1 PHYS230A Problem Set 6 Solutions

1.1 Problem 1

a) We consider the action,

$$
\begin{equation*}
S=\int d \tau d \sigma L=\frac{1}{4 \pi \alpha^{\prime}} \int d \tau d \sigma\left(\partial_{\tau} X \partial_{\tau} X-\partial_{\sigma} X \partial_{\sigma} X\right) \tag{1.1}
\end{equation*}
$$

and plug in the solution

$$
X(\tau, \sigma)=x(\tau)+w R \sigma
$$

The action becomes,

$$
\begin{equation*}
S=\frac{1}{4 \pi \alpha^{\prime}} \int d \tau d \sigma\left(\dot{x}^{2}(\tau)-(w R)^{2}\right) \tag{1.2}
\end{equation*}
$$

The Hamiltonian is given by,

$$
\begin{align*}
H & =\int d \sigma\left(\frac{\partial L}{\partial \dot{x}} \dot{x}-L\right) \tag{1.3}\\
& =\frac{1}{4 \pi \alpha^{\prime}} \int d \sigma\left(\dot{x}^{2}+(w R)^{2}\right) \tag{1.4}\\
& =\frac{1}{2 \alpha^{\prime}}\left(\dot{x}^{2}+(w R)^{2}\right) \tag{1.5}
\end{align*}
$$

Writing this in terms of the conjugate momentum,

$$
p=\int d \sigma \frac{\partial L}{\partial \dot{x}}=\dot{x} / \alpha^{\prime}
$$

we obtain,

$$
\begin{equation*}
H=\frac{1}{2}\left(\alpha^{\prime} p^{2}+\frac{(w R)^{2}}{\alpha^{\prime}}\right) \tag{1.6}
\end{equation*}
$$

Now due to the periodicity of the field, $X \sim X+2 \pi R$ with the coordinate, $\sigma \sim \sigma+2 \pi$, the momentum becomes quantized. Explicitly this is,

$$
\begin{equation*}
e^{i 2 \pi R p}=1 \Longrightarrow p=\frac{n}{R} \tag{1.7}
\end{equation*}
$$

The spectrum is then

$$
\begin{equation*}
H=\frac{1}{2}\left(\alpha^{\prime} \frac{n^{2}}{R^{2}}+\frac{(w R)^{2}}{\alpha^{\prime}}\right) \tag{1.8}
\end{equation*}
$$

Now to show that this is the zero mode of the sum $L_{0}+\tilde{L}_{0}$. We first express X in lorentzian time,

$$
\begin{equation*}
\tau=\frac{1}{2 i} \ln (z \bar{z}), \quad \sigma=\frac{1}{2 i} \ln \left(\frac{z}{\bar{z}}\right) \tag{1.9}
\end{equation*}
$$

The virasoro generators are then,

$$
\begin{align*}
& L_{0}=-\frac{1}{\alpha^{\prime}} \int \frac{d z}{2 \pi i z} z^{2}: \partial_{z} X \partial_{z} X:=\frac{1}{4 \alpha^{\prime}}(\dot{x}+w R)^{2} \tag{1.10}\\
& \tilde{L}_{0}=-\frac{1}{\alpha^{\prime}} \int \frac{d z}{2 \pi i z} z^{2}: \partial_{\bar{z}} X \partial_{\bar{z}} X:=\frac{1}{4 \alpha^{\prime}}(\dot{x}-w R)^{2} \tag{1.11}
\end{align*}
$$

Now let's write this as the Hamiltonian,

$$
\begin{align*}
H & =L_{0}+\tilde{L}_{0}=\frac{1}{4 \alpha^{\prime}}\left((\dot{x}+w R)^{2}+(\dot{x}-w R)^{2}\right) \tag{1.12}\\
& =\frac{1}{4 \alpha^{\prime}}\left(2 \dot{x}^{2}+2 w^{2} R^{2}\right) \tag{1.13}\\
& =\frac{1}{2}\left(\alpha^{\prime} \frac{n^{2}}{R^{2}}+\frac{(w R)^{2}}{\alpha^{\prime}}\right) \tag{1.14}
\end{align*}
$$

