1 PHYS230A Problem Set 1 Solutions

1.1 Problem 1

a) One obtains the equations of motion by varying the action w.r.t. X^{a}.

$$
\begin{align*}
\delta S & =-m \int d \tau \delta\left(\sqrt{-G_{a b} \partial_{\tau} X^{a} \partial_{\tau} X^{b}}\right) \tag{1.1}\\
& =-m \int d \tau \frac{1}{2 \sqrt{-G_{a b} \partial_{\tau} X^{a} \partial_{\tau} X^{b}}}\left(-\delta G_{a b} \partial_{\tau} X^{a} \partial_{\tau} X^{b}-2 G_{a b} \partial_{\tau} X^{a} \partial_{\tau} \delta X^{b}\right) \tag{1.2}\\
& =-m \int d \tau \frac{1}{2 \sqrt{-G_{a b} \partial_{\tau} X^{a} \partial_{\tau} X^{b}}}\left(-\partial_{c} G_{a b} \delta X^{c} \partial_{\tau} X^{a} \partial_{\tau} X^{b}-2 G_{a b} \partial_{\tau} X^{a} \partial_{\tau} \delta X^{b}\right) \tag{1.3}
\end{align*}
$$

We make the following definition to simplify the equations,

$$
\sqrt{-g} \equiv \sqrt{-G_{a b} \partial_{\tau} X^{a} \partial_{\tau} X^{b}}
$$

Integrating the second term in the δS we obtain

$$
\begin{align*}
\frac{-2 G_{a b} \partial_{\tau} X^{a} \partial_{\tau} \delta X^{b}}{\sqrt{-G_{a b} \partial_{\tau} X^{a} \partial_{\tau} X^{b}}} & \rightarrow \frac{2 \partial_{\tau}\left(G_{a b} \partial_{\tau} X^{a}\right) \delta X^{b}}{\sqrt{-G_{a b} \partial_{\tau} X^{a} \partial_{\tau} X^{b}}}+2 G_{a b} \partial_{\tau} X^{a} \delta X^{b} \partial_{\tau}\left(\frac{1}{\sqrt{-G_{a b} \partial_{\tau} X^{a} \partial_{\tau} X^{b}}}\right) \tag{1.4}\\
& \rightarrow \frac{1}{\sqrt{-g}}\left(2 G_{a b} \partial_{\tau}^{2} X^{a} \delta X^{b}+2 \partial_{c} G_{a b} \partial_{\tau} X^{c} \partial_{\tau} X^{a} \delta X^{b}-2 G_{a b} \partial_{\tau} X^{a} \delta X^{b} \frac{\partial_{\tau} g}{2 g}\right) \tag{1.5}
\end{align*}
$$

Plugging 1.5 back into 1.3 we obtain the condition for $\delta S=0$ to be,

$$
\begin{equation*}
-\partial_{c} G_{a b} \partial_{\tau} X^{a} \partial_{\tau} X^{b}+2 G_{a c} \partial_{\tau}^{2} X^{a}+2 \partial_{b} G_{a c} \partial_{\tau} X^{b} \partial_{\tau} X^{a}-2 G_{a c} \partial_{\tau} X^{a} \frac{\partial_{\tau} g}{2 g}=0 \tag{1.6}
\end{equation*}
$$

Dividing by 2 and multiplying by $G^{c d}$ we get,

$$
\begin{align*}
& \partial_{\tau}^{2} X^{d}+\frac{1}{2} G^{d c}\left(2 \partial_{b} G_{a c}-\partial_{c} G_{a b}\right) \partial_{\tau} X^{a} \partial_{\tau} X^{b}=\partial_{\tau} X^{d} \frac{\partial_{\tau} g}{2 g} \tag{1.7}\\
& \rightarrow \partial_{\tau}^{2} X^{d}+\frac{1}{2} G^{d c}\left(\partial_{b} G_{a c}+\partial_{a} G_{b c}-\partial_{c} G_{a b}\right) \partial_{\tau} X^{a} \partial_{\tau} X^{b}=\partial_{\tau} X^{d} \frac{\partial_{\tau} g}{2 g} \tag{1.8}\\
& \rightarrow \partial_{\tau}^{2} X^{d}+\Gamma_{a b}^{d} \partial_{\tau} X^{a} \partial_{\tau} X^{b}=\partial_{\tau} X^{d} \frac{\partial_{\tau} g}{2 g} \tag{1.9}
\end{align*}
$$

where we used the symmetry in a, b in 1.8. This is the form of the geodesic equation or better the parallel transport equation of transporting the tangent vector of a line along itself. The geodesic equation is defined for the specific parameterization where $\partial g=0$ which is true for any affinely parameterized curve, where an affine parameter is defined as any λ s.t. $\lambda=a \tau+b$ where τ is the proper time.
b) The variation of the kinetic term is already done in part a. Let's look at the gauge field term.

