
1 PHYS230A Problem Set 3 Solutions

1.1 Problem 1

We need to evaluate the OPE

Tzz(z) : eµν∂zX
µ∂z̄X

νeikX(0,0) : (1.1)

where

Tzz(z) = − 1

α′
: ∂zX

α∂zXα : (1.2)

and find the weight of the operator and the conditions of the eµν for it to be a tensor.

We use the following evaluated forms for the contractions between the different operators

appearing in the problem:

(Xα(z), Xµ(z′)) = −α
′

2
ln|z − z′|2ηαµ (1.3)

which results in,

(∂zX
α(z), ∂zX

µ(0)) = −α
′

2

1

z2
ηαµ (1.4)

(∂zX
α(z), ∂z̄X

µ(0)) = 0 (1.5)

(∂zX
α(z), eikX(0,0)) = −α

′

2

1

z
ikα : ...eikX(0,0) : (1.6)

(1.6) comes from reducing one power of X from each term in the expansion of the exponential.

The corresponding power of each term fixes the coefficient the term in the expansion which

reproduces to the exponential.

Using these contractions in (1.1) we obtain,

−eµν
α′

[: ∂zX
α(z)∂zXα(z)∂zX

µ(0)∂z̄X
ν(0)eikX(0,0) : +2(−α

′

2

1

z2
ηαµ) : ∂zXα(z)∂z̄X

ν(0)eikX(0,0) :

+2(−α
′

2

1

z
ikα) : ∂zXα(z)∂zX

µ(0)∂z̄X
ν(0)eikX(0,0) : +(−α

′

2

1

z
ikα)(−α

′

2

1

z
ikα) : ∂zX

µ(0)∂z̄X
ν(0)eikX(0,0) :

+2(−α
′

2

1

z2
ηαµ)(−α

′

2

1

z
ikα) : ∂z̄X

ν(0)eikX(0,0) :]

(1.7)

Simplifying and keeping only the singular terms we obtain,

−eµν
α′

[−α
′

z2
: ∂zX

µ(z)∂z̄X
ν(0)eikX(0,0) : −α

′

z
ikα : ∂zXα(z)∂zX

µ(0)∂z̄X
ν(0)eikX(0,0) :

−α
′2

4

1

z2
k2 : ∂zX

µ(0)∂z̄X
ν(0)eikX(0,0) : +

α′2

2

1

z3
ikµ : ∂z̄X

ν(0)eikX(0,0) :]



Next we expand about z = 0 as,

∂zX(z) = ∂zX(0) + z∂2
zX(0) + ... (1.8)

and obtain,

−eµν
α′

[−α
′

z2
: ∂zX

µ(0)∂z̄X
ν(0)eikX(0,0) : −α

′

z
: ∂2

zX
µ(0)∂z̄X

ν(0)eikX(0,0) :

−α
′

z
ikα : ∂zXα(0)∂zX

µ(0)∂z̄X
ν(0)eikX(0,0) : −α

′2

4

1

z2
k2 : ∂zX

µ(0)∂z̄X
ν(0)eikX(0,0) :

+
α′2

2

1

z3
ikµ : ∂z̄X

ν(0)eikX(0,0) :]

Which can be rearranged as,

(1 + α′k2

4
)

z2
eµν : ∂zX

µ(0)∂z̄X
ν(0)eikX(0,0) : +

1

z
∂z(eµν : ∂zX

µ(0)∂z̄X
ν(0)eikX(0,0) :)

−α
′

2

i

z3
eµνk

µ : ∂z̄X
ν(0)eikX(0,0) : (1.9)

which has the form,
h

z2
O +

1

z
∂zO + eµνk

µ(something) (1.10)

Thus we find that the weight and the tensor condition are

h = (1 +
α′k2

4
), eµνk

µ = 0

To find the other weight, h̃, of this this operator, and further conditions on eµν , we must

compute the OPE of this operator with Tz̄z̄ = − 1
α′ : ∂z̄X

α∂z̄Xα :. Due to the symmetry in

the problem, we can see that the weights are equal, h = h̃, and that the condition on eµν

becomes eµνk
ν = 0. The reason for the shift in the index from µ → ν is because if one was

to rearrange the order the of the operators to have ∂z̄ first, the problem would be identical

with z → z̄ with the µ and ν switched places.

