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In  the last chapter we made a gross simplification by treating 
nature as i f  it were composed of point particles rather than real, 
extended bodies. Sometimes this simplification is justified-as in 
the study of planetary motion, where the size of the planets is of 
little consequence compared with the vast distances which char- 
acterize our sofar system, or in  the case of elementary particles 
moving through an accelerator, where the size of the particles, 
about l O - I 5  m, is minute compared with the size of the machine. 
However, these cases are unusual. Much of the time we deal 
with large bodies which may have elaborate structure. For 
instance, consider the landing of a spacecraft on the moon. 
Even if we could calculate the gravitational field of such an irreg- 
ular and inhomogeneous 'body as the moon, the spacecraft itself 
is certainly not a point particle-it has spiderlike legs, gaw'ky 
antennas, and a lumpy body. 

Furthermore, the methods of the last chapter fail us when we 
try to analyze systems such as rockets in  which there is a flow of 
mass. Rockets accelerate forward by ejecting mass backward; it 
is hard to see how to apply F = Ma to such a system. 

In this chapter we shall generalize the laws of motion to over- 
come these difficulties. We begin by restating Newton's second 
law in a slightly modified form. In  Chap. 2 we wrote the law in 
the familiar form 

This is not quite the way Newton wrote it. He chose to write 

f o r  a particle in newtonian mechanics, M is a constant and 
(d /d t ) (Mv)  = M(dv/dt )  = A%, as before. The quantity Mv, 
which plays a prominent role in  mechanics, is called momentum. 
Momentum is the product of a vector v and a scalar M. Denoting 
momentum by p, Newt~n 's  second law becomes 

This form is preferable to F = Ma because it is readily generalized 
to complex systems, as we shall soon see, and because momentum 
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turns out to be more fundaments! than mass or velocity 
separately. 

3.2 Dynamics of a System of Particles 

Consider a system of interacting particle<. One example of such 
a system is the sun and planets, which are so far apart compared 
with their diameters that they can be treated as simple particles 
to good approximation. All particles in  the solar system interact 
via gravitationaL attraction; the chief interaction is with t h e  sun, 
although the interaction of the planets with each other also influ- 
ences their motion. In addition, the entire solar system is 
attracted by far off matter. 

At the other extreme, the system could be a billiard ball resting 
on a ta'ble. Here the particles are atoms (disregarding for now 
the fact that atoms are not point particles but  are themselves 
composed of smaller particles) and the interactions are primarily 
interatomic electric forces. The external forces on the bi!liard 
ball include the gravitational force of the earth and the contact 
force of the tabletop. 

We shall now prove some simple properties of physical systems. 
We are free to choose the boundaries of the system as we please, 
but once the choice is made, we must be consistent about which 
partictes are included in the system and which are not. We 
suppose that the particles in  the system interact with particles 
outside the system as welt as with each other. To make the argu- 
ment genera!, consider a system of LV interacting particles with 
masses ml, ?n2, Ins, . . . , 7 1 2 ~ .  The position of the j t h  particle 
is rj, the force on it is fj, and its momentum is pi = 7 7 1 ~ f ~ .  The 
equation of motion for the j t h  particle is 

The force on particle j can be split into two terms: 

Here fiint, the infernal force on particle j ,  is the force due to all 
other particles in the system, and fiext, the external force on par- 
ticle j, is the force due t o  sources outside the system. The equa- 
tion of motion becomes 
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Now let us focus on the system as a whole by the following 
stratagem: add all the equations of motion of all the particles in  
the system. 

The result of adding these equations can be written 

The summations extend over all particles, j = 1, . . . .  N .  
The second term, Zfjext, is the sum of all external forces acting 

on all the particles, It is the total external force acting on the 
system, Fext. 

The first term in Eq. (3.8), Zlfjht, is the sum of all internal forces 
acting on all the particles. According t o  Newton's third law, the 
forces between any two particles are equal and opposite so that 
their sum is zero. It follows that the sum of all the forces between 
all the particles is a!so zero; the internal forces cancel in pairs. 
Hence 

Equation (3.8) then simplifies to 

The right hand side can be written E(dp j /d t )  = (d /dt )2pi ,  since 
the derivative of a sum i s  the sum of the derivatives. Zpj is the 
total momentum of the system, which we designate by P. 
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With t'his substitution, Eq. (3.9) becomes 

In words, the total external force applied to a system equals 
the rate of change of the system's momentum. This is true irre- 
spective of the details of the interaction; F,,, could be a single 
force acting on a single particle, or it could be the resultant of 
many tiny interactions involving each particle of the system. 

Example 3.1 The Bola 

The bola is a weapon used by gauchos for entangling animals. It con- 
sists of three balls of stone or iron connected by thongs. The gaucho 
whirls the bola in the air and hurls it a t  the animal. What can we say 

about its motion? 

Consider a bola with masses m l j  ms, and ma. The balls are pulled by 
the binding thong and by gravity. (We neglect air resistance.) Since 
the constraining forces depend on the instantaneous positions of all 
three balls, it is a real problem even to write the equation of motion of  
one ball. However, the  total momentum obeys the simple equation 

where dl' is the total mass. This equation represents a n  important first 
step in finding the detailed motion. The equation is identical to that 
o f  a single particle of mass 31 with momentum P. This i s  a familiar fact 
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to the gaucho who forgets that  he has a complicated system when he 
hurls the bola; he instinctively aims it like a single mass. 

Center of Mass 

According to Eq. (3.11), 

where we have dropped the subsc~ipt  ext with the understanding 
that F stands for the externai force. This result is identical to 
the equation of motion of a single particle, aIthough in fact it 
refers to a system of particles. It is tempting t o  push the analogy 
between Eq. (3.12) and single particle motion even further by 
writing 

where M is the total mass of the system and R is a vector yet to 
be defined. Since P = Zmiii, Eq. (3.12) and (3.13) give 

which is true If 

1 
R = - Emirj. 

M 

R is a vector from the origin to the point called the center of 
mass. The system behaves as if all the mass is concentrated at  
the center of mass and all the external forces act a t  that point. 