$$
\begin{align*}
\delta\left(A_{a} \partial_{\tau} X^{a}\right) & =\delta A_{a} \partial_{\tau} X^{a}+A_{a} \partial_{\tau} \delta X^{a} \tag{1.10}\\
& =\partial_{b} A_{a} \delta X^{b} \partial_{\tau} X^{a}-\partial_{\tau} A_{a} \delta X^{a} \tag{1.11}\\
& =\partial_{b} A_{a} \delta X^{b} \partial_{\tau} X^{a}-\partial_{b} A_{a} \partial_{\tau} X^{b} \delta X^{a} \tag{1.12}\\
& =\left(\partial_{a} A_{b}-\partial_{b} A_{a}\right) \partial_{\tau} X^{b} \delta X^{a} \tag{1.13}\\
& =F_{a b} \partial_{\tau} X^{b} \delta X^{a} \tag{1.14}
\end{align*}
$$

Combining this with the previous variation we obtain,

$$
\begin{equation*}
-m \frac{\partial_{\tau}^{2} X^{a}}{\sqrt{-\partial_{\tau} X^{a} \partial_{\tau} X_{a}}}+q F_{b}^{a} \partial_{\tau} X^{b}=0 \tag{1.15}
\end{equation*}
$$

Choosing to parameterize with proper time, we set $\sqrt{-\partial_{\tau} X^{a} \partial_{\tau} X_{a}}=1$. The equation of motion becomes,

$$
\begin{equation*}
m \partial_{\tau}^{2} X^{a}=q F^{a}{ }_{b} \partial_{\tau} X^{b} \tag{1.16}
\end{equation*}
$$

Which is the expected equation of motion of a charged particle.

1.2 Problem 2

a) NG action is given by

$$
\begin{equation*}
S=-\frac{1}{2 \pi \alpha^{\prime}} \int d \tau d \sigma \sqrt{-\operatorname{det}\left(\partial_{a} X^{\mu} \partial_{b} X_{\mu}\right)} \tag{1.17}
\end{equation*}
$$

Working in static gauge:

$$
\begin{align*}
& \partial_{\tau} X^{\mu} \partial_{\tau} X_{\tau}=-1+\partial_{\tau} X^{i} \partial_{\tau} X_{i}, \quad \partial_{\sigma} X^{\mu} \partial_{\sigma} X_{\tau}=1+\partial_{\sigma} X^{i} \partial_{\sigma} X_{i} \tag{1.18}\\
& \partial_{\tau} X^{\mu} \partial_{\sigma} X_{\mu}=\partial_{\tau} X^{i} \partial_{\sigma} X_{i} \tag{1.19}
\end{align*}
$$

In this gauge the action takes the form,

$$
\begin{equation*}
S=-\frac{1}{2 \pi \alpha^{\prime}} \int d \tau d \sigma \sqrt{1-\partial_{\tau} X^{i} \partial_{\tau} X_{i}+\partial_{\sigma} X^{i} \partial_{\sigma} X_{i}-\left(\partial_{\tau} X^{i} \partial_{\tau} X_{i}\right)\left(\partial_{\sigma} X^{j} \partial_{\sigma} X_{j}\right)+\left(\partial_{\sigma} X^{i} \partial_{\tau} X_{i}\right)^{2}} \tag{1.20}
\end{equation*}
$$

b) Expanding to second order we obtain,

$$
\begin{equation*}
S=-\frac{1}{2 \pi \alpha^{\prime}} \int d \tau d \sigma\left(1-\frac{1}{2} \partial_{\tau} X^{i} \partial_{\tau} X_{i}+\frac{1}{2} \partial_{\sigma} X^{i} \partial_{\sigma} X_{i}\right) \tag{1.21}
\end{equation*}
$$

after taking $\partial_{\tau} X \ll 1$ and $\partial_{\sigma} X \ll 1$. It is clear that the condition $\partial_{\tau} X \ll 1$ is that of a nonrelativistic velocity. As for the condition $\partial_{\sigma} X \ll 1$, one views the fields X^{μ} as fields which have excitations as harmonic oscillators whose energy sloshes between kinetic and potential terms. Thus one expects the potential term $\partial_{\sigma} X \partial_{\sigma} X$ to be of the same order as $\partial_{\tau} X \partial_{\tau} X$ and so we take $\partial_{\sigma} X \ll 1$.
c) The rest mass per unit length is the coefficient of the ' 1 ' in the action.

