UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Physics

Physics 221A

Quantum Field Theory

Fall 2012

Prof: Joe Polchinski

joep@kitp.ucsb.edu

ASSIGNMENT #8

Due: Weds., Nov. 28, 5pm in graders' mailbox.

1. For ϕ^4 theory in d = 4, write down the Noether current for the scale symmetry $\delta_s \phi = \alpha \phi + \alpha x^{\mu} \partial_{\mu} \phi$. Verify that it is conserved.

2. Write down the most general renormalizable Lagrangians with the following fields and symmetries:

a) In d = 3, a single real scalar with the discrete symmetry $\phi \to -\phi$.

b) In d = 3, a single complex scalar with the continuous symmetry $\phi \to e^{i\theta}\phi$.

c) In d = 3, a single complex scalar with the discrete Z_6 symmetry $\phi \to e^{i\pi/3}\phi$

d) In d = 4, two real scalars, with the Lagrangian invariant under both $(\phi_1, \phi_2) \rightarrow (-\phi_1, \phi_2)$ and $(\phi_1, \phi_2) \rightarrow (\phi_2, \phi_1)$.

3. Srednicki 24.4. In addition to counting the generators, give the condition that they satisfy (analogous to imaginary antisymmetric for SO(N)) and verify that [T, T'] is a generator if T and T' are.

4. Srednicki 28.1