ASSIGNMENT \#1

Due: Weds., Oct. 3.
0. Simple things to check: that

$$
\left|\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\rangle=\hat{\chi}^{\dagger}\left(\mathbf{x}_{1}\right) \ldots \hat{\chi}^{\dagger}\left(\mathbf{x}_{n}\right)|0\rangle .
$$

Also,

$$
\hat{\chi}^{\dagger}(\mathbf{x}) \hat{\chi}(\mathbf{x})\left|\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\rangle=\left(\sum_{j=1}^{n} \delta^{3}\left(\mathbf{x}-\mathbf{x}_{j}\right)\right)\left|\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\rangle,
$$

so that $\hat{\chi}^{\dagger}(\mathbf{x}) \hat{\chi}(\mathbf{x})$ is the particle density.

1. Srednicki 1.2. The n-particle wavefunction $\psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ translates into QFT notation as the state

$$
|\psi\rangle=\int d^{3 n} \mathbf{x} \psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)\left|\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\rangle
$$

Show that $\hat{H}_{\mathrm{QM}} \psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ translates into $\hat{H}_{\mathrm{QFT}}|\psi\rangle$, where \hat{H}_{QM} is the RHS of 1.30 and \hat{H}_{QFT} is the RHS of 1.32 .
2. Srednicki 1.3. We can break this into parts: first calculate the commutator of $\hat{\chi}^{\dagger}(\mathbf{x}) \hat{\chi}(\mathbf{x})$ with $\hat{\chi}(\mathbf{y})$ and with $\hat{\chi}^{\dagger}(\mathbf{y})$, then of \hat{N} with $\hat{\chi}(\mathbf{y})$ and $\hat{\chi}^{\dagger}(\mathbf{y})$, and finally of \hat{N} with \hat{H}. The following identities are useful:

$$
[\hat{A}, \hat{B} \hat{C}]=[\hat{A}, \hat{B}] \hat{C}+\hat{B}[\hat{A}, \hat{C}]
$$

and

$$
[\hat{A}, \hat{B} \hat{C} \hat{D} \hat{E}]=[\hat{A}, \hat{B}] \hat{C} \hat{D} \hat{E}+\hat{B}[\hat{A}, \hat{C}] \hat{D} \hat{E}+\hat{B} \hat{C}[\hat{A}, \hat{D}] \hat{E}+\hat{B} \hat{C} \hat{D}[\hat{A}, \hat{E}]
$$

You can think of jumping \hat{A} to the right in steps. Show these, by writing out the commutators explicitly.

