1 PHYS230A Problem Set 2 Solutions

1.1 Problem 1

a.) We consider the Polyakov action with the extra cosmological constant term,

$$
\begin{equation*}
S=-\frac{1}{4 \pi \alpha^{\prime}} \int d \tau d \sigma \sqrt{-\gamma} \gamma^{a b} \partial_{a} X^{\mu} \partial_{b} X_{\mu}-\mu \int d \tau d \sigma \sqrt{-\gamma} \tag{1.1}
\end{equation*}
$$

We consider the variation with respect to $\gamma^{a b}$. We define $h_{a b}=\partial_{a} X^{\mu} \partial_{b} X_{\mu}$ to simplify the equations. Using the relation $\delta \sqrt{-\gamma}=-\frac{1}{2} \sqrt{-\gamma} \gamma_{a b} \delta \gamma^{a b}$, we obtain the equations of motion,

$$
\begin{equation*}
-\frac{1}{4 \pi \alpha^{\prime}}\left(h_{a b}-\frac{1}{2}\left(\gamma^{c d} h_{a b}\right) \gamma_{a b}\right)+\frac{\mu}{2} \gamma_{a b}=0 \tag{1.2}
\end{equation*}
$$

Contracting with $\gamma^{a b}$ we obtain,

$$
\begin{array}{r}
-\frac{1}{4 \pi \alpha^{\prime}}\left(\gamma^{a b} h_{a b}-\frac{1}{2}\left(\gamma^{c d} h_{c d}\right) \gamma^{2}\right)+\frac{\mu}{2} \gamma^{2}=0 \\
\rightarrow(\gamma h)\left(1-\frac{1}{2} \gamma^{2}\right)=2 \pi \alpha^{\prime} \mu \gamma^{2} \tag{1.4}
\end{array}
$$

where $\gamma h=\gamma^{a b} h_{a b}, \gamma^{2}=\gamma^{a b} \gamma_{a b}$. We notice from 1.4 that if we take $\gamma^{2}=2$ which must be the case (for an invertible matrix) we find that $\mu=0$, which is not the desired solution. Thus we must take $\gamma_{a b}=0$ which by equation 1.2 implies that $h_{a b}=0$. This is the undesired trivial solution.
b.) Let's consider this action for a higher dimensional object. Equation 1.4 gives,

$$
\begin{align*}
& (\gamma h)\left(1-\frac{1}{2} d\right)=2 \pi \alpha^{\prime} \mu d \tag{1.5}\\
& \rightarrow(\gamma h)=-4 \pi \alpha^{\prime} \mu \frac{d}{d-2} \tag{1.6}
\end{align*}
$$

Plugging this into 1.2 we obtain,

$$
\begin{gather*}
h_{a b}=\left(-\frac{4 \pi \alpha^{\prime} \mu}{d-2}\right) \gamma_{a b} \tag{1.7}\\
\sqrt{-h}=\left(-\frac{4 \pi \alpha^{\prime} \mu}{d-2}\right)^{d / 2} \sqrt{-\gamma} \tag{1.8}
\end{gather*}
$$

Putting everything back into the action we find,

$$
\begin{align*}
S & =-\frac{1}{4 \pi \alpha^{\prime}}\left(-4 \pi \alpha^{\prime} \mu \frac{d}{d-2}\right)\left(-\frac{4 \pi \alpha^{\prime} \mu}{d-2}\right)^{-d / 2} \int \sqrt{-h}-\mu\left(-\frac{4 \pi \alpha^{\prime} \mu}{d-2}\right)^{-d / 2} \int \sqrt{-h} \tag{1.9}\\
& =-\mu\left(-\frac{4 \pi \alpha^{\prime} \mu}{d-2}\right)^{-d / 2}\left(-\frac{d}{d-2}+1\right) \int \sqrt{-h} \tag{1.10}\\
& =-\mu\left(-\frac{4 \pi \alpha^{\prime} \mu}{d-2}\right)^{-d / 2}\left(\frac{-2}{d-2}\right) \int \sqrt{-h} \tag{1.11}
\end{align*}
$$

We find that $S \propto \int \sqrt{-h}$, the world volume.

