate simple harmonic motion 
-the motion of a mass under a linear restoring force. We shall 
again encounter a differential equation. Like the equation for 
viscous drag, the differential equation for simple harmonic motion 
occurs frequently and is well worth learning to recognize early in  
the game. Fortunately, the solution has a simple form. 

Example 2.17 Spring and Block-The Equation for Simple Harmonic Motion 

A block of mass J f  is attached to one end of a horizontal spring, the other 
end of which is fixed. The block rests on a horizontal frictionless surface. 
What motion is possible for the block? 

Since the spring force is the only horizontal force acting on the block, 
the equation of motion is 
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where a is measured from the equilibrium position. It is convenient to 
write 

The equation takes the standard form 

You should learn to recognize the mathematical form of this equation, 
since it arises in many different physical contexts. It is called the equa- 
tion of simple harmonic motion (SHM). Without going into the theory of 
differential equations, we simply write down the solution 

x = A sin wt + B cos wt. 

w is known as the angular frequency of the motion. By substitution it is 
easy to show that this solution satisfies the original equation for arbitrary 
values of -4 and B. The theory of differential equations tells us that 
there are no further nontrivia! solutions. T h e  main point here, however, 
is to become familiar with the mathematical form of the SHM differential 
equation and the form of its solution. We shall derive the solution in 
Example 4.2, but this purely mathematical process does not concern us 
now. 

As we show in the following example, the constants A and B 
are to be determined from the initial conditions. We shall show 
t ha t  A and B can be found by knowing the position and velocity 
a t  some particular time. 

Example 2.18 The Spring Gun-An Example Illustrating Initial Conditions 

The piston of a spring gun has mass m and is attached to one end of a 
spring with spring constant k. The projectile is a marble of mass If. 

1 I The piston and marble are pulled back a distance ,!, from the equilibrium 
position and suddenly released. What is the speed of the marble as it - loses contact with the piston? Neglect friction. 

X Let the x axis be along the direction of motion with the origin at the 

I 
unstretched position. The position of the piston is given by 

x(t)  = A sin wt $ B cos wt, 3, 

where u = l / k / ( m  + J 4 ) .  This equation holds up to the time the 
marble and piston lose contact. The velocity is 

v ( t )  = x ( t )  
= w A  cos wt - wB sin wt. 
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There are two arbitrary constants in the solution, A and 13, and to 
evaluate them we need two pieces of information. We know that a t  
E = 0, when the spring is released, the position and velocity are given by 

Using these values in Eqs. (I) and (2), we find 

- L = x(0)  - 
= A sin (0) 4- B cos (0) 

= B, 

and 

0 = v(0)  

= w A  cos @) - wB sin (0) 

= wA. 

Hence 

Then, from the time of release until the  time when the marble leaves the 
piston, the motion is described by the equations 

x ( t )  = -L cos wt 

v ( t )  = OL sin wt. 

When do the marble and piston lose contact? The piston can only 
push, not pull, on the marble, and when the piston begins to slow down, 
contact i s  lost and the marble moves on at  a constant velocity. From 
Eq. (4), we see that the time t ,  a t  which the velocity reaches a maximum 
is given by 

Substituting this in Eq. (33, we find 

Tr 
x( t , )  = - L cos - 

2 

The marble loses contact as the spring passes its equilibrium point, as 
we expect, since the spring force retards the piston for x > 0. 
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From Eq. (4), the final speed of  the marble Is 

7r 
= w L  sin - 

2 

For the highest speeds, k and L should be large and m $- M should be 
small. 

Note 2.1 The Gravitational Attraction of a Spherical Shell 

In this note we calculate the gravitational force between a uniform thin 
spherical shell of mass and a particle of mass m located a distance r 
from its center. We shall show that the magnitude of the force is 
GAfm/r2 i f  the particle is outside the shell and zero if the particle is 
inside. 

