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1. a) It will help to start things off by doing some gaussian integrals. Let x be a real vector

of length N , and let’s compute
∫
dxe−

1
2
xTAx, where A is some real N ×N matrix.

First write the exponent as as Aijx
ixj. In the upper indices this is symmetric in

i ↔ j, so only the symmetric part of A will contribute and we can set A = AT .
This means we can diagonalize A, Aij = λiδij (no sum). So we get

I1 =

∫
dxe−x

TAx =
N∏
i=1

[∫
dyie

− 1
2
λiy

2
i

]
=

N∏
i=1

√
2π

λi
=

√
(2π)N

detA
(1)

where y is an eigenbasis of A, obtained from x by an orthogonal coordinate trans-
formation y = Ox. I’ll write e−Ax

2
for e−x

TAx.

What about integrals with a linear term, e−
1
2
Ax2−Bx? These aren’t much harder,

just complete the square and shift the integration variable x 7→ x+ A−1B to get∫
dxe−

1
2
Ax2−Bx =

∫
dxe−

1
2
A(x+A−1B)2+ 1

2
BA−1B = e

1
2
BA−1BI1 (2)

Now on to the problem. We want to evaluate the momentum integrals in the path
integral expression giving the amplitude for the particle to travel from point q′ at
time t′ to point q′′ at time t′′:

〈q′′, t′′|q′, t′〉 =

∫
q(t′)=q′, q(t′′)=q′′

DqDpeiS (3)

=N→∞

∫ N∏
k=1

dqk

N∏
j=0

dpj
2π

e−i(
pipi
2m
− piδqi

δt
+V (q))δt (4)

(5)

where δqj = qj+1 − qj.
Comparing, we see that A = iδt/m and B = iδqj, which we’ll write iq̇jδt. There
are N + 1 of these integrals, and we get a 1

(2π)N+1 from the dp/2π. This gives the
result

〈q′′, t′′|q′, t′〉 =N→∞

∫ N∏
k=1

dqk

(√
m

2πiδt

)N+1

eiδt(
1
2
mδq̇2+V (q)) (6)
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b) Now setting V to zero, we want to calculate the integrals over the qs,∫ N∏
k=1

dqk

(√
m

2πiδt

)N+1

e
im
2δt

∑N
j=0(qj+1−qj)2

(7)

Consider just the integral involving q1:

Iq1 =

∫
dq1e

a
2

(q1−q0)2

e
a
2

(q2−q1)2

(8)

= e
1
2
a(q2

0+q2
2)

∫
dq1e

aq2
1−aq1(q0+q2) (9)

⇒ B1 = −a(q0 + q2), A1 = −2a (10)

⇒ Iq1 =

√
1

2
(2πa−1)e−

1
4
a(q0+q2)2

e
1
2
a(q2

0+q2
2) (11)

=

√
1

2
(2πa−1)e−

1
4
a(q2−q0)2

(12)

(13)

where a = −im/δt. Then

Iq2 =

∫
dq2Iq1e

−a
2

(q3−q2)2

(14)

=

∫
dq2

√
1

2
(2πa−1)e−

a
4
a(q2−q0)2

e−
a
2

(q3−q2)2

(15)

=

√
1

2
(2πa−1)

√
2

3
(2πa−1)e−

a
6

(q3−q0)2

(16)

(17)

At this point it’s probably easiest to just guess the general form and show it by
induction. If the k − 1th integral term generates a factor e−

a
2k

(qk−q0)2
(times stuff

that doesn’t matter) then

Iqk ∼
∫
dqke

−a
2

(qk+1−qk)2

e−
a
2k

(qk−q0)2

(18)

=

√
k

k + 1
(2πa−1)e−

a
2(k+1)

(qk+1−q0)2

(19)

(20)

We’re intereted in the product of all these guys:

IqN = e−
a

2(N+1)
(qN+1−q0)2

N∏
k=1

√
k

k + 1
(2πa−1) (21)

=

√
1

N + 1

√
2πa−1

N
e−

a
2(N+1)

(qN+1−q0)2

(22)
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Bringing in the normalization from part a) gives the final result

〈q′′, t′′|q′, t′〉 =

(√
m

2πiδt

)N+1

IqN (23)

=

√
m

2πi(N + 1)δt
e

im
2(N+1)δt

(q′′−q′)2

(24)

=

√
m

2πi(t′′ − t′)
e

im
2(t′′−t′) (q′′−q′)2

(25)

c) This is easy because for the free theory inserting a complete set of |p〉 diagonalizes
the entire hamiltonian in one fell swoop. The computation proceeds straightfor-
wardly from the definitions and the machinery from the first part.