We are often interested in the motion of comparatively rigid 
bodies Iike baseballs or automabiles. Such a body is merely a 
system of particles which are fixed relative to each other by strong 
internal forces; Eq. (3.13) shows that with respect to external 
forces, the body behaves as if it were a point particle. In  Chap. 
2,  we casually treated every body as if if were a particle; we see 
now that this is justified provided that we focus attention on the 
center of mass. 

You may wonder whether this description of center of mass 
motion isn't a gross oversimplification-experience tells us that 
an extended body like a plank behaves differently from a compact 
body Iike a rock, even if the masses are the same and we appjy 
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the same force. We are indeed oversimplifying. The relation 
F = M# describes only the translation of the  body (the motion 
of its center of mass); it does not describe the body's orientation 
in space. In  Chaps. 6 and 7 we shall investigate the rotation of 
extended bodies, and it will turn out that the rotational motion 
of a body depends both on its shape and the point where the 
forces are applied. Nevertheless, as far as translation of the 
center of mass is concerned, F = M# tells the whole story. 
This result is true for any system of particles, not just for those 
fixed in rigid objects, as long as the forces between the particles 
obey Newton's third law. It is immaterial whether or not the 
particles move relative to each other and whether or not there 
happens to be any matter a t  the center of mass. 

Example 3.2 Drum Major's Baton 

A drum major's baton consists of two masses ml and m2 separated bv a <\ thin rod of length 1. The baton is thrown into the air. The problem is 
to find the baton's center of mass and the equation of motion for the 
center of mass. 

\ I 
Let the position vectors of ml and r n z  be r1 and r2. The position vector 

A of the center of mass, measured from the same origin, is 

R = 
m,rl + ?n2r2 

I 1 
ml + mt 

where we have neglected the mass of the thin rod. The center of mass 
lies on the line joining ml and m2. To show this, suppose first that the 
tip of R does not lie on the line, and consider the vectors ri, r; from the 
tip of R to m, and ma. From the sketch we see that  

f rl = r, - R 

Using Eq. (1) gives 
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r[ and r; are proportional to r, - rzI the vector from ml to mz. Hence 
r: and r; lie along the line joining ml and m2, as shown. Furthermore, 

- - m2 1 
mr + m2 

and 

t Assuming that friction is negligible, the external force on the baton is 

";'y F = m1g 4- md. 
The equation of motion of  the center of mass is 

/ \ 

\ 
(ml + n a s ) ~  = (ml + m23s + \ or .* 

I R = g. 

The center of mass follows the parabolic trajectory of a single mass in a 
uniform gravitational field. With the methods developed in Chap. 6, we 

I shall be able to find the motion of ml and mz about the center of mass, 
completing the solution to the problem. 

Although it is a simple matter to find the center of mass of a 
system of particles, the procedure for locating the center of mass 
of an extended body is not so apparent. However, it is a straight- 
forward task with the help of calculus. We proceed by dividing 
the body into N mass elements. If r j  is the position of the jth 
element, and mj is its mass, then 

The result is not rigorous, since the mass elements are not true 
particles. However, in the limit where N approaches infinity, the 
sire of each eiement approaches zero and the approximation 
becomes exact. 

- N 

This limiting process defines an integral. Formally 
(D 

lim 2 mjrj = r dm, 
N d m  j = 1  
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where dm is a differential mass element. Then 

To visualize this integral, think of dm as the mass in an element 
of volume dV located at  position r. If the mass density at the 
dement is  p,  then dm = p dV and 

1 R = -  
M 
/ rp d ~ .  

/ -  This integral is called a volume integral. Although it is important 
/ to know how to find the center of mass of rigid bodies, we shall 

only be concerned with a few simple cases here; as illustrated by 
the following two examples. Further examples are given in Note 
3.1 at  the end of the chapter. 

Example 3.3 Center of Mass of a Nonuniform Rod 

A rod of length L has a nonuniform density. A, the mass per unit length 
of the rod, varies as X = Xo(s/L), where Xo  is a constant and s is the dis- 
tance from the end marked 0. Find the center of mass. 

I t  is apparent that R lies on the rod. Let the origin of the coordinate 
system coincide with the end of the rod, I], and let the x axis lie along the 
r o d s o t h a t s  = x. The massinanelementof lengthdxisdm = Xdx = 
Xox dx/L.  The rod extends from x = 0 to x = L and the total mass is 

The center of mass is at  
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Example 3.4 Center of Mass of a Triangular Sheet 

Consider the two dimensional case of a uniform right triangular sheet of 
mass lM, base b, height h, and small thickness t. If we divide the sheet 
into small rectangular areas of side Ax and Ay, as shown, then the volume 
of each element is AV = t Ax Ay, and 

where j is the label of one of the volume elements and pj is the density. 
Because the sheet is uniform, 

nf M 
pi = constant = - = - J  v At 

where A is the area of the sheet. 
We can carry out the sum by summing first over the Ax's and then 

over the Ay's, instead of over the single index j. This gives a double 
sum which can be converted to a double integral by taking the limit, as 
follows: 

Let r = xi + yf be the position vector of an element dx dy. Then, 
writing R = XP + Yj ,  we have 

Hence the coordinates of the center of mass are given by 
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The double integrals may look strange, but they are easily evaluated. 
Consider first the double integral 

1 x=- 
A 
// z dz dy. 

I This integral instructs us to take each element, multiply its area by its 

I x coordinate, and sum the results. We can do this i n  stages by first 
considering the elements in a strip parallel to the y axis. The strip runs  
from y = 0 to y = xh/b. Each element in the strip has the same x 
coordinate, and the contribution of the  strip to the double integral is 

h 12 dz /gZh') dy = - x2 dx. 
bA 

I-.---l I Finally, we sum the contributions of all such strips x = 0 to x = b to find 

Since A = *bh, 

X = Sb. 

Similarly, 

Y = ' l b  ( [ h ' b g  d Y )  dz 
b A Q 

Hence 

Although the coordinates of R depend on the particular coordinate sys- 
tem we choose, the position of the center of mass with respect to  the 
triangular plate is, of course, independent of the coordinate system. 

Often physical arguments a re more useful than mathematical 
analysis. For instance, to find the center of mass of an irregular 
plane object, let it hang from a pivot and draw a plumb line from 
the pivot. The center of mass will hang directly below the pivot 
(this may be intuitively be obvious, and it can easily be proved 
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with the methods of Chap. 6), and it is somewhere on the plumb 
Tine. Repeat the procedure with a different pivot point. The 
two lines intersect a t  the center of mass. 