1.2 Problem 2

We have to work out the covariant quantization on the state,

|f, e, k〉 = (fµνα
µ
−1α

ν
−1 + eµα

µ
−2)|0, k〉 (1.11)

This state has D(D + 1)/2 +D states, not all of which are physical.

Consider first the norm of the state,

〈f, e, k′|f, e, k〉 = 〈0, k′|
(
f ∗abfµνα

a
1α

b
1α

µ
−1α

ν
−1 + e∗aeµα

a
2α

µ
−2

)
|0, k〉 (1.12)
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Commuting the lowering operators to the right gives a factor of two on both terms. This is

obvious on the second term. As for the first one, we would commute twice which will result

in two identical terms that sum up to two. Thus,

〈f, e, k′|f, e, k〉 = 2(f ∗µνf
µν + e∗µe

µ)〈0, k′|0, k〉 (1.13)

The Virasoro generators we need are (up to relevant terms),

L0 = α′p2 + α−1 · α1 + α−2 · α2 + ... (1.14)

L1 =
√

2α′p · α1 + α−1 · α2 + ... (1.15)

L2 =
√

2α′p · α2 +
1

2
α1 · α1 + ... (1.16)

L−1 =
√

2α′p · α−1 + α−2 · α1 + ... (1.17)

L−2 =
√

2α′p · α−2 +
1

2
α−1 · α−1 + ... (1.18)

We begin with the mass shell condition,

0 = (L0 − 1)|f, e, k〉 (1.19)

We first evaluate,

L0|f, e, k〉 = (α′p2 + α−1 · α1 + α−2 · α2)(fµνα
µ
−1α

ν
−1 + eµα

µ
−2)|0, k〉 (1.20)

= α′k2|f, e, k〉+ α−1 · α1fµνα
µ
−1α

ν
−1 + α−2 · α2eµα

µ
−2|0, k〉 (1.21)

The other terms do not contribute. Commuting α1 twice gives a factor of 2, and so does

commuting α2. The result is,

L0|f, e, k〉 = α′k2|f, e, k〉+ 2fµνα
µ
−1α

ν
−1 + 2eµα

µ
−2|0, k〉 (1.22)

= (α′k2 + 2)|f, e, k〉 (1.23)

and thus,

0 = (L0 − 1)|f, e, k〉 = (α′k2 + 1)|f, e, k〉 =⇒ m2 = −k2 =
1

α′
(1.24)

Next we look for states that satisfy the other physical condition Ln>0|f, e, k〉 = 1. First,

since our particle is massive, (m2 > 0), we go to its rest frame given by k0 = 1√
α′ , ki = 0. At

the first level, the condition is,

0 = L1|f, e, k〉 = (
√

2α′p · α1 + α−1 · α2)(fµνα
µ
−1α

ν
−1 + eµα

µ
−2)|0, k〉 (1.25)

= (2
√

2α′fµνk
µαν−1 + 2eµα

µ
−1) (1.26)
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thus,

0 = (
√

2α′fµνk
µ + eν) = (−

√
2α′f0ν

1√
α′

+ eν) =⇒ eν =
√

2f0ν (1.27)

Which gets rid of D degrees of freedom. Next we look at,

0 = L2|f, e, k〉 = (
√

2α′p · α2 +
1

2
α1 · α1)(fµνα

µ
−1α

ν
−1 + eµα

µ
−2)|0, k〉 (1.28)

= (2
√

2α′eµk
µ + fµµ )|0, k〉 (1.29)

This gives

fµµ = −2
√

2α′eµk
µ =⇒ −f00 + fii = 2

√
2e0 (1.30)

From the previous constraint we find that

fii = 5f00

This removes one more degree of freedom.