To attack the problem, we divide the shell into narrow rings and add 
their forces by using integral calculus. Let R be the radius of  the shell 
and t its thickness, t << R. The ring at  angle 6, which subtends angle 
dt?, has circumference 27rR sin 8, width R dB, and thickness t. I ts  
volume is 

dV = 2?rRtt sin 0 dB 

and its mass is 

p d V  = 2 r R 2 t p s i n  t9d0 

icf 
= - sin 0 do, 

2 

where p = Jf/(4rR2E) i s  the density of the shell. 
Each part of the ring is the same distance rJ from m. The force on 

m due to a small section of the ring points toward that section. By 
symmetry, the transverse force components for the  whole ring add vec- 
torially to zero. Since the angle a between the force vector and the line 
of centers is the same for all sections of the ring, the force components 
along the line of centers add to give 

I r 

for the whole ring. 
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The force due to the entire shell is 

The problem now is to express all the quantities in the integrand i n  
terms of one variable, say the polar angle 6. From the sketch, cos a = 

(r-Rcos8) / r ' ,andr t  = d r 2  + R 2  - 2 r R c o s  8. Since 

p dV = M sin 8 d0/2, 

we have 

- Rcos 0)sin Bd0 
0 (r2 + Rz - T ~ R c o s  t?)# 

A convenient substitution for evaluating this integral is u = r - R cos 8, 
du = R sin 0 do. Hence 

This integral is listed in standard tables. The result is 

For r > R, the shell acts gravitationally as though all its mass were con- 
centrated at its center. 

There is one subtlety in our evaluation of the integral. The term 

1/~+ R2 - 2rR is inherently positive, and we must take 

since r > R. I f  the particle is inside the shell, the magnitude of the 
forceissti l lgiven by Eq. (1). However, in th iscaser  < R,andwe must 

take Z / r 2  + R2 - ZTR = R - r in the evaluation. We find 

A solid sphere can be thought of as a succession of spherical shells. 
It is not hard to extend our results to this case when the density of the 
sphere p(rl) is a function only of radial distance r' from the center of 
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the sphere. The mass of a spherical shell of radius r' and thickness 
dr' is p(r'pnr'* dr'. The force it exerts on m is 

GlW 
m dF = - p(r')47rrta dr'. 

r T 

Since the force exerted by every shell is directed toward the center of the 
sphere, the total force is 

p(r'y~.r'~ d ~ ' .  

However, the integral is simply the total mass of the sphere, and we find 
that for T > R, the force between m and the sphere is identical to the 
force between two particles separated a distance r. 

Problems 2.1 A5-kgmassrnovesundertheinfluenceofaforceF = (4 t2 t -3 t j )N,  
where t is the time in seconds (I N = 1 newton). I t  starts from the 
origin at t = 0. Find: (a) its velocity; (b) its position; and (c) r X v, 
for any later time. 

Ans. clue. (c) I f  t = 1 s, r X v = 6.7 X m2/s 

2.2 The two blocks shown in the sketch are connected by a string of 
negligible mass. If the system is released from rest, find how f a r  block 
31,  slides in time t. Neglect friction. 

Ans. clue. If :lf, = ill,, x = gt2 /4  

2.3 Twa blocks are in contact on a horizontal table. A horizontal force 
is applied to one of the blocks, as shown in the drawing. If ml = 2 kg, 
m2 = P kg, and F = 3 N, find the force of contact between the two blocks. 

2.4 Two particles of mass m and -14 undergo uniform circular motion 
about each other a t  a separation R under the influence of an attractive 
force P. The angular velocity is o radians per second. Show that 
R = (F/u2)( l /m + 1/111). 

2.5 The Atwood's machine shown in the drawing has a pulley of negligible 
mass. Find the tension in the rope and the acceleration of M. 

Ans. clue. I f  lli = 2m, T = *nfg, A = +g 

2.6 In  a concrete mixer, cement. gravel, and water are mixed by tumbling 
action in a slowly rotating drum. If  the drum spins too fast the ingre- 
dients stick to the drum wall instead of mixing. 

Assume that the drum of a mixer has radius R and that it is mounted 
with its axle horizontal. What is the fastest the drum can rotate without 
the ingredients sticking to the wall all the time? Assume g = 32 ft/s2. 