Which is identical to (1.8) as required.
b) Consider the system with two-dimensions, $X^{1,2}$. The coordinates satisfy,

$$
\begin{equation*}
X^{1} \sim X^{1}+2 \pi R_{1} m_{1}+2 \pi R_{2}^{\prime} m_{2}, \quad X^{2} \sim X^{2}+2 \pi R_{2} m_{2} \tag{1.15}
\end{equation*}
$$

We begin by finding the quantized momenta using,

$$
\begin{align*}
1 & =\exp \left(2 \pi i\left(R_{1} m_{1}+R_{2}^{\prime} m_{2}\right) p_{1}+2 \pi i R_{2} m_{2} p_{2}\right) \tag{1.16}\\
& =\exp \left(2 \pi i\left(p_{1} R_{1} m_{1}+m_{2}\left(p_{1} R_{2}^{\prime}+p_{2} R_{2}\right)\right)\right) \tag{1.17}
\end{align*}
$$

Thus we pick $p_{1}=\frac{n_{1}}{R_{1}}$ and $p_{2}=\frac{n_{2}}{R_{2}}-\frac{n_{1} R_{2}^{\prime}}{R_{2} R_{1}}$.
Because of the periodicity on the X's we write,

$$
\begin{equation*}
X^{1}=x_{1}(\tau)+w_{1} R_{1} \sigma+w_{2} R_{2}^{\prime} \sigma, \quad X^{2}=x_{2}(\tau)+w_{2} R_{2} \sigma \tag{1.18}
\end{equation*}
$$

The action becomes,

$$
\begin{equation*}
S=\frac{1}{4 \pi \alpha^{\prime}} \int d \tau d \sigma\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}-\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)^{2}-\left(w_{2} R_{2}\right)^{2}\right) \tag{1.19}
\end{equation*}
$$

As before, we obtain the hamiltonian,

$$
\begin{align*}
H & =\frac{1}{2 \alpha^{\prime}}\left(\alpha^{\prime 2} p_{1}^{2}+\alpha^{\prime 2} p_{2}^{2}+\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)^{2}+\left(w_{2} R_{2}\right)^{2}\right) \tag{1.20}\\
& =\frac{1}{2 \alpha^{\prime}}\left(\alpha^{\prime 2} \frac{n_{1}^{2}}{R_{1}^{2}}+\alpha^{\prime 2}\left(\frac{n_{2}}{R_{2}}-\frac{n_{1} R_{2}^{\prime}}{R_{2} R_{1}}\right)^{2}+\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)^{2}+\left(w_{2} R_{2}\right)^{2}\right) \tag{1.21}
\end{align*}
$$

Now we turn to computing $L_{0}+\tilde{L}_{0}$. Since the steps are just as before, we can guess the forms of the generators to be,

$$
\begin{gather*}
L_{0}=\frac{1}{4 \alpha^{\prime}}\left(\alpha^{\prime} p_{1}+w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)^{2}+\frac{1}{4 \alpha^{\prime}}\left(\alpha^{\prime} p_{2}+w_{2} R_{2}\right)^{2} \equiv \frac{1}{4 \alpha^{\prime}}\left(\left(\alpha^{\prime} p_{L}^{1}\right)^{2}+\left(\alpha^{\prime} p_{L}^{2}\right)^{2}\right) \tag{1.22}\\
\tilde{L}_{0}=\frac{1}{4 \alpha^{\prime}}\left(\alpha^{\prime} p_{1}-\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)\right)^{2}+\frac{1}{4 \alpha^{\prime}}\left(\alpha^{\prime} p_{2}-w_{2} R_{2}\right)^{2} \equiv \frac{1}{4 \alpha^{\prime}}\left(\left(\alpha^{\prime} p_{R}^{1}\right)^{2}+\left(\alpha^{\prime} p_{R}^{2}\right)^{2}\right) \tag{1.23}
\end{gather*}
$$

