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1. Srednicki 8.5. We want �
ret

to vanish for x0 � y0. When x0 � y0 we close the
contour in the lower half-plane and so we want to put the poles in the upper half
plane. Similarly for the advanced green’s function we should put the poles in the lower
half plane. There’s a discrepancy between this explanation and the discussion following
my solution to Srednicki 7.1, but this is just a question of definition. I call �

ret

the
green’s function that vanishes for x0  y0.

2. Srednicki 8.7. There is no trickery here. Fourier transform � and �† to perform the
x-integral in S0 =

R
dxL0. Couple to sources as in the hint, J†� + J�†. This leads to

a version of (8.7) with our new coupling to sources and replacing the term quadratic
in � by �†(k)(k2 +m2)�(�k). Define � exactly as in (8.8) and its conjugate �†. This
leads to (8.9) with J(k)J(�k) 7! J†(k)J(�k) and the same for �, which gives the free
complex scalar generating functional Z0 generalizing (8.10):

Z0[J, J
†] = exp


i

Z
dx dx0 J†(x)�(x� x0)J(x0)

�
(1)

where � is the feynman propagator.

Doing these manipulations allows us to compute J-functional derivatives of Z0, which
we know from the path integral form of Z0 gives us the time-ordered product of �s. The
only new bit is that we can take a J derivative to pull down a �† and a J† derivative
to pull down a �. Explicitly
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Now we want to compute objects like h0|T�1�2|0i. If you take a look at the form
of Z0[J, J

†] you’ll see that you need to take the same number of J derivatives as
J† derivatives to get anything that survives when you take the sources to zero. For
example, if you start with a �

J

† acting on Z0, you’ll pull down a �J , so you’ll have
to take a �

J

as well before taking the sources to zero. This tells us immediately that
h0|T�1�2|0i = h0|T�†

1�
†
2|0i = 0 and quick math gives h0|T�1�

†
2|0i = 1

i

�(x2 � x1).

Now let’s think about what happens when we have a bunch of operators in the time
ordered product. This means taking a bunch of J and J† derivatives of Z0 and setting
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sources to zero. Consider acting with some �
J

late in the sequence. It acts on a product
like eiJ�+...�J1 . . . , so it can either pair up with one of the previous J

i

s that have been
pulled down via �

J

† , or on the exponent, in which case it’ll have to be paired with a
later �

J

† . By the product rule, this means we have to sum over ways of matching up
the �s and �†s, giving us the only nontrivial matrix elements of free complex scalar
field theory:
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This is also wick’s theorem, because the contraction of any two �s =< T�� >= 0.

There isn’t much to be gained by working through the second-to-last sentence, it’s a
lot of algebra of a sort that you have already su↵ered through. Basically in the terms
you expect to vanish, creation operators annihilate h0| while annihilation operators
annihilate |0i, while < T��† > involves computing a commutator, performing the
integral and using the definition of the feynman propagator in terms of ✓ functions.

3. Srednicki 9.2.

a) There is a 4-point vertex from the �4 term, and the associated vertex factor is
4! (i)(��/24) = �i�. The factor of 4! comes from the 4! arrangements of the 4 �s,
the i from expiL and the ��/24 from L.

b) See attached sheet for drawings and explanation of the symmetry factors.

c) The lagrangian has a � 7! �� symmetry, so no terms that violate this symmetry will
be generated in the sum over diagrams, and we need not introduce counterterms
to cancel them. Since a linear, tadpole-cancelling term is not symmetric under
� 7! ��, we don’t need to introduce a linear counterterm.

Another way to see it is, the �’s always come in pairs in the lagrangian, so there’s
never just one left over to hook up to a source.

4. Srednicki 9.3.

a) The vertex contracts 2 �s and 2 �†s. The factor is (2! )2(�1)(i�/4) = ��, the two
2!s from the 2! ways of permuting the two �s and two �†s amongs themselves.
Draw arrows away from the vertex for the �†s and towards the vertex for the �s; in
this convention, all momenta are incoming, so the momentum of the �† goes in the
opposite direction of the arrow.

The fact that these arrows “flow” through the diagram such that incoming - out-
going arrows = 0 at every vertex reflects the existence of a U(1) symmetry under
which � 7! ei✓�, �† 7! e�i✓�. By nother’s theorem there is a corresponding con-
servation law, let’s call it particle number conservation. When an operator O goes
to eiq✓O under a symmetry, the operator is said to have charge q; in our example
� has charge (particle number) +1, while �† has particle number -1. Any state in
which the particle number is initially zero can only evolve to a state in which the
particle number also vanishes, unless the symmetry is broken.
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b) See attached sheet for drawings.
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