Ans. clue. If R = 2 ft, w,, = 4 rad/s 2: 38 rotations per minute 
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2.7 A block of mass M I  rests on a black of mass hf2 which lies on a 
frictionless table. The coefficient of friction between the blocks is p. 
What is the maximum horizontal force which can be applied to the blocks 
for them to accelerate without slipping on one another if the force is 
applied to (a) block 1 and (b)  block 2? 

2.8 A 4-kg block rests on top of a 5-kg block, which rests on a frictionless 
table. Thecoefficientof friction between the two blocksissclch that the 
blocks start to slip when the horizontal force P applied to the lower block 
is 27 N. Suppose that a horizontal force is now applied only to the upper 
block. What is its maximum value for the blocks to slide without slipping 
relative to each other? 

Ans. F .= 21.6 M 

2.9 A particle of mass m slides without friction on the inside o f  a cone. 
The axis of the cone Is vertical, and gravity is directed downward. The 
apex half-angle of the cone is  8, as shown. 

The path of the particle happens to be a circle in a horizontal plane. 
The speed of the particle is vo. 

Draw a force diagram and find the radius of the circular path in terms 
of ao, 0, and 8. 

2.10 Find the radius of the orbit of a synchronous satellite which circles 
the earth. (A synchronous satellite goes around the earth once every 
24 h, so that its position appears stationary with respect to a ground sta- 
tion.) The simplest way to find the answer and give your results is by 
expressing all distances in terms of the earth's radius. 

Ans. 6.6R, 

2.11 A mass m is connected to a vertical revolving axle by two strings of 
length 1, each making an angle of 45" with the axle, as shown. Both the 
axle and mass are revolving with angular velocity w. Gravity is directed 
downward. 

a. Draw a clear force diagram for m. 

$. Find the tension in the upper string, T,,, and lower string, TI,,. 
Ans. clue. I f  lw2 = 4 g, T., = d i m g  

2.12 I f  you have courage and a tight grip, you can yank a tablecloth out. 
from under the dishes on a table. What is the longest time in which 
the cloth can be pulled out so that a glass 6 in from the edge comes to 
rest before falling off the table? Assume that the coefficient of friction 
of the glass sliding on the tablecloth or sliding on the tabletop is 0.5. 
(For the trick to be effective the cloth should be pulled out so rapidly 
that the glass does not move appreciably.) 

2.13 Masses M I  and ilia are connected to a system of  strings and pulleys 
as shown. The strings are massless and inextensible, and the pulleys 
are  massless and frictionless. Find the acceleration of d l l .  

Ans. clue. I f  Jf, = xf = q /5  
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2.14 Two masses, and B, lie on a frictionless table (see below left). 
They are attached to either end of a light rope of length 1 which passes 
around a pulley of negligible mass. The pulley is attached to a rope 
connected to a hanging mass, C. Find the acceleration of each mass. 
(You can check whether or not your answer i s  reasonable by considering 
special cases-for instance, the cases M A  = 0, or 1 l f ~  = l l f ~  = Mc.) 

2.15 The system on the right above uses massless pulleys and rope. 
The coefficient of friction between the masses and horizontal surfaces 
is p. Assume that and :)I2 are sliding. Gravity is directed downward 

a. Draw force diagrams, and show all relevant coordinates. 

b. How are the accelerations related? 

c. Find the tension in the rope, T. 
Ans. T = ( p  + l)g/[2/Jf a f 1/(2illl) + l / ( 2 A f 2 ) ]  

2.16 A 4 5 O  wedge is pushed along a table with constant acceleration rl. 
A block of mass nz slides without friction on the wedge. Find its acceler- 
ation. (Gravity is directed down.) 

Ans. clue. If A = 3g, ij = g 

2.17 A block rests on a wedge inclined at angle 8. The coefficient of 
friction between the block and plane is  p. 

a. Find the maximum value of 8 for the block to remain motionless on 
the wedge when the wedge is fixed in position. 

Ans. tan 6 = p 

b. The wedge is  given horizontal acceleration a, as shown. Assuming 
that tan 8 < p, find the minimum acceleration for the block to remain 
on the wedge without sliding. 