Example 3.5 Center of Mass Motion 

A rectangular box is held with one corner resting on a frictionless table 
and is  gently released. It falls in a complex tumbling motion, which we 
are not yet prepared to solve because it Involves rotation. However, 
there is no difficulty in finding the trajectory of the center of mass. 

The external forces acting on the box are  gravity and the normal force 
of the table. Neither of these has a horizontal component, and so the 
center of mass must accelerate vertically. For a uniform box, the center 
of mass is at the geometrical center. I f  the box is  released from rest, 
then its center falls straight down. 

3.3 Conservation of Momentum 

In t h e  last section we found tha t  the total external force F acting 
on a system is related to the  total momentum P of the system by 

Consider the implications of this for an isolated system, that is, a 
system which does not interact with i ts surroundings. In  this 
case F = 0, and dPJdt = 0. The total momentum is constant; 
no matter how strong the interactions among an isolated system 
of particles, and no matter how complicated the motions, the total 
momentum of an isolated system is constant. This is the law of 
conservation of momentum. As we shall show, this apparently 
simple law can provide powerful insights into comp'licated systems. 
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Example 3.6 Spring Gun Recoil 

A loaded spring gun, initially a t  rest on a horizontal frictionless surface, 
fires a marble at angle of elevation 8. The mass of the gun is M ,  the 
mass of the marble is m, and the muzzle velocity of the marble i s  vo. 
What is the final motion of the gun? 

Take the physical system to be the gun and marble. Gravity and the 
normal force of the table act on the system. Both these forces are  ver- 
tical. Since there are no horizontal external forces, the x component 
of the vector equation F = dP/dt  is 

According to Eq. (I), P, is conserved: 

Let the initial time be prior to firing the gun. Then PZminitiar = 0, since 
vo sin B the system is initially at rest. After the marble has left the muzzle, the 

gun recoils with some speed Vf, and its final horizontal momentum 
i s  M V f ,  to the left. Finding the final velocity of the marble involves a 
subtle point, however. Physically, the marble's acceleration is due to 
the force of the gun, and the gun's recoil is due to the reactFon force of 
the marble. The gun stops accelerating once the marble leaves the 
barrel, so that at the instant the marble and the gun part company, the  
gun has its final speed V,. A t  that same instant the speed of  the mar- 
ble relative to the gun is vo. Hence, the final horizontal speed of  the 
marble relative to the table is cos 0 - Vf. By conservation of hori- 
zontal momentum, we therefore have 

0 = m(vo cos 8 - Vf) - MVl 

muo cos 0 v, = 
M + m  

By using conservation of momentum we found the final motion of the 
system in a few steps. To show the advantage of this method, let us 
repeat the problem using Newton's laws directly. 

Let v ( t )  be the velocity of marble at time t and let V ( t )  be the velocity 
of the gun. While the marble is being fired, it is acted on by the spring, 
by gravity, and by friction forces with the muzzle wall. Let the net 
force on the marble be f(E). The x equation of motion for the marble is 
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Formal integration of Eq. (3) gives 

The external forces are all vertical, and therefore the horizontal force f, 
on the marble is due entirely to the gun. By Newton's third law, there is 
a reaction force -f, on the  gun due to the marble. No other horizontal 
forces act on the gun, and the horizontal equation of motion for the  gun 
is therefore 

which can be integrated to give 

We can eliminate the integral by combining Eqs. (4) and (5): 

We have rediscovered that the horizontal component of momentum is 
conserved. 

What about the motion of the center of mass? Its horizontal velocity 
is 

Using Eq. (6), the numerator can be rewritten to give 

since the  system is initially a t  rest. R,  is constant, as we expect. 
We  did not include the small force of air friction. Would the center of 

mass remain a t  rest i f  we had included it? 

The essential step in our derivation of the law of conservation of 
momentum was to use Newton's third law. Thus, conservation of 
momentum appears to be a natural consequence of newtonian 
mechanics. It has been found, however, that conservation of 
momentum holds true even in areas where newtonIan mechanics 
proves inadequate, including the realms of quantum mechanics 
and relativity. In addition, conservation of momentum can be 
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generalized to apply to systems like the electromagnetic field, 
which possess momentum but not mass. For these reasons, 
conservation of momentum is generally regarded as being more 
fundamental t han  newtonian mechanics. f rom this point of view, 
Newton's third law is a simple consequence of conservation of 
momentum for interacting particles. For our present purposes 
it is purely a matter of taste whether we wish to regard Newton's 
third law or conservation of momentum as more fundamental. 

Example 3.7 Earth, Moon, and Sun-a Three Body System 

Newton was the first to calculate the motion of two gravitating bodies. 
As we shall discuss in Chap. 9, two bodies of mass hfl and A f t  bound by 
gravity move so tha t  812 traces out  a n  ellipse. The sketch shows the 
motion in a frame in which the center of mass is at rest. (Note that the 
center of mass of two particles lies on the line joining them.) 

There is no general analytica! solution for the motion o f  three gravi- 
tating bodies, however. In spite of this, we can explain many of the 
important features of the motion with the help of the concept of center 
o f  mass, 

At first glance, the motion of  the earth-moon-sun system appears 
to be quite complex. In the absence of the sun, the earth and moon 
would execute elliptical motion abaut their center of mass. As we shall 
now show, that center of mass orbits the sun like a single planet, to good 
approximation. The total motion is  the simple result of two simultaneous 
elliptical orbits. 

0, 
--\ 

--,a P p 
0- / / I 9 Moon Earth 

I I \\ l,e---- 
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P The center of mass of the earth-moon-sun system lies at 

M,R, + M,R, + M,R, 

Me + Jfm + 11.8  

where hf,, M,, and Ma are the masses of the earth, moon, and sun, 
respectively. The sun's mass is so large compared with the mass of 
the earth or the moon that Ro = Ra, and to good approximation the ten- 

ter of mass of the three body system lies at  the center of the sun. Since 
external forces are negligible, the sun is effectively at rest in an inertial 
frame and it is natural to use a coordinate system with its origin at the 
center of the sun so that R = 0. 