Adding those two terms we obtain,
$L_{0}+\tilde{L}_{0}=\frac{1}{4 \alpha^{\prime}}\left(\left(\alpha^{\prime} p_{1}+w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)^{2}+\left(\alpha^{\prime} p_{1}-\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)\right)^{2}+\left(\alpha^{\prime} p_{2}+w_{2} R_{2}\right)^{2}+\left(\alpha^{\prime} p_{2}-w_{2} R_{2}\right)^{2}\right)$

Which after canceling the cross terms is identical to eqn (1.20) as required.
c) In this part we include the background field B_{12}. This appears in the action as,

$$
\begin{align*}
S_{B} & =\frac{1}{4 \pi \alpha^{\prime}} \int d \tau d \sigma \epsilon^{a b} B_{m n} \partial_{a} X^{m} \partial_{b} X^{n}=\frac{1}{4 \pi \alpha^{\prime}} \int d \tau d \sigma 2 B_{12}\left(\partial_{\tau} X^{1} \partial_{\sigma} X^{2}-\partial_{\sigma} X^{1} \partial_{\tau} X^{2}\right) \tag{1.25}\\
& =\frac{1}{4 \pi \alpha^{\prime}} \int d \tau d \sigma 2\left(\dot{x}_{1} w_{2} B_{12} R_{2}-\dot{x}_{2} B_{12}\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)\right) \tag{1.26}
\end{align*}
$$

The momenta get an extra contribution from this extra term,

$$
\begin{array}{r}
p_{1}=\frac{\dot{x}_{1}}{\alpha^{\prime}}+\frac{w_{2} B_{12} R_{2}}{\alpha^{\prime}} \\
p_{2}=\frac{\dot{x}_{2}}{\alpha^{\prime}}-B_{12} \frac{w_{1} R_{1}+w_{2} R_{2}^{\prime}}{\alpha^{\prime}} \tag{1.28}
\end{array}
$$

With the same quantization as above. The hamiltonian in this case becomes,

$$
\begin{align*}
H= & \frac{\dot{x}_{1}^{2}}{\alpha^{\prime}}+\dot{x}_{1} \frac{w_{2} B_{12} R_{2}}{\alpha^{\prime}}+\frac{\dot{x}_{2}^{2}}{\alpha^{\prime}}-\dot{x}_{2} B_{12} \frac{w_{1} R_{1}+w_{2} R_{2}^{\prime}}{\alpha^{\prime}}-\frac{\dot{x}_{1}^{2}}{2 \alpha^{\prime}}-\frac{\dot{x}_{2}^{2}}{2 \alpha^{\prime}}+\frac{\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)^{2}}{2 \alpha^{\prime}}+\frac{\left(w_{2} R_{2}\right)^{2}}{2 \alpha^{\prime}} \\
& \quad-\frac{\left(\dot{x}_{1} w_{2} B_{12} R_{2}-\dot{x}_{2} B_{12}\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)\right)}{\alpha^{\prime}} \tag{1.29}\\
= & \frac{\dot{x}_{1}^{2}}{2 \alpha^{\prime}}+\frac{\dot{x}_{2}^{2}}{2 \alpha^{\prime}}+\frac{\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)^{2}}{2 \alpha^{\prime}}+\frac{\left(w_{2} R_{2}\right)^{2}}{2 \alpha^{\prime}} \tag{1.30}\\
= & \frac{1}{2 \alpha^{\prime}}\left(\left(\alpha^{\prime} p_{1}-w_{2} B_{12} R_{2}\right)^{2}+\left(\alpha^{\prime} p_{2}+B_{12}\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)\right)^{2}+\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)^{2}+\left(w_{2} R_{2}\right)^{2}\right) \tag{1.31}
\end{align*}
$$

