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1. Srednicki 3.3. Before we start, a couple remarks on what we’re showing in the problem.
U(Λ)−1φ(x)U(Λ) = φ(Λ−1x) means that the unitary action implementing a lorentz
transformation maps the field operator evaluated at one spacetime point to the field
operator evaluated at the lorentz-transformed spacetime point Λ−1x. This is the active
picture of transformation. We have some definition of a(k) and we’d like to make sure
that this is true also for these operators. Alternatively, we can take the passive picture
and transform the states rather than the operators. We define momentum eigenstates
as in the problem; we’d like to see that the unitary action implementing the lorentz
transformation in the passive picture, U(Λ)|k〉, is equal to |Λ−1k〉.
The proof involves a tricky step, so let’s work the free field case first to see what’s
going on. For a free real scalar field, you can use equation (3.21) to write

ak =

∫
dxe−ikx(iΠ + ωφ) (1)

We will conjugate both sides of the equation by U(Λ), in other words we’ll compute

U(Λ)−1akU(Λ) = U(Λ)−1

∫
dxe−ikx (iΠ(x) + ωφ(x))U(Λ) (2)

Take a time derivative of both sides of this equation to see that Π transforms in the
same way. This tells us

U(Λ)−1akU(Λ) =

∫
dxe−ikx

(
iΠ(Λ−1x) + ωφ(Λ−1x)

)
(3)

=

∫
dy|det Λ|e−ik·(Λy) (iΠ(y) + ωφ(y)) (4)

=

∫
dye−i(Λ

−1k)·y (iΠ(y) + ωφ(y)) (5)

= aΛ−1k (6)

In the second line I changed integration variable from x to Λ−1x = y. In the next line
I used |det Λ|= 1 and ΛT = Λ−1, both conditions on an SO(3,1) matrix. a transforms
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the same way as φ under the unitary action implementing the lorentz transformation.
This shows the claim for a free field.

Now, for a real scalar with arbitrary potential and maybe couplings to other particles,
we still have the usual mode expansion, since that is a natural expansion to make
so long as we have the symmetries of Minkowski space, but we don’t know the cre-
ation/annihilation operators in terms of the fields because the ak in general will be
time-dependent.

First, write φ(x) in terms of its fourier expansion φ̃(k). The same logic as in the free
field case shows that φ̃ transforms the same way as φ under lorentz transformations.
Here is the trick: if you plug the ansatz

φ̃(k) = 2πδ(k2 +m2)
[
θ(k0)ak + θ(−k0)a†−k

]
(7)

into the fourier expansion

φ(x) =

∫
(dk/2π)eikxφ̃(k) (8)

you get the usual mode expansion for a real scalar. Taking k0 > 0, this tells us that
ak transforms the same way as φ̃(k) under Λ, namely the same way as φ(x). Note that
we needed to use the fact that Λ is a proper, orthochronous lorentz transformation (an
element of the connected component of SO(3,1)) to assume that θ(k0) was invariant
under U(Λ).

Now, we want to check that (multiparticle) states also transform in the expected way
under the action of the lorentz symmetry.

U(Λ)|k1 . . . kn〉 = U(Λ)a†k1 . . . a
†
kn
|0〉 (9)

= U(Λ)a†k1U(Λ)−1U(Λ)a†k1U(Λ)−1 . . . U(Λ)a†knU(Λ)−1|0〉 (10)

= |Λ−1k1 . . .Λ
−1kn〉 (11)

The second line follows from the unitarity of U and the U -invariance of the vacuum
state. We have also showed that the operator products transform in the way that we
expect.

2. a) Srednicki 3.4. In this problem we’re checking that the unitary action of the trans-
lations ⊂ the poincare group on the scalar field φ some properties that we’d expect
from NRQM. This problem is all about the spacetime translations. I’ll write εa to
make explicit the infinite smallness. We’d like to check that the infinitesimal action
reproduces the algebra of the symmetry generators with the fields. This is all in
the position basis.

T (εa)φ(x)T (−εa) = φ(x) + ia · [φ, p] = φ(x− εa) +O(ε2) (12)
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but
φ(x− εa) = φ(x)− εa · ∂φ+O(ε2) (13)

Collecting terms of order epsilon on both sides,

[φ, pµ] =
1

i
∂µφ (14)

This is just what you would expect in the position basis for the generator of spatial
translations.

b) This follows immediately from (14). The time derivative φ̇ is ∂0 = −∂0, not ∂0 as
we have on the right hand side of (14), and there’s a sign flip from the metric factor
g00. If you don’t have an intuition for why lower indices are natural for derivatives,
think of the gradient ∇f = (∂f

∂x
, ∂f
∂y
, ∂f
∂z

) = the spatial components of ∂µf .

c) Now we check that the Heisenberg equation of motion + canonical commutation
relations imply the Klein-Gordon equation, bringing us back to QFT. The calcula-
tion is straightforward. I’ll use � and ∇ to distinguish between the laplacian on
Minkowski space and just in the spatial indices, respectively.