Let r, and rrn be the positions of the earth and moon with respect to 
the sun, and let us focus for the moment en the system composed of 
the earth and moon. Their center of mass lies a t  

The external force on the earth-moon system is the gravitational pull 
of the sun: 

The equation of @ion of the center of mass is 

( M ,  + M,)R,, = F. 

The earth and moon are so close compared with their distance from 
the sun that we shall not make a large error if we assume r, r, = R,. 

4 x  lo8, With this approximation, 

The center of mass of the earth and moon moves like a planet of mass 
hf, + 14, about the sun. The total motion is the combination off this 
elliptical motion and the elliptical motion of the earth and moon a bout 
their center of mass, as illustrated on the opposite page. (The drawing 
is not to scale: the center of mass of the earth-moon system lies within 
the earth, and the moon's orbit is always concave toward the sun. Also, 
t he  plane of the moon's orbit is inclined by 5' with respect to the earth's 
orbit around the sun.) 
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Center of mass of 
earth-moon-sun 

system 

Center of mass of 
\ 

earth-moon system 
I 

I 
I 
I 
I 

J 
I 

I 
I 

I 
I 

center of mass' 

Center of Mass Coordinates 

Often a problem can be simplified by the right choice of coordi- 
nates. The cente~  of mass coordinate system, in which the origin 
lies at the center of mass, is particularly useful. The drawing 
illustrates the case of a two particle system with masses ml and 
m2. In the initial coordinate system, x, y, x, the particles are 
located at rl and r2 and their center of mass is at 

Y 

We now set up the center of mass coordinate system, xf:', y', x' ,  
with its origin at the center of mass. The origins of the old and 
new system are displaced by R. The center of rnass coordinates 
of the two particles are 

r i  = rl - R 

r[ = r2 - R. 

Center of rnass coordinates are the natural coordinates for 
an isolated two body system. For. such a system the motion of 
the center of mass is trivial-it moves uniformly. Furthermore, 



mIri + mnri = 0 by the definition of center of mass, so that if 
the motion of one particle is known, the motion of the  other par- 
ticle follows directly. Here is an example. 

Example 3.8 The Push Me-Pull You 

Two identical blocks a and b both of mass m slide without friction on a 
straight track. They are attached by a spring of  length E and spring 
constant k. Initially they are at rest. At t = 0, block a is hit sharply, 
giving It an instantaneous velocity vo to the right. Find the velocities far 
subsequent times. (Try this yourself i f  there is a linear air track 
availa ble-the motion is quite unexpected.) 

Since the system slides freely after the collision, the center of mass 
moves uniformly and therefore defines an inertial frame. 

Let us transform to center of mass coordinates. The center of mass 
lies at  

As expected, R is always halfway between a and b. The center of mass 
coordinates of a and b are 

The sketch below shows these coordinates. 

Center of mass 
coordinates 
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t t The instantaneous length of the spring is r, - ra - I = r, - rh - 1, 
where 1 is the unstretched length of the spring. The magnitude of the 
spring force is k(rL - r: - 1). The equations of motion in the center of 
mass system are 

? I my; = -k(ra - - E) 
I 

??IF; = +k(rA - Tb - E), 

where E is the unstretched length of the spring. The form of these equa- 
tions suggests that we subtract them, obtaining 

lit is natural to introduce the departure of the spring from its equi- 
I librium length as  a variable. Letting u = r: - rb - 1, we have 

This is the equation for simple harmonic motion which we discussed 
in Example 2.14. The solution is 

u = A s lno t  4- Bcos WE, 

where w = 1 / 2 k / n ~ .  Since the spring is unstretched at t = 10, u(0) = 0 
which requires 3 = 0. Furthermore, since u = r: - r: - l = r, - ra - E, 
we have at  t = 0 

6(0) = va(0) - va(0) 

= Aw cos (01 

= vo, 

so that 

and 

u = ( v o / w )  sin wt. 

t t Since v, - 0; ;= C, and va = -vL, we have 

I 
v: = -Z)b = +vo cos wt. 

The laboratory velocities are 
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Since I? is constant, it is always equal to  its initial value 

Putting these toget her gives 

00 
Y, = - (I + COS wt}  

2 

The masses move to  the  right on the average, but they alternately 
come to rest in a push me-pull you fashion. 

3.4 Impulse and a Restatement of the Momentum Relation 

The relation between force and momentum is 

As a general ru , any law of physics which can be expressed in 
terms of derivatives can also be written in an integral form. The 
integral form of the force-momentum relationship is 

The change in momentum of a system is given by the integral of 
force with respect to time. This form contains essentially the 
same physical information as Eq. (3.161, but it gives a new way of 
looking a t  the effect of a force: the change in momentum is the 
time integral of the force. To produce a given change in the 
momentum in time interval t requires only that lot F dt have the 
appropriate value; we can use a small force acting for much of 
the time or a large force acting for only part of the interval. The 

integral /d Fdt is called the impulse. The word impulse calls to 

mind a short, sharp shock, as in Example 3.8, where we talked of 
giving a blow to a mass at rest so that its final velocity was vo. 
However, the physical definition of impulse can just as well be 
applied to a weak force acting for a long time. Change of momen- 
tum depends only on $F dt, independent of the detailed time 
dependence of the force. 

Here are two examples involving impulse. 
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Example 3.9 Rubber Ball Rebound 

A rubber ball of mass 0.2 kg falls to the floor. The ball hits with a speed 
of 8 m/s and rebounds with approximately the same speed. High 
speed photographs show that the ball is in contact with the floor for s, 
What can we say about the force exerted on the ball by the floor? 

The momentum of the ball just before it hits the floor is P, = -1.6k 
kg.m/s and its momentum s later is Pb = +1.6& kg.m/s. Since 

L t b ~ d t  = Pa - P , , l t h F d t  = 1 .6 t  - (-1.6k) = 3.2kkg.m/~. Although 
a a 

the exact variation of F with time is not known, it is easy to find the average 
force exerted by the floor on the ball. I f  the coHision time is At = ta - t,, 
the average force Fa, acting during the collision is 

t .  + At 
F,, nt = J F dt. 

a 

Since At = s, 

3.2k kg.m/s 
Fa, = = 3,200E N. 

