
Final exam solutions, Phys 221B, W15

1. In HW5, #4 (Srednicki 48.5), you had the interaction

L1 = 2gNγµPLM∂µφ+ h.c. ,

with mφ > mM and mN = 0. Now let mM > mφ and mN = 0.

a) Calculate the decay rate for M→ φN when none of the spins is measured.

b) Calculate the decay rate with N having measured helicity, positive or negative.

c) Calculate the differential decay rate 11.48 when the initial M is known to have

sz = +1
2

and the spin of the N is not measured.

d) Which of P , T, and C is violated by this interaction? For each violation, can it be

seen in the calculation you’ve done in (b)? in (c)? (Explain precisely).

a) Labeling the momenta M(p)→ φ(k)N (p′), and m ≡ mM > M ≡ mφ and mN = 0.

Using the Dirac equation, we have

T = igu(p′)k/(1− γ5)u(p)

= igu(p′)(p/ − p/′)(1− γ5)u(p)

= imgu(p′)(1 + γ5)u(p)

. (1)

Using

(ū(p′)(1 + γ5)u(p))∗ = ū(p)(1 + γ5)u(p′) = ū(p)(1− γ5)u(p′) .

this becomes ∑
spins

|T |2 = −m2g2Tr[(m− p/)(1− γ5)p/′(1 + γ5)]

= −2m2g2Tr[(m− p/)p/′(1 + γ5)]

= −2g2m2Tr[(m− p/)p/′]

= −8g2m2p · p′ = 4g2m2(m2 −M2) .

Note the properties (1± γ5)a/ = a/(1∓ γ5), (1 + γ5)(1− γ5) = 0, (1± γ5)γ5 = (1± γ5)(±1).

These help to simplify things. Then

Γ =
1

8πm2
|~p ′|1

2

∑
spins

|T |2

=
g2(m2 −M2)2

8πm
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Note the factor 1
2

to average over the initial spin.

b) Now ∑
initial
spin

|T |2 = −g
2m2

2
Tr
[
(m− p/)(1− γ5)(1 + s′γ5)p/′(1 + γ5)

]
.

Noting that (1− γ5)(1 + s′γ5) = (1− γ5)(1− s′), we get immediately that

Γ(s′ = +1) = 0 , Γ(s′ = −1) =
g2(m2 −M2)2

8πm
.

This is the property of the weak interaction that only left-handed fermions couple to it.

Many people missed the s-dependence due to a subtlety. According to 38.28,

usūs =
1

2
(1− sγ5z/)(m− p/) ,

and then

lim
m→0

1

2
(1− sγ5z/)(m− p/) =

1

2
(1− sγ5)(−p/) .

However, some people replaced this with

usūs =
1

2
(1− sγ5z/)(−p/) ,

which is not the same. The point is that as m → 0, z/ is order 1/m (38.30), so there is

another term.

c) Now ∑
final
spin

|T |2 = −g
2m2

2
Tr
[
(1− sγ5z/)(m− p/)(1− γ5)p/′(1 + γ5)

]
= −g2m2Tr

[
(1− sz/)(m− p/)p/′(1 + γ5)

]
= −g2m2Tr[(1− sz/)(m− p/)p/′]

= −4g2m2(msz · p′ + p · p′)
= 2g2m2(m2 −M2)(1− s cos θ) ,

where cos θ is the angle between the z-axis and the N momentum, and the problem asks

for s = +1. The differential decay rate is then

dΓ

dΩ
=
g2(m2 −M2)2

32π2m
(1− cos θ)
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We can understand the angle-dependence as follows. When θ = 0 the momentum

is in the z-direction, and the spin must also be in the z-direction by angular momentum

conservation. But the neutrino has negative helicity (part b) so the amplitude must vanish.

d) From Srednicki 40.37, 40.41, and 40.47, we see that the γµ and γµγ5 interactions

have opposite P and C transformations, so these symmetries must be violated no matter

how φ transforms. They have the same T transformation; to cancel the minus signs in

40.41 we need T−1φ(x)T = −φ(T x).

For P , momentum is a vector and spin is a pseudovector, so the helicity changes sign.

The helicity-dependent amplitude in (b) therefore implies violation of P . Similarly in (c)

the correlation between initial spin and final direction implies violation of P . C.-S. Wu

discovered parity violation by a correlation between spin and momentum in nuclear β

decay.

We can’t probe C in this one calculation. We would have to look also at M → φN ,

and in fact we would find that antiparticles have the opposite correlation between spin and

momentum, violating C but preserving CP . To probe T directly we would need to study

the inverse process φN →M.

2. Consider a theory with two triplets of real scalars, φi and χi, so i runs from 1 to 3.

Let

L = −1

2
(∂µφ·∂µφ+ ∂µχ·∂µχ+m2φ·φ+m2χ·χ)

−λ
8

(φ·φφ·φ+ χ·χχ·χ)− λ′

2
φ·χφ·χ ,

where the dot products are with respect to i.

a) Find all continuous and discrete internal symmetries. Internal means acting trivially

on spacetime, so excludes Lorentz, P , and T , which are obvious.

b) Is this the most general renormalizable Lagrangian in d = 4 with these symmetries?