1.2 Problem 2

We need to show that,

$$
\begin{equation*}
\left[L_{m}^{\prime}, L_{n}^{\prime}\right]=(m-n) L_{m+n}^{\prime}+\frac{C}{12}\left(m^{3}-m\right) \delta_{m+n, 0} \tag{1.12}
\end{equation*}
$$

Where C is the central charge and

$$
L_{m}^{\prime}=L_{m}+(m+1) \nu_{\mu} \alpha_{m}^{\mu}
$$

where L_{m} are the usual Virasoro generators with central charge D, the spacetime dimension, as seen in class. Without any evaluation we have,

$$
\begin{equation*}
\left[L_{m}^{\prime}, L_{n}^{\prime}\right]=\left[L_{m}, L_{n}\right]+(n+1) \nu_{\mu}\left[L_{m}, \alpha_{n}^{\mu}\right]+(m+1) \nu_{\mu}\left[\alpha_{m}^{\mu}, L_{n}\right]+(m+1)(n+1) \nu_{\mu} \nu_{\sigma}\left[\alpha_{m}^{\mu}, \alpha_{n}^{\sigma}\right] \tag{1.13}
\end{equation*}
$$

Computing this term by term we have:

$$
\begin{align*}
{\left[L_{m}, L_{n}\right] } & =(m-n) L_{m+n}+\frac{D}{12}\left(m^{3}-m\right) \delta_{m+n, 0} \tag{1.14}\\
{\left[\alpha_{m}^{\mu}, \alpha_{n}^{\sigma}\right] } & =m \eta^{\mu \nu} \delta_{m+n, 0} \tag{1.15}\\
{\left[L_{m}, \alpha_{n}^{\mu}\right] } & =\frac{1}{2} \sum_{p=-\infty}^{\infty}\left[\alpha_{n-p}^{\nu} \alpha_{\nu p}, \alpha_{m}^{\mu}\right] \tag{1.16}\\
& =\frac{1}{2} \sum_{p=-\infty}^{\infty}\left(\left[\alpha_{n-p}^{\nu}, \alpha_{m}^{\mu}\right] \alpha_{\nu p}+\alpha_{n-p}^{\nu}\left[\alpha_{\nu p}, \alpha_{m}^{\mu}\right]\right) \tag{1.17}\\
& =\frac{1}{2} \sum_{p=-\infty}^{\infty}\left(-m \eta^{\mu \nu} \delta_{m+n-p, 0} \alpha_{\nu p}-m \alpha_{n-p}^{\nu} \delta_{\nu}^{\mu} \delta_{p+m, 0}\right) \tag{1.18}\\
& =-\frac{1}{2}\left(m \alpha_{m+n}^{\mu}+m \alpha_{m+n}^{\mu}\right) \tag{1.19}\\
& =-m \alpha_{m+n}^{\mu} \tag{1.20}
\end{align*}
$$

Putting everything together we get,

$$
\begin{align*}
{\left[L_{m}^{\prime}, L_{n}^{\prime}\right]=} & (m-n) L_{m+n}+\frac{D}{12}\left(m^{3}-\right. \tag{1.21}\\
& m) \delta_{m+n, 0}+m(m+1)(n+1) \nu^{2} \delta_{m+n, 0} \tag{1.22}\\
& +(m(m+1)-n(n+1)) \nu_{\mu} \alpha_{m+n}^{\mu} \tag{1.23}\\
= & (m-n) L_{m+n}+\frac{D}{12}\left(m^{3}-m\right) \delta_{m+n, 0}-\left(m^{3}-m\right) \nu^{2} \delta_{m+n, 0} \tag{1.24}\\
& \quad+(m-n)(m+n+1) \nu_{\mu} \alpha_{m+n}^{\mu}
\end{aligned} \quad \begin{aligned}
= & (m-n) L_{m+m}^{\prime}+\frac{D-12 \nu^{2}}{12}\left(m^{3}-m\right) \delta_{m+n, 0} \tag{1.25}
\end{align*}
$$

We find that the L_{m}^{\prime} do indeed satisfy the Virasoro algebra with central charge $D-12 \nu^{2}$.

1.3 Problem 3

We need to show that the following operators satisfy the Virasoro Algebra, and find the central charge:

$$
\begin{align*}
L_{m} & =\sum_{n=-\infty}^{\infty}(2 m-n) b_{n} c_{m-n}, \quad m \neq 0 \tag{1.26}\\
L_{0} & =-1+\sum_{n=1}^{\infty} n\left(b_{-n} c_{n}+c_{-n} b_{n}\right) \tag{1.27}
\end{align*}
$$

where b_{n} and c_{n} satisfy,

$$
\begin{equation*}
\left\{b_{m}, c_{n}\right\}=\delta_{m+n, 0}, \quad\left\{b_{m}, b_{n}\right\}=\left\{c_{m}, c_{n}\right\}=0 \tag{1.28}
\end{equation*}
$$