10-8 s 

The average force is directed upward, as we expect. In  more familiar 

I t units, 3,200 N = 720 Ib -a  sizable force. The instantaneous force on the 
I-- a t 4  ball is even larger a t  the peak, as the sketch shows. If the ball hits a 
*a Ib resilient surface, the collision time is longer and the peak force is less. 

Actually, there is a weakness in our treatment of the rubber ball 
rebound. In  calculating the impulse SF dt, F is the total force. This 
includes the gravitational force, which we have neglected. Proceeding 
more carefully, we write 

The impulse equation then becomes 

The impulse due to the gravitational force is 

This is less than one-thousandth of the total impulse, and we can neglect 
it with little error. Over a long period of time, gravity can produce a 
large change in the ball's momentum (the ball gains speed as it falls, for 
example). In the short time of' contact, however, gravity contributes 
little momentum change compared with the tremendous tome exerted 
by the floor. Contact forces during a short cellision are generally so 
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huge that  we can neglect the impulse due to other forces of moderate 
strength, such as gravity or friction. 

The last example reveals why a quick collision is more violent 
than a slow collision, even when the initial and final velocities are 
identical. This is the reason that a hammer can produce a force 
far greater than the carpenter could produce on his own; the hard 
hammerhead rebounds in a very short time compared with the 
time of the hammer swing, and the force driving the hammer is 
correspondingly amplified. Many devices to prevent bodily injury 
in accidents are based on the same considerations, but applied in  
reverse-they essentially prolong the time of the collision. This 
is the rationale for the hockey player's helmet, as well as the auto- 
mobile seat belt. The fo!lowing example shows what can happen 
in even a relatively mild collision, as when you jump to the ground. 

Example 3.10 How to Avoid Broken Ankles 

Animals, including humans, instinctively reduce the force of impact with 
the ground by flexing while running or jumping. Consider what happens 
to someone who hits the ground with his legs rigid. 

Suppose a man of mass Jf jumps to the ground from height h, and 
that his center of mass moves downward a distance s during the  time of 
collision with the ground. The average force during the collision is 

where t is the time of the collision and vo is the velocity with which he hits 
the ground. As a reasonable approximation, we can take his accelera- 
tion due to the force of impact to be constant, so that the man comes 
uniformly to rest. In  this case the collision time is given by v ,  = 2s/t ,  or 

l nserting this in Eq. (1) gives 

For a body in free fall for distance h, 

l nserting this in Eq. (2) gives 
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If the man hits the ground rigidly in a vertical position, his center of 
mass will not move far during the collision. Suppose that his center of 
mass moves 1 cm, which roughly means that his height momentarily 
decreases by approximately -2 cm. If he jumps from a height of 2 m, 
the force is 200 times his weight? 

Consider the force on a 90-kg ( ~ 2 0 0 - l b )  man jumping from a height of 
2 m. The force is 

Where is a bone fracture most likely to occur? The force is a maxi- 
mum at the  feet, since the mass above a horizontal pbane through the 
man decreases with height. Thus his ankles will break, not his neck. 
I f  the area of contact of bone at each ankle is 5 cm2, then the force per 
unit area is 

This is approximately the compressive strength of human bone, and 
so there is a good probability that his ankles will snap. 

Of course, no one would be so rash as to jump rigidly. We instinc- 
tively cushion the impact when jumping by flexing as we hit the ground, 
in the extreme case collapsing to the ground. I f  the man's center of 
mass drops 50 cm, instead of 1 cm, during the  collisEon, the force is  only 
one-fiftieth as much as we calculated, and there is no danger of com- 
pressive fracture. 

3.5 Momentum and the Flow of Mass 

Analyzing the forces on a system in which there is a flow of mass 
becomes terribly confusing if we try to apply Newton's laws blindly. 
A socket provides the most dramatic example of such a system, 
although there are many other everyday problems where the same 
considerations apply-for instance, the problem of calculating the 
reaction force on a fire hose, or of calculating the acceleration of 
a snowball which grows larger as it rolls downhill. 

There is no fundamental difficulty in handling any of these 
problems provided that we keep clearly in mind exactly what is 
included in the system. Recall that F = d'P/clt [Eq. (3.12)] was 
established for a system composed of a certain set of particles. 
When we apply this equation in the integral form, 
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it is essential to deal with the same set of particles throughout 
t he  time Interval t, t o  4; we must keep track of all the particles 
that were originally in the system. Consequently, the mass of 
the system cannot change during the time of interest. 

Example 3.11 Mass Flow and Momentum 

A spacecraft moves through space with constant velocity v. The space- 
craft encounters a stream of dust particles which embed themselves in 
it a t  rate dm/dt. The dust has velocity u just before i t  hits. At time t 
the total mass of the spacecraft is Il!(t). The problem is to find the 
external force F necessary to keep the spacecraft moving uniformly. 
(In practice, F would most likely come from the spacecraft's own rocket 
engines. For simplicity, we can visualize the source F to be completely 
external-an invisible hand, so to speak.) 

Let us focus on the short time interval between f and t + At, The 
drawings below show the system a t  the beginning and end of the interval. 

A m  to be 
added in time At 

System boundaq; 

Time mass of system = M(t) + A m  
System boundary; 

mass af system = M ( t )  + A m  

Time t + dt 

Let Am denote the mass added to the satellite during At. The sys- 
tem consists of i%f(t) and Am. The initial momentum is 

The final momentum is 

e(t + At) = M(t)v + (Am3v. 

The change in momentum is 

AP = P(t + At) - P(t) 

= (V - u) Am. 
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The rate of change of momentum is approximately 

In  the limit At + 0 ,  we have the exact result 

Since F = dP/dt ,  the required external force is 

Note that F can be either positive or negative, depending on the direction 
of the stream of mass. If u = v, the momentum of the system is con- 
stant, and F = 0. 

The procedure of isolating the system, focusing on differentials, 
and taking the limit may appear a trifle formal, However, the 
procedure is helpful in avoiding errors in a subject where it is 
easy to become confused. For instance, a frequent error is to 
argue that 5 = (d/dt)(mv) = m(ch/dt) -I- v(dm/dt). In the last 
example v is constant, and the result would be F = v(dm/dt) 
rather than (v - u)(dm/dt) .  The difficulty arises from the fact 
that there are several contributions to the momentum, so that the 
expression for the momentum of a single particle, p = mv, is not 
appropriate. The limiting procedure illustrated in the last exam- 
ple avoids such ambiguities. 

