1. Consider

\[\mathcal{L}_1 = i \bar{\Psi} \gamma^\mu \partial_\mu \Psi - m_1 \bar{\Psi} \Psi - m_2 \bar{\Psi} i\gamma_5 \Psi. \]

a) Verify that the last term is Hermitian (for real \(m_2 \)), and Lorentz invariant.

b) Verify that the last term is not invariant under the usual parity transformation.

c) Show that for \(m_2 \) nonzero there is a field redefinition that makes the Lagrangian parity invariant.

Add a real scalar field,

\[\mathcal{L}_2 = -\frac{1}{2} \partial_\mu \phi \partial^\mu \phi + i \bar{\Psi} \gamma^\mu \partial_\mu \Psi - m_1 \bar{\Psi} \Psi - m_2 \bar{\Psi} i\gamma_5 \Psi - g_1 \phi \bar{\Psi} \Psi - g_2 \phi \bar{\Psi} i\gamma_5 \Psi. \]

The last two terms are known as Yukawa interactions.

d) Show that for general values of \(m_i \) and \(g_i \) your field redefinition does not lead to a parity-invariant Lagrangian.

e) For the case that \(P \) is violated, what about \(C \), \(T \), and \(PCT \)?

2. In class, I asserted that any two sets of gamma matrices are related by a change of basis. To show this, define

\[b_1^\pm = (\gamma^1 \pm \gamma^0)/2, \quad b_2^\pm = (\gamma^2 \pm i \gamma^3)/2. \]

a) Find the anticommutators of all pairs of \(b_i^\pm \)’s.

b) Show that there must be a spinor \(u_0 \) such that \(b_1^- u_0 = b_2^- u_0 = 0 \).

Define the spinor basis to be

\[u_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad b_1^+ u_0 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad b_2^+ u_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad b_1^+ b_2^+ u_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}. \]

c) In this basis find the \(\gamma^\mu \) and \(\gamma_5 \).

So whatever basis we started with, we can always get to this one (the spinor \(u_0 \) and the \(b_i^\pm \) will depend on the original basis), and vice versa.