
1 PHYS230A Problem Set 1 Solutions

1.1 Problem 1

a) One obtains the equations of motion by varying the action w.r.t. Xa.

δS = −m
∫
dτδ(

√
−Gab∂τXa∂τXb) (1.1)

= −m
∫
dτ

1

2
√
−Gab∂τXa∂τXb

(
−δGab∂τX

a∂τX
b − 2Gab∂τX

a∂τδX
b
)

(1.2)

= −m
∫
dτ

1

2
√
−Gab∂τXa∂τXb

(
−∂cGabδX

c∂τX
a∂τX

b − 2Gab∂τX
a∂τδX

b
)

(1.3)

We make the following definition to simplify the equations,
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Plugging 1.5 back into 1.3 we obtain the condition for δS = 0 to be,
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Dividing by 2 and multiplying by Gcd we get,
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where we used the symmetry in a, b in 1.8. This is the form of the geodesic equation or better

the parallel transport equation of transporting the tangent vector of a line along itself. The

geodesic equation is defined for the specific parameterization where ∂g = 0 which is true for

any affinely parameterized curve, where an affine parameter is defined as any λ s.t. λ = aτ+b

where τ is the proper time.



b) The variation of the kinetic term is already done in part a. Let’s look at the gauge

field term.
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Combining this with the previous variation we obtain,
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Choosing to parameterize with proper time, we set
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Which is the expected equation of motion of a charged particle.

1.2 Problem 2

a) NG action is given by
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after taking ∂τX � 1 and ∂σX � 1. It is clear that the condition ∂τX � 1 is that of a

nonrelativistic velocity. As for the condition ∂σX � 1, one views the fields Xµ as fields

which have excitations as harmonic oscillators whose energy sloshes between kinetic and

potential terms. Thus one expects the potential term ∂σX∂σX to be of the same order as

∂τX∂τX and so we take ∂σX � 1.

c) The rest mass per unit length is the coefficient of the ‘1’ in the action.
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1.3 Problem 3

We need to regularize the sum,
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Dropping the divergent term because of symmetry considerations, we get
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1.4 Problem 4

We consider an open string connecting two Dp-branes y distance apart in the x25 direction.

The mode expansions are,
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where the mode expansion 1.28 is that for the Neumann-Neumann boundary conditions.

As for the Dirichlet-Dirichlet conditions the mode expansions take the form 1.29. Note the

i difference between the mode expansions to ensure reality.

Calculating the M2 for the NN case is already done in the notes/book which produces(for

the ground state),
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We compute the relative quantities required for the M2,
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Notice that 1.33 = 1.32 and that 1.31 = 1.34 provided that 2α′pi ↔ y
π

for the 25 direction.

Ignoring the y term for a moment, we see that the contribution from the DD modes will be,

M2
DD = −(# of DD directions)
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Now we focus on the y term. We know that in the NN case, as done in the notes, the term

2p+p− contributes the term (pi)2 which gets subtracted away in the full equation of M2 as

M2 = 2p+p− − (pi)2

In the case of the y there is nothing to subtract it off, and thus we add it as a contribution

to the M2 to get (after combining it with eqs 1.30 & 1.35),
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We note that there is no pµ to include in the definition of M2 since the strings are stuck in

those directions. If one calculates these momenta one finds

pµ ∼ e−iτ

which time averages to zero. Any instantaneous value of the momentum is just the

wiggling of the string back and forth normal to the brane.

Finally, he condition for M2 ≥ 0 is

y2 ≥ 4π2α′
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1.5 Problem 5

a) We want the mode expansion with the conditions

X(τ, 0) = ∂σX(τ, π) = 0

This is given by,
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b) We consider the set-up of Dp and Dp’ branes placed on top of each other, with p′ < p.

We are interested in the strings that connect the two branes. We have p′ − 1 coordinates

with NN boundary conditions, 25− p coordinates with DD conditions, and p− p′

coordinates with ND mixed boundary conditions. Their respective mode expansions are
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We see that from the equivalence of the forms of the DD and ND mode expansions that the

only difference in M2 calculations will be the sum
∑
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We find that the M2 is given by
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Thus the condition for M2 ≥ 0 translates into

p− p′ ≥ 16
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