$$
m / l=\frac{1}{2 \pi \alpha^{\prime}}
$$

d) The mass per unit length from the kinetic term is the coefficient of $\frac{1}{2} \partial_{\tau} X^{i} \partial_{\tau} X_{i}$ and thus

$$
m_{k} / l=\frac{1}{2 \pi \alpha^{\prime}}
$$

1.3 Problem 3

We need to regularize the sum,

$$
\begin{align*}
\sum_{n=1}^{\infty}(n-\lambda) e^{-\epsilon(n-\lambda)} & =-\frac{d}{d \epsilon} e^{\epsilon \lambda} \sum_{n=1}^{\infty} e^{-\epsilon n} \tag{1.22}\\
& =-\frac{d}{d \epsilon} e^{\epsilon \lambda}\left(\frac{1}{e^{\epsilon}-1}\right) \tag{1.23}\\
& =-\frac{d}{d \epsilon} \frac{1}{\epsilon}\left(1+\epsilon \lambda+\frac{1}{2} \epsilon^{2} \lambda^{2}\right)\left(1-\epsilon / 2+\epsilon^{2} / 12\right) \tag{1.24}\\
& =-\frac{d}{d \epsilon} \frac{1}{\epsilon}\left(1-\epsilon / 2+\epsilon^{2} / 12+\epsilon \lambda-\epsilon^{2} \lambda / 2+\epsilon^{2} \lambda^{2} / 2+O\left(\epsilon^{3}\right)\right) \tag{1.25}\\
& =\frac{1}{\epsilon}-\frac{1}{12}+\frac{\lambda}{2}-\frac{\lambda^{2}}{2} \tag{1.26}
\end{align*}
$$

Dropping the divergent term because of symmetry considerations, we get

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n-\lambda)=-\frac{1}{12}+\frac{\lambda}{2}-\frac{\lambda^{2}}{2} \tag{1.27}
\end{equation*}
$$

1.4 Problem 4

We consider an open string connecting two Dp-branes y distance apart in the $x^{2} 5$ direction. The mode expansions are,

$$
\begin{align*}
& X^{i}=x^{i}+2 \alpha^{\prime} p^{i} \tau+i \sqrt{2 \alpha^{\prime}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{i} e^{-i n \tau} \cos (n \sigma) \tag{1.28}\\
& X^{\mu}=y \frac{\sigma}{\pi} \delta^{25, \mu}+\sqrt{2 \alpha^{\prime}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n \tau} \sin (n \sigma) \tag{1.29}
\end{align*}
$$

where the mode expansion 1.28 is that for the Neumann-Neumann boundary conditions. As for the Dirichlet-Dirichlet conditions the mode expansions take the form 1.29. Note the i difference between the mode expansions to ensure reality.

Calculating the M^{2} for the NN case is already done in the notes/book which produces(for the ground state),

$$
\begin{equation*}
M_{N N}^{2}=-\frac{(\# \text { of NN directions })}{24 \alpha^{\prime}}=-\frac{p-1}{24 \alpha^{\prime}} \tag{1.30}
\end{equation*}
$$

We compute the relative quantities required for the M^{2},

$$
\begin{align*}
& \partial_{\tau} X^{i}=2 \alpha^{\prime} p^{i}+\sqrt{2 \alpha^{\prime}} \sum_{n \neq 0} \alpha_{n}^{i} e^{-i n \tau} \cos (n \sigma) \tag{1.31}\\
& \partial_{\sigma} X^{i}=-i \sqrt{2 \alpha^{\prime}} \sum_{n \neq 0} \alpha_{n}^{i} e^{-i n \tau} \sin (n \sigma) \tag{1.32}\\
& \partial_{\tau} X^{\mu}=-i \sqrt{2 \alpha^{\prime}} \sum_{n \neq 0} \alpha_{n}^{\mu} e^{-i n \tau} \sin (n \sigma) \tag{1.33}\\
& \partial_{\sigma} X^{\mu}=y \frac{1}{\pi} \delta^{25, \mu}+\sqrt{2 \alpha^{\prime}} \sum_{n \neq 0} \alpha_{n}^{\mu} e^{-i n \tau} \cos (n \sigma) \tag{1.34}
\end{align*}
$$