H =
1

2

∫
dy
(
Π(y)2 + (∇φ(y))2 +m2φ2

)
(15)

⇒ iΠ̇ = [Π(x), H] (16)

=
1

2

∫
dy[Π(x),∇φ(y) · ∇φ(y)] +

1

2

∫
dy[Π(x), φ(y)2]m2 (17)

= −i(−∇2 +m2)φ (18)

= iΠ̇ (19)

In the third line I integrated by parts before using the commutation relations. Since
Π̇ = φ̈, the last line gives

(−∂2
t +∇2 −m2)φ = 0 (20)

This wouldn’t break even if you added higher-order non-derivative terms in the
potential. It’s only a few lines of algebra to generalize to derivative potentials.

d) [φ(x), ~P ] = −[φ(x)
∫
dyΠ(y)~∇φ(y)] = −i~∇φ(x). The hamiltonian + CCR for a field

with a non-derivative (velocity-independent) potential imply the usual relation for

the commutator of a position-dependent operator with ~P .
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e)

P = −
∫
dxd̃kd̃k′

(
−iωakeikx + iωa†ke

−ikx
)(

ik′ak′e
ik′x − ik′a†k′e

−ik′x
)

(21)

= −(2π)3

∫
d̃kd̃k′[δ(k − k′)(−ωk)

(
a†kak′e

−i(ω−ω′)t + a†k′ake
i(ω−ω′)t

)
(22)

+ δ(k + k′)(ωk)(similar stuff)] (23)

=
1

2

∫
d̃kk

(
a†kak + aka

†
k

)
(24)

=

∫
d̃kk

(
a†kak + more stuff

)
(25)

=

∫
d̃kka†kak (26)

To get the third equality I used the fact that the similar stuff is odd under k 7→ −k
and so vanishes under integration. In the fourth equality more stuff is just a constant
that comes from exchanges a and a†, which is odd under k 7→ −k when multiplied
by k in the integrand.

This is what you would have expected. You can check that it obeys P |k〉 = k|k〉.

3. a)

δL = −∂µδφ∂µφ† − ∂µφ∂µδφ† −m2φ†δφ−m2δφ†φ (27)

= (�−m2)φ†δφ+ (�−m2)φδφ† (28)

(29)

In the second line I integrated by parts to get the derivatives off the variations
δφ. Requiring this variation to vanish for arbitrary δφ, δφ† gives the klein-gordon
equations of motion for φ† and φ.

b)

Π =
∂L
∂φ̇

= φ̇†, Π† =
∂L
∂φ̇†

= φ̇ (30)

The fields are each others’ momentum conjugates. The hamiltonian density is

H = Πφ̇+ Π†φ̇† − L (31)

= 2ΠΠ† − ΠΠ† + (∇φ) · (∇φ†) +m2φ†φ− Ω0 (32)

= ΠΠ† + (∇φ) · (∇φ†) +m2φ†φ− Ω0 (33)

(34)

c) Equation (3.21) gives ak in terms of φ, when φ is a real field. However that form
doesn’t depend on the term multiplying the negative-frequency modes, so even when
there’s a b† there instead of an a†, nothing changes. So that still gives us ak. By
conjugating the expansion of the complex scalar in (3.38) you can see that bk is
given by (3.21) with φ→ φ†.
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d) From the last part, a is expressed in terms of φ and Π†, while b is expressed in
terms of φ† and Π. This tells us that [a, b†] = [adagger, b] = 0, since each a and
bdagger contains only φ and Π† terms, which commute. The same logic tells us that
[a, a] and [b, b] must vanish. The only nontrivial ones are [a, a†] and [b, b†]:

[ak, a
†
k′ ] =

∫
dxdx′e−ikxeik

′x′
[
ωxφ(x) + iΠ†(x), ωx′φ

†(x′)− iΠ(x′)
]

(35)

=

∫
dxdx′e−ikxeik

′x′
(
−iωx[φ(x),Π(x′)] + iωx′ [Π

†(x), φ†(x′)]
)

(36)

=

∫
dxdx′e−i(k−k

′)x2ωx (37)

= 2ωδ(k − k′) (38)

(39)

e) This is a straightforward computation. There is literally nothing new here, you just
have to follow the derivation of the 0-point energy in the text. You find that the
result is the same, except that you get two terms aa† and b†b multiplying δ(k − k′)
instead of just one as in the scalar field case. This leads directly to the 0-pt energy
being twice as large.

You can see this another way too. If you wrote φ(x) = f1(x) + if2(x) (this is
just a redefinition of the field), where f12 are real scalar fields. Plugging this new
φ into the complex scalar lagrangian gives the lagrangian for two uncoupled real
scalar fields. Each of these has its own set of creation/annihilation operators and
contributes 1

2
h̄ωV , where V is the volume of space, to the 0-point energy.
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