Example 3.12 Freight Car and Hopper 

Sand falls from a stationary hopper onto a freight car which is moving 
with uniform velocity v, The sand falls a t  the rate dmldt .  How much 
force is needed to keep the freight car moving at the speed v? 

In  this case, the initial speed of the sand is 0, and 

dP - =  dm 
(u  - .I(";) = .-- 

dl dt 

The required force is P = vdm/&. We can understand why this force 
is needed by considering in detail just what happens to  a sand grain as 
it lands on the surface of the freight car. What would happen if the 
surface of the freight car were slippery? 



Example 3.13 Leaky Freight Car 

Now consider a related case. The same freight car is leaking sand a t  
the rate dm/dt; what force is needed to keep the freight car moving 
uniformly with speed v? 

Here the mass is decreasing. However, the velocity of the sand after 
leaving the freight car is identical to its initial velocity, and its momentum 
does not change. Since dP/& = 0, no force is required. (The sand 
does change its momentum when it hits the ground, and there is a 
resulting force on the ground, but tha t  does not affect the motion of the 
freight car.) 

The concept of momentum is invaluable in understanding the 
motion of a rocket. A rocket accelerates by expelling gas at  a 
high velocity; the reaction force of the gas on the rocket accelerates 
the rocket in the opposite direction. The mechanism is illustrated 
by the drawings of the cubical chamber containing gas at high 
pressure. 

The gas presses outward on each wall with the force Fa. (We 
show only four walls for clarity.) The vector sum of the Fa's is 
zero, giving zero net force on the chamber. Similarly each wall 
of the chamber exerts a force on t h e  gas 'F:& = -Fa; the net  force 
on the gas is also zero. In the right hand drawings below, one wall 

Force on chamber 

Force on gas 

has been removed. The net force on the chamber is Fa, to the 
right. The net force on the gas is Fb, to the left. Hence t h e  gas 
accelerates to t h e  left, and the chamber accelerates ta the right. 
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To analyze the motion of the rocket in  detail, we must equate 
the external force on the system, F, with the rate of change of 
momentum, dlp/dt. Consider the rocket at time t .  Between t 
and t + At a mass of fuel A m  is burned and expelled as gas with 
velocity u relafive to the rocket. The exhaust velocity u is deter- 
mined by the nature of the propellants, the throttling of the 
engine, etc., but it is independent of the velocity of the rocket. 

The sketches below show the system a t  time 1 and at  time 

,/---- -. k -. - - 4  -. 
0' \ 1 

/ \ \ 
\ 

- 
-v f \ / 

/ 
/ \ e 

xi---- /' V + AV 
Time t Time t + A f  

t + At. The system consists of A m  plus the remaining mass of 
the rocket M. Hence the total mass is M + Am. 

The velocity of the rocket a t  time f is v(f), and at f + At, it is 
v + Av. The initial momentum is 

and the final momentum is 

P(t -k At) = &I(v + Av) + Am(v + Av + u). 
The change in momentum is 

A? = P(t + At)  - P ( t )  

= M AV + (Am)u. 

Therefore, 

dP - =  
AP 

Ifm - 
dt a t 4 0 A t  

Note that we have defined u to be positive in the direction of v. 
In  most rocket applications, u is negative, opposite to v. It is 
inconvenient to have both m and M in the equation. dm/& is 
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the rate of increase of the exhaust mass. Since this mass comes 
from the rocket, 

Using this in  Eq. (3.18), and equating the external force to dP/dt ,  
we obtain the fundamental rocket equation 

It may be useful: to point out  two minor subtleties in  our develop- 
ment. The first is that the velocities have been expressed with 
respect to an inertial frame, not a frame attached to the rocket. 
The second is that we took the final velocity of the element of 
exhaust gas to be v + Av + u rather than v + u. This is correct 
(consult Example 3.6 on spring gun recoil if you need help in seeing 
the reason), but actually it makes no difference here, since either 
expression yields the same final result when the limit is taken. 
Here are two examples on rockets. 

Example 3.14 Rocket in Free Space 

If there is no external force on a rocket, F = 0 and its motion is given by 

Generally the exhaust velocity u is constant, in which case it is easy to 
integrate the equation of motion. 

*+ff 
VI - V Q  = uln -  

: I f o  
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If vo = 0, then 

The final velocity is independent of how the mass is released-the fuel 
can be expended rapidly or slowly without affecting vf. The only 
important quantities are the exhaust velocity and the ratio of initial to 
final mass. 

The situation is quite different if a gravitational field is present, as 
shown by the next example. 

Example 3.15 Rocket in a Gravitational Field 

;If a rocket takes off in a constant gravitational field, Eq. (3.19) becomes 

where u and g are directed down and are assumed to be constant. 

Integrating with respect to time, we obtain 

Let vo = 0, to  = 0, and take velocity positive upward. 

Now there is  a premium attached to burning the fuel rapidly. The 
shorter the burn time, the greater the velocity. This is why the takeoff 
of a large rocket is so spectacular-it is essential to burn the fuel as 
quickly as possible. 

3.6 Momentum T ranspout 

Nearly everyone has a t  one time or another been on the receiving 
end of a stream of water from a hose. You feel a push. If the 
stream is intense, as in the case of a fire hose, the push can be 
dramatic-a jet of high pressure water can be used to break 
through the wall of a burning building. 
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The push of a water stream arises from the momentum it 
transfers to you. Unless another external force gives you equal 
momentum in the opposite direction, off you go. How can a 
column of water flying through the air exert a force which is every 
bit as real as a force transmitted by a rigid steel rod? The reason 
is easy to see if we picture the stream of water as a series of small 
uniform droplets of mass rn, traveling with velocity vo. Let the 
droplets be distance 1 apart and suppose that the stream is 
directed against your hand. Assume that the drops collide with- 
out rebound and simply run down your arm. Consider the force 
exerted by your hand on the stream. As each drop hits there is 
a large force for a short time. Although we do not know the 
instantaneous force, we can find the impulse 1a,,,let on each drop 
due to your hand. 