In terms of the quantized momenta this is,

$$
\begin{equation*}
H=\frac{1}{2 \alpha^{\prime}}\left(\left(\alpha^{\prime} \frac{n_{1}}{R_{1}}-w_{2} B_{12} R_{2}\right)^{2}+\left(\alpha^{\prime}\left(\frac{n_{2}}{R_{2}}-\frac{n_{1} R_{2}^{\prime}}{R_{2} R_{1}}\right)+B_{12}\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)\right)^{2}+\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)^{2}+\left(w_{2} R_{2}\right)^{2}\right) \tag{1.32}
\end{equation*}
$$

As for the virasoro generators, we just have to modify the expressions in eqns $(1.22,1.23)$ by adding the B_{12} contribution as in H,

$$
\begin{align*}
L_{0} & =\frac{1}{4 \alpha^{\prime}}\left(\alpha^{\prime} p_{1}-w_{2} B_{12} R_{2}+w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)^{2}+\frac{1}{4 \alpha^{\prime}}\left(\alpha^{\prime} p_{2}+B_{12}\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)+w_{2} R_{2}\right)^{2} \tag{1.33}\\
& \equiv \frac{1}{4 \alpha^{\prime}}\left(\left(\alpha^{\prime} p_{L}^{1}\right)^{2}+\left(\alpha^{\prime} p_{L}^{2}\right)^{2}\right) \tag{1.34}\\
\tilde{L}_{0} & =\frac{1}{4 \alpha^{\prime}}\left(\alpha^{\prime} p_{1}-w_{2} B_{12} R_{2}-\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)\right)^{2}+\frac{1}{4 \alpha^{\prime}}\left(\alpha^{\prime} p_{2}+B_{12}\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)-w_{2} R_{2}\right)^{2} \tag{1.35}\\
& \equiv \frac{1}{4 \alpha^{\prime}}\left(\left(\alpha^{\prime} p_{R}^{1}\right)^{2}+\left(\alpha^{\prime} p_{R}^{2}\right)^{2}\right) \tag{1.36}
\end{align*}
$$

And it is clear that $H=L_{0}+\tilde{L}_{0}$ since the only modification here is that $p_{i} \rightarrow p_{i}+B_{12}(\ldots)$.
d) We begin by listing the left and right moving momenta,

$$
\begin{align*}
p_{L}^{1} & =\frac{n_{1}}{R_{1}}-\frac{w_{2} B_{12} R_{2}}{\alpha^{\prime}}+\frac{\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)}{\alpha^{\prime}} \tag{1.37}\\
p_{R}^{1} & =\frac{n_{1}}{R_{1}}-\frac{w_{2} B_{12} R_{2}}{\alpha^{\prime}}-\frac{\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)}{\alpha^{\prime}} \tag{1.38}\\
p_{L}^{2} & =\left(\frac{n_{2}}{R_{2}}-\frac{n_{1} R_{2}^{\prime}}{R_{2} R_{1}}\right)+B_{12} \frac{\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)}{\alpha^{\prime}}+\frac{w_{2} R_{2}}{\alpha^{\prime}} \tag{1.39}\\
p_{R}^{2} & =\left(\frac{n_{2}}{R_{2}}-\frac{n_{1} R_{2}^{\prime}}{R_{2} R_{1}}\right)+B_{12} \frac{\left(w_{1} R_{1}+w_{2} R_{2}^{\prime}\right)}{\alpha^{\prime}}-\frac{w_{2} R_{2}}{\alpha^{\prime}} \tag{1.40}
\end{align*}
$$

From the mass shell conditions $\left(L_{0}-1\right)=\left(\tilde{L}_{0}-1\right)=0$, we obtain,

$$
\begin{align*}
& 0=m^{2}=\frac{1}{4 \alpha^{\prime}}\left(\left(\alpha^{\prime} p_{L}^{1}\right)^{2}+\left(\alpha^{\prime} p_{L}^{2}\right)^{2}\right)+(N-1) \tag{1.42}\\
& 0=m^{2}=\frac{1}{4 \alpha^{\prime}}\left(\left(\alpha^{\prime} p_{R}^{1}\right)^{2}+\left(\alpha^{\prime} p_{R}^{2}\right)^{2}\right)+(\tilde{N}-1) \tag{1.43}
\end{align*}
$$