Notice that $1.33=1.32$ and that $1.31=1.34$ provided that $2 \alpha^{\prime} p^{i} \leftrightarrow \frac{y}{\pi}$ for the 25 direction. Ignoring the y term for a moment, we see that the contribution from the DD modes will be,

$$
\begin{equation*}
M_{D D}^{2}=-\frac{(\# \text { of DD directions })}{24 \alpha^{\prime}}=-\frac{25-p}{24 \alpha^{\prime}} \tag{1.35}
\end{equation*}
$$

Now we focus on the y term. We know that in the NN case, as done in the notes, the term $2 p^{+} p^{-}$contributes the term $\left(p^{i}\right)^{2}$ which gets subtracted away in the full equation of M^{2} as

$$
M^{2}=2 p^{+} p^{-}-\left(p^{i}\right)^{2}
$$

In the case of the y there is nothing to subtract it off, and thus we add it as a contribution to the M^{2} to get (after combining it with eqs $1.30 \& 1.35$),

$$
\begin{equation*}
M^{2}=\frac{y^{2}}{4 \pi^{2}\left(\alpha^{\prime}\right)^{2}}-\frac{1}{\alpha^{\prime}} \tag{1.36}
\end{equation*}
$$

We note that there is no p^{μ} to include in the definition of M^{2} since the strings are stuck in those directions. If one calculates these momenta one finds

$$
p^{\mu} \sim e^{-i \tau}
$$

which time averages to zero. Any instantaneous value of the momentum is just the wiggling of the string back and forth normal to the brane.

Finally, he condition for $M^{2} \geq 0$ is

$$
y^{2} \geq 4 \pi^{2} \alpha^{\prime}
$$

1.5 Problem 5

a) We want the mode expansion with the conditions

$$
X(\tau, 0)=\partial_{\sigma} X(\tau, \pi)=0
$$

This is given by,

$$
\begin{equation*}
X^{i}=\sqrt{2 \alpha^{\prime}} \sum_{n \in Z / 2, \neq 0} \frac{1}{n} \alpha_{n}^{i} \sin (n \sigma) \tag{1.37}
\end{equation*}
$$

b) We consider the set-up of Dp and Dp' branes placed on top of each other, with $p^{\prime}<p$. We are interested in the strings that connect the two branes. We have $p^{\prime}-1$ coordinates with NN boundary conditions, $25-p$ coordinates with DD conditions, and $p-p^{\prime}$ coordinates with ND mixed boundary conditions. Their respective mode expansions are

$$
\begin{align*}
& X_{N N}^{i}=x^{i}+2 \alpha^{\prime} p^{i} \tau+i \sqrt{2 \alpha^{\prime}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{i} e^{-i n \tau} \cos (n \sigma) \tag{1.38}\\
& X_{D D}^{i}=\sqrt{2 \alpha^{\prime}} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{i} e^{-i n \tau} \sin (n \sigma) \tag{1.39}\\
& X_{N D}^{i}=\sqrt{2 \alpha^{\prime}} \sum_{n \in Z_{\text {odd }} / 2} \frac{1}{n} \alpha_{n}^{i} \sin (n \sigma) \tag{1.40}
\end{align*}
$$

We see that from the equivalence of the forms of the DD and ND mode expansions that the only difference in M^{2} calculations will be the sum $\sum n$ which will be over the positive half integers,

$$
\begin{equation*}
\sum_{n \in Z_{\text {odd }} / 2>0} n=\frac{1}{24} \tag{1.41}
\end{equation*}
$$

We find that the M^{2} is given by

$$
\begin{align*}
M^{2} & =-\frac{25-p}{24 \alpha^{\prime}}-\frac{p^{\prime}-1}{24 \alpha^{\prime}}+\frac{p-p^{\prime}}{48 \alpha^{\prime}} \tag{1.42}\\
& =\frac{-24+3 / 2\left(p-p^{\prime}\right)}{24 \alpha^{\prime}} \tag{1.43}
\end{align*}
$$

Thus the condition for $M^{2} \geq 0$ translates into

$$
p-p^{\prime} \geq 16
$$

