UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Physics

Physics 221B

Quantum Field Theory

Winter 2015

Prof: Joe Polchinski

joep@kitp.ucsb.edu

ASSIGNMENT #6 Due: Mon., Feb. 23, in class.

1. Extend the counting of degree of divergence in d dimensions to vertices containing n_s scalar fields, n_d derivatives, and n_{ψ} Dirac fermion fields. Do this by two methods: #1) graph topology, where you now have to count internal propagators of different types, and #2) dimensional analysis of couplings. Give all n_s, n_d, n_{ψ} that lead to renormalizable couplings (those that do not increase the degree of divergence) in d = 2, 3, 4.

2. Srednicki 14.2 (volume of the unit sphere in \mathbb{R}^d).