First we consider $\left[L_{m}, L_{n}\right]$ for $m, n \neq 0$,

$$
\begin{align*}
{\left[L_{m}, L_{n}\right] } & =\sum_{q, p}(2 m-q)(2 n-p)\left[b_{q} c_{m-q}, b_{p} c_{n-p}\right] \tag{1.29}\\
& =\sum_{q, p}(2 m-q)(2 n-p)\left(b_{q} c_{m-q} b_{p} c_{n-p}-b_{p} c_{n-p} b_{q} c_{m-q}\right) \tag{1.30}\\
& =\sum_{q, p}(2 m-q)(2 n-p)\left(b_{q} c_{n-p} \delta_{p+m-q, 0}-b_{q} b_{p} c_{m-q} c_{n-p}-b_{p} c_{n-p} b_{q} c_{m-q}\right) \tag{1.31}\\
& =\sum_{q, p}(2 m-q)(2 n-p)\left(b_{q} c_{n-p} \delta_{p+m-q, 0}-b_{p} b_{q} c_{n-p} c_{m-q}-b_{p} c_{n-p} b_{q} c_{m-q}\right) \tag{1.32}\\
& =\sum_{q, p}(2 m-q)(2 n-p)\left(b_{q} c_{n-p} \delta_{p+m-q, 0}-b_{p} c_{m-q} \delta_{q+n-p, 0}+b_{p} c_{n-p} b_{q} c_{m-q}-b_{p} c_{n-p} b_{q} c_{m-q}\right) \tag{1.33}\\
& =\sum_{q, p}(2 m-q)(2 n-p)\left(b_{q} c_{n-p} \delta_{p+m-q, 0}-b_{p} c_{m-q} \delta_{q+n-p, 0}\right) \tag{1.34}\\
& =\sum_{p}(2 m-p-m)(2 n-p)\left(b_{p+m} c_{n-p}\right)+(2 m-p+n)(2 n-p)\left(-b_{p} c_{m+n-p}\right) \tag{1.35}\\
& =\sum_{p}(2 m-p)(2 n+m-p)\left(b_{p} c_{n-p+m}\right)+(2 m-p+n)(2 n-p)\left(-b_{p} c_{m+n-p}\right) \tag{1.36}\\
& =\sum_{p}((2 m-p)(2 n+m-p)-(2 m-p+n)(2 n-p)) b_{p} c_{n-p+m} \tag{1.37}\\
& =(m-n) \sum_{p}(m+n-p) b_{p} c_{n-p+m} \tag{1.38}\\
& =(m-n) L_{m+n} \tag{1.39}
\end{align*}
$$

As required. Next we compute $\left[L_{m}, L_{0}\right]$,

$$
\begin{equation*}
\left[L_{m}, L_{0}\right]=\sum_{n=-\infty, q=1}^{\infty}(2 m-n) q\left(\left[b_{n} c_{m-n}, b_{-q} c_{q}\right]+\left[b_{n} c_{m-n}, c_{-q} b_{q}\right]\right) \tag{1.40}
\end{equation*}
$$

Using the steps from the previous calculation we obtain,

$$
\begin{align*}
{\left[L_{m}, L_{0}\right] } & =\sum_{n=-\infty, q=1}^{\infty}(2 m-n) q\left(\left[b_{n} c_{m-n}, b_{-q} c_{q}\right]+\left[b_{n} c_{m-n}, c_{-q} b_{q}\right]\right) \tag{1.41}\\
& =\sum_{n, q}(2 m-n) q\left(b_{n} c_{q} \delta_{m-n-q, 0}-b_{-q} c_{m-n} \delta_{n+q, 0}-b_{n} c_{-q} \delta_{m-n+q, 0}+b_{q} c_{m-n} \delta_{n-q, 0}\right) \tag{1.42}\\
& =\sum_{n, q=-\infty}^{\infty}(2 m-n) q\left(b_{n} c_{q} \delta_{m-n-q, 0}-b_{-q} c_{m-n} \delta_{n+q, 0}\right) \tag{1.43}\\
& =\sum_{n=-\infty}^{\infty}(2 m-n)\left((m-n) b_{n} c_{m-n}+n b_{n} c_{m-n}\right) \tag{1.44}\\
& =\sum_{n=-\infty}^{\infty}(2 m-n)\left((m) b_{n} c_{m-n}\right) \tag{1.45}\\
& =m \sum_{n=-\infty}^{\infty}(2 m-n)\left(b_{n} c_{m-n}\right) \tag{1.46}\\
& =m L_{m} \tag{1.47}
\end{align*}
$$