Now we consider the spurious states given by,

|g, w, k〉 = (L−1gµα
µ
−1 + L−2w)|0, k〉 (1.31)

= (gµ
√

2α′p · α−1α
µ
−1 + gµα

µ
−2 + w

√
2α′p · α−2 +

1

2
wα−1 · α−1)|0, k〉 (1.32)

=
(

(
√

2α′k(µgν) +
w

2
ηµν)α

µ
−1α

ν
−1 + (w

√
α′kµ + gµ)αµ−2

)
|0, k〉 (1.33)

In terms of our physical state, this is,

fµν =
√

2α′k(µgν) +
w

2
ηµν (1.34)

eµ = w
√

2α′kµ + gµ (1.35)

Plugging these into the physical state conditions we get the constraints,

w

2
(D − 8) = 3

√
2g0 (1.36)

3

2
w
√

2 = g0 (1.37)

with no constraints on gi. This removes D − 1 null states. We can remove another state

which corresponds to g0 = w = 0 in arbitrary D. Choosing D = 26 satisfies the constraints

and makes g0 and w independent. Thus in 26 dimensions there are a total of D + 1 null

states to remove. Doing the math we find that the number of physical states that we obtain

are:

D(D + 1)/2 +D −D − 1− (D + 1) = D(D − 1)/2− 1
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As required. This Verifies one of the claims on p30 of the notes. We need to show that

there is a negative norm state for D > 26 and that the issue D < 26 is that we have more

states than expected. This last claim we already showed by showing that we need D = 26

to remove one more extra state.

Negative norm state in D > 26: Consider that trace state corresponding to fij = fδij,

f00 = 1
5
f(D − 1), and e0 =

√
2(D−1)

5
f . Plugging this into the norm (1.13),

〈f, e, k′|f, e, k〉 = 2(f ∗µνf
µν + e∗µe

µ)〈0, k′|0, k〉 (1.38)

= 2(f 2δii − e2
0 + f002)〈0, k′|0, k〉 (1.39)

= 2f 2((D − 1) + (D − 1)2/25− 2(D − 1)2/25)〈0, k′|0, k〉 (1.40)

= 2f 2 (D − 1)(26−D)

25
(1.41)

Which indeed has negative norm for D > 26.

1.3 Problem 3

The Virasoro-Shapiro amplitude is given by,

V S = 2π
Γ(−1− α′s

4
)Γ(−1− α′t

4
)Γ(−1− α′u

4
)

Γ(2 + α′s
4

)Γ(2 + α′t
4

)Γ(2 + α′u
4

)
(1.42)

At s = M2 = 4
α′ (N − 1), t and u satisfy

−α
′t

4
− α′t

4
=

12 + 4N

4

Under this the Gamma functions take the form,

Γ(−1− α′s

4
) = Γ(−N) (1.43)

Γ(2 +
α′s

4
) = Γ(N + 1) = N ! (1.44)

Γ(−1− α′t

4
) = Γ(

α′u

4
+ 2 +N) (1.45)

Γ(−1− α′u

4
) = Γ(

α′t

4
+ 2 +N) (1.46)

Since we need to take the pole of Γ(−1 − α′s
4

) at s = M2 = 4
α′ (N − 1), we look for it’s

behavior close to the pole. We find,

Γ(−1− α′(s− ε)
4

) =
(−1)N+1

Γ(N + 1)

4

α′
1

ε
(1.47)
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Thus the pole is
(−1)N

Γ(N + 1)

4

α′

The amplitude then takes the form,

V S = 2π

(
(−1)N

Γ(N + 1)

4

α′

)(
Γ(α

′u
4

+ 2 +N)

Γ(α
′u
4

+ 2)

)(
Γ(α

′t
4

+ 2 +N)

Γ(α
′t
4

+ 2)

)
(1.48)

= 2π

(
(−1)N

Γ(N + 1)

4

α′

)( N∏
i=0

(
α′u

4
+ 2 + i)(

α′t

4
+ 2 + i)

)
(1.49)

To show that this is a polynomial in t− u we note that we can write,

t = (
−12− 4N

2α′
) +

1

2
(t− u) (1.50)

u = (
−12− 4N

2α′
)− 1

2
(t− u) (1.51)

Plugging this into V S we see that to leading order the amplitude takes the form,

V S ∼ (t− u)2N (1.52)

Thus completing the proof that V S is a polynomial in (t− u) of order 2N .