The impulse on your hand is equal and opposite. 

The positive sign means that the impulse on the hand is in the 
same direction as the velocity of the drop. The impulse equals 
the area under one of the peaks shown in  the drawing. If  there 
are many coilisions per second, you do not feel the shock of each 
drop. Rather, you feel the average force Fa, indicated by the 
dashed line in the drawing. The area under Fa, during one colli- 
sion period T (the time between collisions) is identical to the 
impulse due to one drop. 

Area = impulse 

Since T = l /vo and SF dt = mvo, the average force is 
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The rate at which mass is carried away from the surface is Xsvr .  Since 
mass does not accumulate on the surface, these rates must be equal. 
Hence h'v' = hv, and the force on the surface is 

= Xv(n' + v ) .  

I f  the stream collides without rebound, then err  = 0 and F = Av2, in 
agreement with our previous result. If the particles-undergo perfect 
reflection, then v' = v, and P = 2Xv2. The actual force lies somewhere 
between these extremes. 

We can generalize the idea of momentum transport to three 
dimensions. Consider a stream of fluid which strikes an object 
and rebounds in  some arbitrary direction. For simplicity we 
assume that  the incident stream is uniform and that in time At 
it transports momentum APi. The direction of APr is parallel to 
the initial velocity vi and APi = Xivi2 At.  During the same interval 
At the re bounding stream carries away momentum AP,, where 
APf = hfvf2 At; the direction of AP, is parallel to the final velocity 
v,. The vectors are shown in  the sketch. 

The net momentum change of the fluid in At  is 

The rate of change of the fluid's momentum is 

By Newton's second law, (dP/dtIfIuid equals the force on the fluid 
due to the object. By Newton's third taw, the force on the object 

I ) due to the fluid is 

The sketches illustrate this result. 
Unless there is some opposing force, the object will begin to 

accelerate. If ef = P,, the stream transfers no momentum and 
F = 0. 
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The force on a moving airplane or boat can be found by con- 
sidering the effect of a multitude of streams hitting the surface, 
each with i ts own velocity. Although the mathematicai formalism 
for analyzing this would lead us too far afield, the physical principle 
is the same: momentum transport. 

Example 3.17 A Dike at the Bend of a River 

The problem is to build a dike a t  the bend of a river to prevent flooding 
when the river rises. Obviously the dike has to  be strong enough to 
withstand the static pressure of the river pgh, where p is the density of 
the water and h is the height from the base of the dike to the surface of 
the water. However, because of the bend there is an additional pres- 
sure, the dynamic pressure due to the rush of water. How does this 
compare with the static pressure? 

We approximate the bend by a circular curve with radius R, and focus 
our attention on a short length of the curve subtending angle A8. We 
need only concern ourselves with that  section of the river above the base 
of the dike, and we consider the volume of the river bounded by the bank 
a, the dike b, and two imaginary surfaces c and d. Momentum is trans- 
ferred into the volume through surface c and out through surface d a t  
rate P = hv2 = PADS. Here A is the cross sectional area o f  the river 
lying above the base of the dike, A = hw. (Note that  pA = h = mass - per unit length of the river.) 

However, surfaces c and d are not parallel. The rate of change of 
the stream's momentum is 

,? P = P d  - PC. 

As we can see from the vector drawing below, P is radially inward and has 
magnitude 

id IPI = Pas. 

The dynamic force on the dike is radially outward, and has the same 
magnitude, P At?. The force is exerted over the area ( R  A@h, and the 
dynamic pressure is therefore 

P ~8 
pressure = - 

R ABh 

+ 
pA v2 -- 

0 
I 

Rh 
i - pwv2 - _I. 

'Force on dike = - b A! 
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The ratio of dynamic to static pressure is 

dynamic pressure p w 2  1 w vT = - - = - -  
static pressure R ~ g h  h ~ g  

width centripetal acceleration 
= -  X 

depth 9 

For a river in flood with a speed of 10 mi/h (approximately 14 ft/s), a 
radius of 2,800 ft, a flood height of 3 ft, and a width of 200 ft, the ratio is 
0.22, so that the dynamic pressure is by no means negligible. The ratio 
is even larger near the surface of the river where the static pressure is 
small. 

Example 3.18 Pressure of a Gas 

As a further application of the idea of momentum transport, let us find 
the pressure exerted by a gas. Although our argument will be somewhat 
simpleminded, it exhibits the essential ideas and gives the same result as 

tum carried by each atom is mv,. I t  is unlikely that the atoms come to 
rest after the collision; this would correspond to the freezing of the gas 
3n the walls. On the  average, they must leave a t  the same rate as tt-tey 
arrive, which means that  the average change in momentum is 2m#,. 
Hence, the rate at which momentum changes due to collisions with area 
A is 

The force is 

more refined arguments. 
Assume that there are n atoms per unit volume o f  the gas, each having 

massmyandthat theymoverandomly Letusf indtheforceexer tadon 
an area A in the yz plane due to motion of the atoms in the z direction. 
We make the plausible assumption that it i s  permissible to neglect motion 
in the y and z direction, and treat only motion parallel to the x axis. 

6 

and the pressure P, on the x surface is 

Suppose that all atoms have the same speed, v,. The rate at which they 
Y hit the surface is QnAv,, where the factor of 3 is introduced because the 

atoms can move in either direction with equal probability. The momen- 

Z l h  

I PI 
1,J 



NOTE 3.1 CENTER OF MASS 145 

The assumption that v, has a fixed value is actually unnecessary. I f  
the atoms have many different instantaneous speeds, then it can be - - 
shown that  vS2 should be replaced by its average vZ2, and P, = nmoZ2. - - 
By an identical argument we have P ,  = mnug2 and P, = nmve2. How- 
ever, since the pressure of a gas should not depend on direction, we 

- - A  

have P, = P, = P,, which implies that trZ2 = vY2 = 0," The mean - - - -  - 
squared velocity is v 2  = vZ2 + vg2 + vg2, SO that v Z 2  = Qerz and the pres- 
sure is 

This is a famous result of the kinetic theory of gas, and it is a crucial 
point in the argument connecfing heat and kinetic energy. 

