TABLE 1 VECTOR EQUATIONS FOR MOTION WITH CONSTANT ACCELERATION | Equation | | Contains | | | | | |----------|---|----------|----------------|----------|----------|---| | Number | Equation | r | v _o | v | a | t | | 11 | $\mathbf{v} = \mathbf{v}_0 + \mathbf{a}t$ | × | ✓ | ✓ | √ | ~ | | 12 | $\mathbf{r} = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2$ | ✓ | ✓ | \times | ✓ | ✓ | | 13^a | $\mathbf{v} \cdot \mathbf{v} = \mathbf{v}_0 \cdot \mathbf{v}_0 + 2\mathbf{a} \cdot (\mathbf{r} - \mathbf{r}_0)$ | ✓ | ✓ | ✓ | ✓ | × | | 14 | $\mathbf{r} = \mathbf{r}_0 + \frac{1}{2}(\mathbf{v}_0 + \mathbf{v})t$ | ✓ | ✓ | ✓ | \times | ✓ | | 15 | $\mathbf{r} = \mathbf{r}_0 + \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$ | ✓ | × | ✓ | ✓ | ✓ | ^a This equation involves the scalar or dot product of two vectors,