If not, what is missing?

c) For m2 < 0 and λ > 0, find all classical minima of the potential. The coupling λ′ is

allowed to have either sign: consider all values of λ′.

d) Determine the unbroken continuous symmetry and the number of Goldstone bosons,

as a function of λ′.

a) Since all the i indices are dotted, there is an obvious SO(3),

φi → Oijφj , χi → Oijχj .
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The orthogonal matrix O must be the same for both, as there is a term where φi is dotted

into χi. Since every term has an even number of φ’s and and even number of χ’s, there are

both of

Z : (φi, χi)→ (−φi, χi) , Z ′ : (φi, χi)→ (φi,−χi) .

By this notation I mean that these act on all i at once. i-dependent operations would be

part of SO(3). Finally, since the two m’s are equal and the two λ’s are equal, there is the

swap

Z ′′ : (φi, χi)→ (χi, φi) .

Of course there are also products of these, for example (φi, χi)→ (−φi,−χi) is ZZ ′.

b) In the potential, the SO(3) requires that the quadratic terms be of one of the forms

φ·φ , χ·χ , φ·χ .

The symmetry Z or Z ′ forbids φ ·χ, and Z ′′ requires that the remaining two have equal

coefficients m2. In the quartic term the SO(3) invariants are

(φ·φ)2 , (χ·χ)2 , (φ·χ)2 , φ·φχ·χ , φ·χφ·φ , φ·χχ·χ .

The last two are forbidden by Z and Z ′. The first four are allowed, with the first two

having equal coefficients due to Z ′′. So we see that a term −λ′′φ·φχ·χ/4 should have been

included. In fact, there is a one-loop graph, with one λ vertex, and one λ′ vertex, whose

divergence requires a λ′′ counterterm.

c) The only term that depends on the relative orientation φi and χi is the λ′ term,

φ·χφ·χ = φ·φχ·χ cos2 θ

where θ is the angle between φi and χi.

For λ′ > 0 it is favorable for them to be perpendicular,

φi = vni , χi = v′n′i , n·n = n′ ·n′ = 1 , n·n′ = 0 . (2)

The potential becomes

V =
1

2
m2(v2 + v′2) +

1

8
λ(v4 + v′4) ,

which is minimized at

v2 = v′2 = −2m2/λ .

For λ′ < 0 it is favorable for them to be parallel (or antiparallel),

φi = vni , χi = v′ni , n·n = 0 . (3)
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The potential becomes

V =
1

2
m2(v2 + v′2) +

1

8
λ(v4 + v′4) +

1

2
λ′v2v′2 ,

which is minimized at

v2 = v′2 = − 2m2

λ+ 2λ′
.

However, for λ+ 2λ′ < 0 there is no minimum, we can decrease the energy without bound

by increasing v and v′.

When λ+2λ′ = 0 the potential determines only v2−v′2. This case thus has degenerate

vacua not related by any symmetries. Such a situation is unnatural (fine-tuned) here, but

can arise in supersymmetric theories.

d) For λ′ < −1
2
λ there is no vacuum at all so the question is moot. For −1

2
λ < λ′ < 0,

the vacuum (3) is invariant under the SO(2) or U(1) rotation around ni, so SO(3) is broken

to SO(2). There are 3 − 1 = 2 Goldstone bosons, from the possible choices of n on the

two-sphere. For λ′ > 0, the symmetry is fully broken: the SO(2) that leaves ni invariant

rotates n′i around ni. The breaking is SO(3) → I and there are three Goldstone bosons,

two from the direction of ni and one from the angle of n′i around ni. For completeness,

when λ′ is exactly zero there is an O(3) × O(3) symmetry and the relative orientation of

φi and χi is undetermined. The breaking O(3)× O(3) → O(2)× O(2) leaves 4 Goldstone

bosons.

3. Consider the renormalizable d = 2 theory

L = −1

2
∂µφ∂

µφ− 1

2
m2φ2 −

∞∑
n=2

λn
(2n)!

φ2n .

a) Considering V2k, show that there is a divergent one-loop graph that is first-order in

couplings (just one vertex). Calculate Zλk and Zm to this order and then calculate βλk and

γm in MS.

b) Defining

V (φ) =
1

2
m2φ2 +

∞∑
n=2

λn
(2n)!

