UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Physics

Physics 221B

Quantum Field Theory

Winter 2015

Prof: Joe Polchinski joep@kitp.ucsb.edu

ASSIGNMENT #7
Due: Mon., March 2, in class.

- 1. Srednicki 14.3
- 2. Evaluate V_4 up to one loop in $\lambda \phi^4$ theory, in the $\overline{\rm MS}$ scheme. In particular, determine the value of Z_λ to leading order. Do the Feynman parameter integral for the case $m^2=0$.
 - **3.** Suppose that we have N scalar fields ϕ_i , with

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\phi_{i}\partial^{\mu}\phi_{i} - \frac{1}{2}m^{2}\phi_{i}\phi_{i} - \frac{1}{8}\lambda\phi_{i}\phi_{i}\phi_{j}\phi_{j}$$

(summation convention on i, j).

- a) Give the Feynman rules for this theory.
- b) Evaluate V_{4ijkl} at tree level and one loop (using $\overline{\text{MS}}$). (No need to do the Feynman parameter integral, anyway it's the same as above).