Ans. clue. I f  0 = ~ / 4 ,  amin = g(1 - p)/(1 4- p )  

6. Repeat part b, but find the maximum value bf the acceleration. 
Ans. clue. I f  8 = rJ4, a,, = g(l + p)/(1 - F) 
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2.18 A painter of mass M stands on a platform of mass m and pulls 
himself up by two ropes which hang over pulleys, as shown. He pulls 
each rope with force I; and accelerates upward with a uniform accelera- 
tion a. Find a-neglecting the fact that  no one could do this for long. 

Ans. clue. I f  nf = m and F = 11.!Jg, a, = g 

2.29 A "Pedagogical Machine" is illustrated in the sketch above. All 
surfaces are frictionless. What force P must be applied to M I  to keep 
Jf, from rising or falling? 

Ans. clue. For equal masses. F = 3:lfg 

2.20 Consider the "Pedagogical Machine" of the last problem in the 
case where P is zero. Find the acceleration of n i l .  

Ans. al = -:If2Jf~/(~TfliIP2 f J f t J f 3  + 2JIaAP3 f ~ 1 1 ~ ~ )  

2.21 A uniform rope of mass m and length I is attached to a block of 
mass A$. The rope is pulled with force F. Find the tension at  distance 
x from the end of the rope. Neglect gravity. 

2.22 A uniform rope o f  weight TV hangs between two trees. The ends 
of the rope are the same height, and they each make angle 8 with the 
trees. Find 

a. The tension a t  either end of the rope 

b. The tension in the middle of the rope 

Aor.  clue. If 8 = 45'. T,., = 117/&, Tmiddk = 71w/2 

2.23 A piece of string of length 1 and mass -11 is fastened into a circular 
loop and set spinning about the center of a circle with uniform angular 
velocity w. Find the tension in the string. Suggestion: Draw a force 
diagram for a small piece of the loop subtending a small angle, A@. 

Ans. T = Jiw2Z/(2rr)2 

2.24 A device called a capstan is used aboard ships in order to control 
a rope which is under great tension. The rope is wrapped around a 
fixed drum, usually for several turns (the drawing shows about three- 
fourths turn). The load on the rope pulls it with a force TA, and the 
sailor holds it with a much smaller force To. Can you show that Tn = 

T A e - p 9 ,  where p is the coefficient of friction and 0 is the total angle sub- 
tended by the rope on the drum? 
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2.25 Find the shortest possi bre period of revolution of two identical grav- 
itating solid spheres which are in circular orbit in free space about a 

point midway between them. (You can imagine the spheres fabricated 
from any material obtainable by man.) 

2.26 The gravitational force on a body located at distance R from the 
center of a uniform spherical mass is due solely to the mass lying at  
distance r < R, measured from the center of the sphere. This mass 
exerts a force as i f  it were a point mass a t  the origin. 

Use the above result to show that i f  you drill a hole through the earth 
and then fall in, you will execute simple harmonic motion about the 
earth's center. Find the time it takes you to return to your point o f  
departure and show that this is the time needed for a satellite to circle 
the earth in a low orbit with r = Re. In deriving this result, you need 
to  treat the earth as a uniformly dense sphere, and you must neglect all 
friction and any effects due to the earth's rotation. 

2.27 As a variation of the last problem, show that  you will also execute 
simple harmonic motion with the same period even i f  the straight hole 
passes far from the earth's center. 

2.28 An automobile enters a turn whose radius i s  R. The road is banked 
at angle 8, and the coefficient of friction between wheels and road is p. 
Find the maximum and minimum speeds for the car to stay en the road 

I without skidding sideways. 
Ans. clue. I f  p = 1 and 0 = ~ / 4 ,  all speeds are possible 

2.29 A car is driven on a large revolving platform which rotates with con- 
stant angular speed w. At t = 0 a driver leaves the origin and follows 
a line painted radially outward on the platform with constant speed vo. 
The total weight of the car is W ,  and the coefficient of friction between 
the car and stage is fi. 

a. Find the acceleration of  the car as a function of time using polar 
coordinates. Draw a clear vector diagram showing the components of 
acceleration at some time t > 0. 

b.  Find the time at which the car just starts to skid. 

c. Find the direction of the friction force with respect to the instan- 
taneous position vector r just before the car starts to skid. Show your 
result on a clear diagram. 