φ2n ,

write the equation for the running m(µ) and λn(µ) in terms of V (φ, µ).

c) If V (φ, µ1) = g cos βφ for constants g and β, what is V (φ, µ2)? If V (φ, µ1) = g cosh βφ

for constants g and β, what is V (φ, µ2)?

d) This also provides a nice example of Wilsonian renormalization. Consider the theory

with bare potential V1(φ) = g1 cos β1φ, and a UV cutoff on the propagator momenta,
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k2 < Λ2
1. Consider the contribution to V2k from all graphs that have just one vertex but

any number of loops. Show that you get the same result with a lower cutoff Λ2 and a new

potential g2 cos β2φ. Give g2, β2 in terms of g1, β1. Assume that m� Λ1,Λ2.

a) There is a divergent contribution to V2k in which two of the lines from a λk+1 vertex

join to form a loop. Then

V2k = −λkZk −
1

2
λk+1

∫
d2−εq̄

(2π)2−ε
1

q̄2 +m2

= −λkZk −
1

8π
λk+1Γ(ε/2)(4π/D)ε/2

= −λkZk −
1

4πε
λk+1 + finite .

So in MS,

Zk = 1− λk+1

4πλkε

to this order. A similar calculation yields

Zm = 1− λ2

4πm2ε

from the usual graph.

Now,

0 = µ∂µ
∣∣
bare

lnλk0

= µ∂µ
∣∣
bare

ln(λkZkµ̃
(k−1)ε) (4)

In the second line, we have used that the dimension of φ is 1
2
(d − 2) = −ε/2, so the

dimension of λk is 2 while that of λk0 is 2 + (k − 1)ε. Also, I’ve set Zφ = 1 to this order.

This becomes

0 = (k − 1)ε+
∞∑
j=2

β̂λj∂λj ln(λkZk)

= (k − 1)ε+
β̂k
λk
− β̂k+1

4πλkε
+
β̂kλk+1

4πλ2
kε

. (5)

Expanding in ε, we have from order ε1

β̂k = −(k − 1)ελk + βk .
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Order ε0 then gives

0 =
βk
λk

+
kλk+1ε

4πλkε
− (k − 1)λkελk+1

4πλ2
kε

. (6)

and so

βk = −λk+1

4π
.

Similarly one finds

γm = − λ2

8πm2
.

b) We have

µ∂µm
2 = 2γmm

2 , µ∂µλk = βk .

Then

µ∂µV (φ, µ) = γmm
2φ2 +

∞∑
n=2

βn
(2n)!

φ2n

= − 1

4π

∞∑
n=1

λn+1

(2n)!
φ2n

m=n+1
= − 1

4π

∂2

∂φ2

∞∑
m=1

λm
(2m)!

φ2m + constant

= − 1

4π

∂2

∂φ2
V (φ, µ) + constant . (7)

We have defined λ1 = m2 for uniformity. As usual, the constant is not important. If you

did not find this exact form, that’s fine, but this makes the next part easier.

c) Using part (b), we get for g cos bφ (I’re renamed β to b to avoid confusion)

µ∂µg =
b2

4π
g , µ∂µb = 0 .

So

g(µ2) = (µ2/µ1)b
2/4πg(µ1) , V (φ, µ2) = (µ2/µ1)b

2/4πV (φ, µ1) .

for the cosine potential. Similarly

g(µ2) = (µ2/µ1)−b
2/4πg(µ1) , V (φ, µ2) = (µ2/µ1)−b

2/4πV (φ, µ1) .

for the cosh potential.
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Note, by the way, that the dimensionless coupling ĝ(µ) = g(µ)/µ2 satisfies

ĝ(µ2) = (µ2/µ1)b
2/4π−2ĝ(µ1)

in the cosine case. This coupling is relevant, meaning that the dimensionless size grows at

low energy, only for b2 < 8π, and it is irrelevant for larger values. The point b2 = 8π is

known as the Kosterlitz-Thouless phase transition.

d) A vertex λ2k+2l gives a divergent contribution to V2k in which 2l of the external

lines pair up into l loops, each a copy of the one-loop divergence above:

V2k = −
∞∑
l=0

λk+l
1

2ll!

(∫
d2q̄

(2π)2

1

q̄2 +m2

)l
.

The symmetry factor 2l comes from interchanging the two ends of each loop. The symmetry

factor l! comes from permuting the loops.

Now, the Wilsonian idea is that we focus on the effect of modes between Λ1 and Λ2. If

we only include those in the integral, we get∫ Λ1

Λ2

d2q̄

(2π)2

1

q̄2 +m2
=

1

2π
ln(Λ1/Λ2)

for negligible m2. We can then write

V2k = −λk,2

where

λk,2 =
∞∑
l=0

λk+l,1
1

l!

(
1

4π
ln(Λ1/Λ2)

)l
.

That is, we absorb the virtual effects in this range into the effective coupling at lower scale

Λ2. Now, for V1(φ) = g1 cos b1φ, λk,1 = (−b1)2k. Then we can do the sum,

λk,2 = (−b1)2k(Λ1/Λ2)−b
2
1/4π

2

as found above.

It’s a bit different because here we’re talking about cutoffs Λ, and before about the

reference scale µ. But we can think about setting the cutoff just slightly above the scale of

interest, so as to integrate out all higher energy effects, so it comes to the same thing.
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