Note 3.1, Center of Mass 

In this Note we shall find the center of mass o f  some nansymmetrical 
objects. These examples are trivial i f  you have had experience eval- 
uating two or three dimensional integrals, Otherwise, read on. 

JJ I dm = o dx dy 
J 1. Find the center of mass of a thin rectangular plate with sides of length 

I/- a and b, whose mass per unit area a varies in the following fashion: 
(T = uo(xy/ab), where ro is a constant. 

b 1 R = - //(xi + yj)r dx dy 
Jf 

C I X 
W e  find Af, the mass of the plate, as follows: 

= / g b  /0. c0 5 11 dz dy.  
a b  

We first integrate over x, treating y as a constant. 

ilf = lob ([ cro I G?.) dzj 



MOMENTUM 

The x component of R is 

- - 1 2 j b F d y  
M a b  0 

Similarly, Y = Sb. 
2. Find the center of mass of a uniform solid hemisphere of radius R 
and mass M. 

dz From symmetry it is apparent tha t  the center of mass lies on the z 
axis, as illustrated. Its height above the equatorial plane is 

= - 
I 
I The integral is over three dimensions, but the symmetry o f  the situ- 

ation lets us treat it as a one dimensional integral. We mentally sub- 
divide the hemisphere into a pile of thin disks. Consider the circular 
disk of radius T and thickness dz. Its volume is dV = ~ r 2 d z ,  and its 
mass is dlM = p dV = ( M / V ) ( d V ) ,  where V = %R3.' Hence, 

- - - mBz dz. 

I 
To evaluate the integral we need to find r in terms of z. Since 

y2 = R2 - z2, we have 



PROBLEMS 

Problems 3.1 The density of a thin rod of Iength 1 varies with the distance x from 
one end a s p  = pox2/12. Find the position of the centerof mass. 

Ans. X = 31/4 

3.2 Find the center of mass of a thin uniform plate in the shape of an 
equilateral triangle with sides a. 

3.3 Suppose that a system consists of several bodies, and that the posi- 
tion of the center of mass of each body is known. Prove that the center 
of mass of the system can be found by treating each body as a particle 
concentrated a t  its center of mass. 

3.4 An instrument-carrying projectile accidentally explodes a t  the top of 
its trajectory. The horizontal distance between the launch point and the 
point of; explosion is I,. The projectile breaks into two pieces which fly 
apart horizontally. The larger piece has three times the mass of the 
smaller piece. To the surprise of the scientist in charge, the smaller 
piece returns to earth at the launching station. How far away does the 
larger piece land? Neglect air resistance and effects due to the earth's 
curvature. 

3.5 A circus acrobat of mass di' leaps straight up with initial velocity vo 
from a trampoline. As he rises up, he takes a trained monkey of mass 
a off a perch at a height h above the trampoline. 

What is the maximum height attained by the pair? 

3.6 A light plane weighing 2,500 Ib makes a n  emergency landing on a 
short runway. Wi th i ts engine off, it lands on the runway a t  120 f t / s .  
A hook on the plane snags a cable attached to a 250-lb sandbag and drags 
the  sandbag along. If the coefficient of friction between the sandbag 
and the runway is 0.4, and if the plane's brakes give an additional retard- 
ing force of 300 lb, how far does the plane go before it comes to a stop? 

3.7 A system is  composed of two blocks of mass ml and m2 connected 
by a massless spring with spring constant k. The  blocks slide on a fric- 
tionless plane. The unstretched length o f  the spring is 1. Initially m2 - is held so that the spring is compressed to 1/2 and r n ~  is forced against 

x a stop, as shown. ma is released at  t = 0. 
Find the motion of the center of mass of  the system as a function of 

time. 



3.8 A 50-kg woman jumps straight into the air, rising 0.8 m from the 
ground. What impulse does she receive from the ground to attain this 
height? 

3.9 A freight car of mass contains a mass of sand m. At t = 0 a 
constant horizontal force P is applied in the direction of rolling and at  
the same time a port in the bottom is opened to let the sand flow out a t  
constant rate dmjdt. Find the speed of the freight car when all the sand 

n is gone. Assume the freight car is a t  rest at 1 = 0. 

3.10 An empty freight car of mass M starts from rest under a n  applied 
force P. At  the same time, sand begins to run into the car at steady 
rate b from a hopper at rest along the track. 

Find the speed when a mass of sand, m, has been transferred. (Hint: 
There is a way to do this problem in one or two lines.) 
Ans. clue. I f  M = 500 kg, b = 20 kg/s, P = 100 N, then v = 1.4 m/s a t  

t = I O s  

3.11 Material is blown into cart A from cart B at a rate b kilograms per 
second. The material leaves the chute vertically downward, so that it 
has the same horizontal velocity as cart 3, u. A t  the moment of interest, 
cart A has mass M and velocity v, as shown. Find dv/dt, the instan- 

a taneous acceleration of A. 

3.12 A sand-spraying locomotive sprays sand horizontally into a freight 
car as shown in the sketch. The locomotive and freight car are not 
attached. The engineer in the locomotive maintains his speed so that 
the distance to the freight car i s  constant. The sand is transferred at 
a rate dm/& = 10 kg/s with a velocity of 5 m/s relative to the locomotive. 
The car starts from rest with an initial mass of 2,000 kg. Find its speed 

constant after 100 s. 

3.13 A ski tow consists of a long belt of rope around two pulleys, one a t  
the bottom of a slope and the other a t  the top. The pulleys are driven 
by a husky electric motor so that the  rope moves at a steady speed of 
1.5 m/s. The pulleys are separated by a distance of 100 m, and the angle 
of the slope is 20". 

Skiers take hold o f  the rope and are pulled up to the top, where they 
release the rope and glide off. I f  a skier of mass 70 kg takes the tow 
every 5 s on the average, what is the average force required to pull the 
rope? Neglect friction between the skis and the snow. 

3.14 N men, each with mass m, stand on a railway flatcar of mass Jf. 
They jump off one end of the flatcar with velocity u relative to the car. 
The car rolls in the opposite direction without friction. 

a. What is the final velocity of the flatcar i f  all the men jump at the 
same time? 

6.  What is the final velocity of the flatcar if they jump off one a t  a 
time? (The answer can be left in the form of a sum of terms.) 