2.30 A disk rotates with constant angular velocity w ,  as shown. Two 
masses, r n ~  and m ~ ,  slide without friction in a groove passing through 
the center of the disk. They are connected by a light string of length 1, 
and are initially held in position by a catch, with mass r n ~  a t  distance r~ 
from the center. Neglect gravity. At t = 0 the catch is removed and 
the masses are free to slide. 

Find 8, immediately after the catch is removed in terms of m ~ ,  m ~ ,  E ,  
r~~ and w. 
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2.31 Find the frequency of oscillation of mass m suspended by two 
springs having constants kl and k,, in each of the configurations shown. 

Ans. the. If k, = kz = le, w, = dk/2m, w = d2k/m 

2.32 A wheel of radius R rolls along the ground with velocity V. A 
pebble is carefully released on top of the wheel so that  it is instanta- 
neously at rest on the wheel. 

a. Show that the pebble will immediately fly off the wheel i f  V > 

b. Show that  in the case where V < 6, and the coefficient of 
friction is  p = 1, the pebble starts to slide when it has rotated through 

Rg)] - a/4. a n  angle given by 8 = arccos 1(1/di)(~ / 
2.33 Aparticleof rnassmisfree toslide o n a  thin rod. The rod rotates 
in a plane about one end a t  constant angular velocity w. Show that the 
motion is given by T = Ae-rr + Be+rt, where y is a constant which you 
must find and A and B are arbitrary constants. Neglect gravity. 

Show that for a particular choice of initial conditions [that is, r(t = 0) 
and v(t = 031, it is possible to obtain a solution such that r decreases 
continually in time, but that for any other choice r wilt eventually increase. 
(Exdude cases where the bead hits the origin.) 

2.34. A mass m whirls around on a string which passes through a ring, 
as shown. Neglect gravity. Initially the mass is distance ro from the 
center and is revolving a t  angular velocity wo. The string is pulled with 
constant velocity V starting at t = 0 so that the radial distance to the 
mass decreases. Draw a force diagram and obtain a differential equa- 
tion for w. This equation is quite simple and can be solved either by 
inspection or by formal integration. Find 

a. w(t). 
Ans. clue. For 'Vt = r0 /2 ,  w = 4wo 

b. The force needed to pull the string. 

2.35 This problem involves solving a simple differential equation. 
A block of mass m slides on a frictionless table. It is constrained to 

move inside a ring of radius E which is fixed to the table. At t = 0, the 
block is moving along the inside of the ring (i.e., in the tangential direction) 
with velocity vo. The coefficient of friction between the block and the 
ring is N. 

a. Find the velocity o f  the block at later times. 
Ans. v o / [ l  + ( ~ v o t / l ) I  

b. Find the position of the block at later times. 

2.36 This problem involves a simple differential equation. You should 
be able to integrate it after a little "playing around." 

A particle of mass m moving along a straight line is acted on by a 
retarding force (one always directed against the motion) P = beau, where 
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b and a! are constants and v is the velocity. A t  t = 0 i t is moving with 
velocity vo. Find the velocity at later times. 

Ans. v ( t )  = (I/&) In [l/(crbt/m + e-avo)] 

2.37 The Eureka Hovercraft Corporation wanted to hold hovercraft races 
as an advertising stunt. The hovercraft supports itself by blowing air 
downward, and has a big fixed propeller an the tap deck for forward 
propulsion. Unfortunately, it has no steering equipment, so that the 
pilots found that making high speed turns was very difficult. The company 
decided to overcome this problem by designing a bowl shaped track in 
which the hovercraft, once up to speed, would coast along in a circular 
path with no need to steer. f hey hired an engineer to design and build 
the track, and when he finished, he  hastily left the country. When the 
company held their first race, they found to their dismay that the craft 
took exactly the same time T to circle the track, no matter what its speed. 
Find the equation for the cross section of the bowl in terms of T. 