As required. So far we have found that

$$
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+(\propto \text { Central Charge })
$$

and we need to find the central charge. We do this by acting the operator $\left[L_{m}, L_{-m}\right]$, for $m>0$, on the state $|0,0\rangle$. We pick the particular state that,

$$
b_{0}|0,0\rangle=b_{q}|0,0\rangle=c_{q}|0,0\rangle=0, \quad q>0
$$

Firstly consider $L_{m}|0,0\rangle$,

$$
\begin{align*}
L_{m}|0,0\rangle & =\sum_{q=-\infty}^{\infty}(2 m-q) b_{q} c_{m-q}|0,0\rangle \tag{1.48}\\
& =-\sum_{q=-\infty}^{\infty}(2 m-q) c_{m-q} b_{q}|0,0\rangle \tag{1.49}
\end{align*}
$$

We require $m-q \leq 0$, from the first relation, and $q<0$ from the second to obtain a non vanishing answer. Since there is no q that satisfies this, we can deduce that,

$$
\begin{equation*}
L_{m}|0,0\rangle=0 \tag{1.50}
\end{equation*}
$$

Next, we look at $L_{-m}|0,0\rangle$,

$$
\begin{align*}
L_{-m}|0,0\rangle & =\sum_{q=-\infty}^{\infty}(-2 m-q) b_{q} c_{-m-q}|0,0\rangle \tag{1.51}\\
& =-\sum_{q=-\infty}^{\infty}(2 m-q) c_{-m-q} b_{q}|0,0\rangle \tag{1.52}
\end{align*}
$$

The conditions in q now are: $q<0$ and $q \geq-m$. So,

$$
\begin{equation*}
L_{-m}|0,0\rangle=\sum_{q=-m}^{-1}(-2 m-q) b_{q} c_{-m-q}|0,0\rangle \tag{1.53}
\end{equation*}
$$

Now lets go back and compute $\left[L_{m}, L_{-m}\right]|0,0\rangle$,

$$
\begin{align*}
{\left[L_{m}, L_{-m}\right]|0,0\rangle } & =L_{m} L_{-m}|0,0\rangle \tag{1.54}\\
& =\sum_{p=-\infty}^{\infty} \sum_{q=-m}^{-1}(2 m-p)(-2 m-q) b_{p} c_{m-p} b_{q} c_{-m-q}|0,0\rangle \tag{1.55}
\end{align*}
$$

We notice here that if $m \neq q-p$ we can commute $b_{p} c_{m-p}$ through to act directly on the state, which we showed in 1.49 that this would vanish. We thus set $m=p-q$ and obtain,

$$
\begin{align*}
{\left[L_{m}, L_{-m}\right]|0,0\rangle } & =\sum_{q=-m}^{-1}(m-q)(-2 m-q) b_{q+m} c_{-q} b_{q} c_{-m-q}|0,0\rangle \tag{1.56}\\
& =\sum_{q=-m}^{-1}(m-q)(-2 m-q)\left(b_{q+m} c_{-(m+q)}+b_{q+m} b_{q} c_{-m-q} c_{-q}\right)|0,0\rangle \tag{1.57}\\
& =\sum_{q=-m}^{-1}(m-q)(-2 m-q)\left(1-c_{-(m+q)} b_{q+m}+b_{q+m} b_{q} c_{-m-q} c_{-q}\right)|0,0\rangle \tag{1.58}
\end{align*}
$$

The last two terms annihilate the state by the rules mentioned above. The remaining result is,

$$
\begin{align*}
{\left[L_{m}, L_{-m}\right]|0,0\rangle } & =\sum_{q=-m}^{-1}(m-q)(-2 m-q)|0,0\rangle \tag{1.59}\\
& =\sum_{q=-m}^{-1}\left(-2 m^{2}+q m+q^{2}\right)|0,0\rangle \tag{1.60}\\
& =-\frac{1}{6} m\left(-1+13 m^{2}\right)|0,0\rangle \tag{1.61}
\end{align*}
$$

We compare this to the action of

$$
\left[L_{m}, L_{-} m\right]=(2 m) L_{0}+k
$$

on the same state (also for $m>0$). From the form of L_{0} we deduce that $L_{0}|0,0\rangle=-1|0,0\rangle$. We thus obtain,

$$
\begin{align*}
{\left[L_{m}, L_{-} m\right]|0,0\rangle } & =(2 m) L_{0}|0,0\rangle+k|0,0\rangle \tag{1.62}\\
& =(-2 m+k)|0,0\rangle \tag{1.63}
\end{align*}
$$

Equation the expressions in equations 1.61 and 1.63 we find that

$$
k=\frac{-26}{12}\left(m^{3}-m\right)
$$

and thus

$$
\begin{equation*}
\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{-26}{12}\left(m^{3}-m\right) \tag{1.64}
\end{equation*}
$$

We find that the $L^{\prime} s$ satisfy a Virasoro algebra with central charge -26 .