We are looking for 12 massless gauge bosons. We expect that they split into two groups satisfying $N=1, \tilde{N}=0$ and $N=0, \tilde{N}=1$. As given in the hint of the problem, the eigenvalues are expected to sit on the root lattice of $\mathrm{SU}(3)$, which is hexagonal. The symmetry of this lattice requires the space lattice to also by symmetric: we pick R_{1}, R_{2}, and R_{2}^{\prime} that correspond to making the space lattice a rhombus. This corresponds to $R_{1}=\sqrt{\alpha^{\prime}}$, $R_{2}=(\sqrt{3} / 2) \sqrt{\alpha^{\prime}}$, and $R_{2}^{\prime}=\sqrt{\alpha^{\prime}} / 2$. This over all scale is a special one and thus picked. In doing this, one finds that in order to find solutions, the background field, B_{12}, must be set
as $B_{12}=1 / \sqrt{3}$. Under these choices the momenta become,

$$
\begin{align*}
p_{L}^{1} & =\frac{1}{\alpha^{\prime}}\left(n_{1}+w_{1}\right) \tag{1.44}\\
p_{R}^{1} & =\frac{1}{\alpha^{\prime}}\left(n_{1}-w_{1}-w_{2}\right) \tag{1.45}\\
p_{L}^{2} & =\frac{1}{\sqrt{3} \sqrt{\alpha^{\prime}}}\left(-n_{1}+w_{1}+2 n_{2}+2 w_{2}\right) \tag{1.46}\\
p_{R}^{2} & =\frac{1}{\sqrt{3} \sqrt{\alpha^{\prime}}}\left(-n_{1}+w_{1}+2 n_{2}-w_{2}\right) \tag{1.47}
\end{align*}
$$

Considering the case where $N=1, \tilde{N}=0$, we find that the momenta must satisfy,

$$
\begin{gather*}
\left(p_{L}^{1}\right)^{2}+\left(p_{L}^{2}\right)^{2}=0 \tag{1.49}\\
\left(p_{R}^{1}\right)^{2}+\left(p_{R}^{2}\right)^{2}=\frac{4}{\alpha^{\prime}} \tag{1.50}
\end{gather*}
$$

Thus these states correspond to $p_{L}^{i}=0$ and the p_{R}^{j} correspond to the 6 off-center points on the root lattice. These correspond to,

$$
\begin{array}{lc}
\sqrt{\alpha^{\prime}}\left(p_{R}^{1}, p_{R}^{2}\right) \sim & (n 1, w 1, n 2, w 2) \\
(2,0), & (1,-1,1,0) \\
(-2,0), & (-1,1,-1,0) \\
(1, \sqrt{3}), & (0,0,1,-1) \\
(1,-\sqrt{3}), & (1,-1,-1,1) \\
(-1, \sqrt{3}), & (-1,1,1,-1) \\
(-1,-\sqrt{3}) & (0,0,-1,-1) \tag{1.57}
\end{array}
$$

And for the other case we have,

$$
\begin{array}{lc}
\sqrt{\alpha^{\prime}}\left(p_{L}^{1}, p_{L}^{2}\right) \sim & (n 1, w 1, n 2, w 2) \\
(2,0), & (1,1,0,0) \\
(-2,0), & (-1,-1,0,0) \\
(1, \sqrt{3}), & (1,0,1,1) \\
(1,-\sqrt{3}), & (0,1,-1,-1) \\
(-1, \sqrt{3}), & (0,-1,1,1) \\
(-1,-\sqrt{3}) & (-1,0,-1,-1) \tag{1.64}
\end{array}
$$

These are the 12 massless gauge bosons as required.

