1 PHYS230A Problem Set 1 Solutions

1.1 Problem 1

a) One obtains the equations of motion by varying the action w.r.t. X
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We make the following definition to simplify the equations,
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Integrating the second term in the 4.5 we obtain
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Plugging 1.5 back into 1.3 we obtain the condition for S = 0 to be,
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Dividing by 2 and multiplying by G*¢ we get,
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where we used the symmetry in a, b in 1.8. This is the form of the geodesic equation or better
the parallel transport equation of transporting the tangent vector of a line along itself. The
geodesic equation is defined for the specific parameterization where dg = 0 which is true for
any affinely parameterized curve, where an affine parameter is defined as any A s.t. A = ar+b

where 7 is the proper time.



b) The variation of the kinetic term is already done in part a. Let’s look at the gauge
field term.
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Combining this with the previous variation we obtain,
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Choosing to parameterize with proper time, we set +/—0,.X?0.X, = 1. The equation of
motion becomes,
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Which is the expected equation of motion of a charged particle.

1.2 Problem 2

a) NG action is given by
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Working in static gauge:
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In this gauge the action takes the form,
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b) Expanding to second order we obtain,
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after taking 0, X <« 1 and 0,X < 1. It is clear that the condition 0,X < 1 is that of a
nonrelativistic velocity. As for the condition J,X < 1, one views the fields X* as fields
which have excitations as harmonic oscillators whose energy sloshes between kinetic and

potential terms. Thus one expects the potential term 0, X0d,X to be of the same order as
0. X0, X and so we take 0,X < 1.

c¢) The rest mass per unit length is the coefficient of the ‘1’ in the action.
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1.3 Problem 3

We need to regularize the sum,
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1.4 Problem 4

We consider an open string connecting two Dp-branes y distance apart in the 225 direction.

The mode expansions are,
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where the mode expansion 1.28 is that for the Neumann-Neumann boundary conditions.
As for the Dirichlet-Dirichlet conditions the mode expansions take the form 1.29. Note the

1 difference between the mode expansions to ensure reality.

Calculating the M? for the NN case is already done in the notes/book which produces(for

the ground state),
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We compute the relative quantities required for the M2,
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Notice that 1.33 = 1.32 and that 1.31 = 1.34 provided that 2a/p’ <+ £ for the 25 direction.

Ignoring the y term for a moment, we see that the contribution from the DD modes will be,
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Now we focus on the y term. We know that in the NN case, as done in the notes, the term

2 _

(1.35)

2pTp~ contributes the term (p’)? which gets subtracted away in the full equation of M? as
M? =2p*p™ — (p')?

In the case of the y there is nothing to subtract it off, and thus we add it as a contribution

to the M? to get (after combining it with eqs 1.30 & 1.35),
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We note that there is no p* to include in the definition of M? since the strings are stuck in

those directions. If one calculates these momenta one finds
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which time averages to zero. Any instantaneous value of the momentum is just the

wiggling of the string back and forth normal to the brane.

Finally, he condition for M? > 0 is
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1.5 Problem 5

a) We want the mode expansion with the conditions
X(1,0) =0,X(r,m) =0

This is given by,
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b) We consider the set-up of Dp and Dp’ branes placed on top of each other, with p’ < p.
We are interested in the strings that connect the two branes. We have p’ — 1 coordinates
with NN boundary conditions, 25 — p coordinates with DD conditions, and p — p/

coordinates with ND mixed boundary conditions. Their respective mode expansions are
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We see that from the equivalence of the forms of the DD and ND mode expansions that the

only difference in M? calculations will be the sum > n which will be over the positive half
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We find that the M? is given by
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Thus the condition for M? > 0 translates into
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