〈q′′, t′′|q′, t′〉 = 〈q′′|e−iHt′′eiHt′ |q〉 (26)

=

∫
dp

2π
〈q′′|e−iH(t′′−t′)|p〉〈p|q′〉 (27)

=

∫
dp

2π
eip(q

′′−q′)e−i(t
′′−t′) p

2

2m (28)

=

√
m

2πi(t′′ − t′)
e
i
m(q′′−q′)2

2(t′′−t′) (29)

(30)

2. Consider taylor expanding L(q, q̇) about the classical value:

L = Lcl +

(
∂L
∂q

∆q +
∂L
∂q̇

∆q̇

)
qcl

+
1

2

(
∂2L
∂q2

∆q2 + 2
∂2L
∂q∂q̇

∆q̇∆q +
∂2L
∂q̇2

∆q̇2

)
qcl

+O(∆3)

(31)
The first variation vanishes; this is the statement that we are expanding around a
classical solution (saddle point of the action).

Now specialize to the free particle lagrangian, L = 1
2
mq̇2. The first two terms in the

second variation vanish in this case, and there are no terms of order δ3, but this isn’t
necessary for the general conclusions of this problem.

Let’s think about 〈q′′, t′′|q′, t′〉. We’re integrating over all paths taking us between
the two points, which is the same as integrating over all variations ∆q about the
classical path. As for the boundary conditions, we’re fixing q on the endpoints, which
is equivalent to fixing ∆q = 0 on the endpoints since we’re taking qcl to hit our desired
endpoints at the appropriate times.
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〈q′′, t′′|q′, t′〉 ∼
∫
q(t′)=q′, q(t′′)=q′′

DqeiL (32)

= eiLcl
∫

∆q(t′)=0,∆q(t′′)=0

D∆qei(∆
2+... ) (33)

(34)

In the free theory this is

= eiLcl
∫

∆q(t′)=0,∆q(t′′)=0

D∆qei
∆̇q

2

2m (35)

(36)

The only dependence on the endpoints appears in the prefactor Lcl, the action of the
classical trajectory from (q′, t′) to (q′′, t′′).

The second factor in this expression represents all the quantum physics correcting the
classical action for particle propagation.

3. |q, t〉 is defined to be the instantaneous eigenstate of the operator Q(t) in the heisen-
berg picture, Q(t)|q, t〉 = q|q, t〉, which evolves according to Q(t) = eiHtQ(0)e−iHt.
Computing Q(t)|q, t〉 = eiHtQ(0)e−iHt|q, t〉, we see that the state |q, t〉 = eiHt|q〉 will
satisfy Q(t)|q, t〉 = q|q, t〉. The active transformation of the operators Q is compatible
with the passive transformation of the basis states |q〉.

4. Srednicki 7.1. Factor the denominator in (7.12):

G(t− t′) = −
∫
dE

2π

e−iE(t−t′)

(E − (ω − iε))(E + (ω − iε))
(37)

To evaluate this via the method of contour integration, promote E to a complex vari-
able; then the function G has simple poles as E = ±(ω − iε), i.e. just below the real
axis at +ω and just above at −ω. When t > t′, evaluate the integral by closing the
contour in the lower half-plane, where the integrand remains finite if we take the arc
to infinity. This picks up the pole at +ω, and cauchy’s integral formula gives

G(t− t′) = −(−2πi)
e−iω(t−t′)

2ω(2π)
=

i

2ω
e−iω(t−t′) (38)

where the extra minus sign in the integral formula comes from choosing a clockwise
contour.

For t < t′, close the contour counterclockwise in the upper half-plane and pick up the
−ω pole to find

G(t− t′) =
i

2ω
e+iω(t−t′) (39)

which shows the claim.
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Consider the effect of a different choice of iεs. For example, we could have taken the
poles to lie below the real axis. Then whenever t < t′ and we close the contour in the
upper half-plane the green’s function vanishes; this is the retarded green’s function,
appropriate for describing the effect of a disturbance at time t′ on objects at a later
time t. Similarly choosing the poles to lie above the real axis gives the advanced green’s
function.

5. Srednicki 7.2. The only tricky part is evaluating ∂2
t |t− t′|, but this isn’t bad. Consider

acting with ∂t on |t − t′| when t < t′ and t > t′, this gives +1 in the first case and
−1 in the latter, so ∂t|t− t′|=sign(t− t′). The derivative of the sign function is twice
the dirac delta, which follows from writing the sign function as θ(t− t′)− θ(t′− t). So
∂2
t = 2δ(t− t′), and simple algebra gives the result.
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