Next we compare this to the maximum spin of the state at level N . The spin operator

has the form,

Sij = −i
∑
n=1

1

n
(αi−nα

j
n − α

j
−nα

i
n + α̃i−nα̃

j
n − α̃

j
−nα̃

i
n) (1.53)

A maximum level spin closed string state at level 2N has the form,

∼ (α2
−1 + iα3

−1)N(α̃2
−1 + iα̃3

−1)N |0, k〉 (1.54)

Acting by S23 one obtains the eigenvalue 2N . Thus the relation between the spin and mass

is,

α′M2 = 2(2N)− 4

which has slope α′/2

1.4 Problem 4

a) The relevant term in the Veneziano amplitude is,

V =
2ig2

o

α′
Γ(−1− α′t)Γ(−1− α′s)

Γ(2 + α′u)
(1.55)
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Obtaining the pole at t = 0 as before, we find,

Γ(−1− α′t)→ − 1

α′
(1.56)

From the relation, s+ t+ u = − 4
α′ , we have

−α′s = 4 + α′u

The veneziano amplitude becomes,

V = −2ig2
o

α′2
Γ(3 + α′u)

Γ(2 + α′u)
= −2ig2

o

α′2
(2 + α′u) = −ig

2
o

α′
(

4

α′
+ 2u) (1.57)

Next we compare this amplitude with the exchange of a photon between two scalar charged

particles. We use the convention that all momenta ingoing. The amplitude is,

V = (ie(k1 − k3)µ)(ie(k2 − k4)ν)(
−igµν

(k1 + k3)2
) (1.58)

= ie2 (k1 · k2 + k3 · k4 − k1 · k4 − k3 · k2)

(k1 + k3)2
(1.59)

In terms of s, t, u, these products are,

k1 · k2 = k3 · k4 = m2 − s/2 (1.60)

k1 · k3 = k2 · k4 = m2 − t/2 (1.61)

k1 · k4 = k2 · k3 = m2 − u/2 (1.62)

Plugging this in we get,

V = ie2(u− s)/(−t)→ V = ie2(s− u) = ie2(−2u+ 4m2) (1.63)

Using m2 = −1/α′ we get,

V = −ie2(
4

α′
+ 2u) (1.64)

Comparing the two expressions we find that,

e2 =
g2
o

α′

b) The term that has poles in u and t differs from part a only in that u↔ s. Thus,

Vut = −ig
2
o

α′
(

4

α′
+ 2s) (1.65)

= −ig
2
o

α′
(

4

α′
+ 2(−u− 4

α′
)) (1.66)

=
ig2
o

α′
(

4

α′
+ 2u) (1.67)

= −Vst (1.68)
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As required.

c) In this part we include the Chan-Paton factors. Since we are looking at the pole

t → 0 we only consider the contributions from the last two parts. This gives (we define

λijkl ≡ λiλjλkλl),

V =
1

2

(
Tr(λ1243 + λ1342)Vst + Tr(λ1324 + λ1423)Vut

)
(1.69)

=
1

2
Vst
(
Tr(λ1243 + λ1342 − λ1324 − λ1423)

)
(1.70)

=
1

2
VstTr

(
λ1[λ2, λ4]λ3 + λ1λ3[λ4, λ2]

)
(1.71)

=
1

2
VstTr

(
[λ1, λ3][λ4, λ2]

)
6= 0 (1.72)

As required.
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