
Physics 221A: HW5 solutions

October 31, 2012

1. Srednicki 11.1. We want to compute the decay rate Γ for A → BB. Use equation
(11.48), and specialize to n = 2. The square of the matrix element is trivial, just
4g2 (note the symmetry factor because two equivalent JB derivatives act on the free
generating functional Z0[J ] when you do the perturbation expansion for the full Z[J ].)
All we have to do is caluclate

∫
dLIPS(k), which is actually done for you in Srednicki,

with the result (11.30). For us, however, |k′1| is not given by (11.3). Our four-momenta

satisfy k′1 + k′2 = kA; in the A rest frame this reads ~k′1 + ~k′2 = 0 and so E ′1 = E ′2 =
1
2
EA = mA

2
(these are external particle states, so we’re on shell.) So for (11.30) we get

dLIPS2(k) =

√
1−

(
mB/

mA

2

)2
8π2

dΩ (1)

Now use expression (11.49) to get the total decay rate; we get a 4π from the
∫
dΩ,

|T |2/2E1 = 4g2/2mA, and finally divide by the symmetry factor of 2 for the indistin-
guishable outgoing Bs. The result is

Γ =
g2

8πmA

√
1−

(
mB/

mA

2

)2
(2)

Part b follows from part a with very minor changes, you don’t have to divide by the
symmetry factor of 2 since χ and χ† are indistinguishable, but you have to divide by
four because the square of the matrix element is g2 not 4g2. So Γpart b = 1

2
Γpart a.

2. Srednicki 11.3.

a) This is just a trivial rearrangement of (11.53), nothing going on here.

b) (11.55) transforms as an (2,0) tensor under lorentz transformations, so it must be
some linear combination of the (2,0) tensors in the problem. The only available

tensors are kµkν and gµν . This is because ~k′12 are integrated over and k012 prime
are fixed by the mass-shell condition. To get the dimensions right, gµν must be
multiplied by k2; the squares of k′12 are fixed to zero, so they are of no use here.

c) This follows straightforwardly from (11.30). We know E ′1+E ′2 =
√
s (this is not the√

s of our physical process, which is the muon mass, this doesn’t matter because
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we’re not trying to compute a matrix element yet.) In the massless limit, |~k′1|= E ′1
so that

dLIPS2(k) =

√
s
2

16π2
√
s
dΩ (3)

⇒
∫
dLIPS2(k) =

1

8π
(4)

d) Contracting both sides of (11.55) with the metric gives∫
k1 · k2dLIPS2(k) = (4A+B)k2 (5)

while contracting with kµkν instead gives∫
(k1 · k)(k2 · k)dLIPS2(k) = (A+B)k4 (6)

From k21 = k22 = 0 we have k1 · k2 = k2/2. k = k1 + k2 in conjunction with
k212 = 0 gives k1 · k = k2 · k = k1 · k2. So we just get (k2/2)

∫
dLIPS2 for the

metric contraction, and (k2/2)2
∫
dLIPS2 for the other one. Some algebra then

gives A = 1
96π

, B = 1
48π

.

e) With all we’ve done this is now just some algebra; substitute (11.55) into (11.54)
with the A and B given above. You need to compute k1·k′3 = −mE3 and (k1−k′3)2 =
−m2 + 2mE3. After you do some algebra and

∫
dΩ, the dust shakes down and you

find

Γ =
G2
Fm

4π3

∫
dE3(m−

4

3
E3)E

2
3 (7)

dΓ

dE3

=
G2
Fm

4π3
(m− 4

3
E3)E

2
3 (8)

f) Now we need to figure out the bounds on E3, but this isn’t too hard. The minimum
is zero, because the electron can be sitting at rest if the neutrinos are emitted in
exactly opposite directions, and then E3 = m3 ≈ 0. The maximum occurs when
|k3| is maximized, which means the electron going in one direction, all the other

particles in the other direction. Then (E3, ~k3) + (Eother guys,−~k3) = (m, 0), but the
other guys are massless and so E3 = Eother guys = m/2. Performing the integral
you get the famous result

Γ =
G2
Fm

5

192π3
(9)

which allows you to determine Fermi’s constant experimentally from the measured
lifetime of the muon.

2



g) Plug in numbers to find GF = 1.164 × 10−5GeV−2, plus corrections from loops of
virtual particles.

3. Srednicki 11.4. All you have in this theory is a vertex where A, B and C all meet. You
want to draw the diagrams for 2→ 2 scattering at tree level.

Focus on the incoming particles; they can either be the same, or different. If they’re
different, say AB, then we can contract them into an ABC vertex, with the internal
C propagator going to the other vertex, where the outgoing particles are contracted.
This forces the outgoing particles to be AB as well. This rules out AB → AC and
tells us that AB → AB is allowed.

If they’re the same, say AA, then the incoming particles can’t be contracted together,
they have to be contracted with one of the outgoing particles; since we then string a
propagator between the two contractions, to get the tree level diagram, the outgoing
particles must be of the same type as each other, but not as the incoming particles,
e.g. BB or CC. This rules out everything remaining besides AA→ BB.

So the two nontrivial matrix elements at tree level, at least of the list we’re given,
are AA → BB and AB → AB. These are related by a symmetry called “crossing”
symmetry, which is easy to see from LSZ. LSZ distinguishes incoming states from
outgoing states only by the sign of the momentum in the fourier transform. Say we have
a process 12→ 34, which I’ll write 〈34|12〉, this tells us that 〈34|12〉 = 〈4|3†12〉 where
on the right hand side we’ve replaced the asymptotic creation/annihilation operator
a3(k3) acting on the T → +∞(1 − iε) vacuum with a†3(−k3) acting on the vacuum
at T → −∞(1 − iε). Likewise we have 〈34|12〉 = 〈2†4|3†1〉. LSZ makes no use of
perturbation theory, so this is a non-perturbative symmetry of the S-matrix.

Let 1 = 2 = A, and 3 = 4 = B. Then AA → BB is the same as AB → AB with
k2 ↔ −k3, i.e. with s↔ t and u the same. (see page 80 of srednicki for definitions of
the mandelstam variables.)

Now we just need to compute AA→ BB. We can contract either A with either B, so
the t and u channel diagrams contribute. These were computed for you in chapter 10,
ignoring the momentum-conserving delta function, the t and u channel diagrams are
the last two terms of (10.13). The relevant mass is that of C, which connects the two
contractions. So TAA→BB has cs = 0, ct = cu = 1. By the crossing symmetry described
above TAB→AB has ct = 0, cs = cu = 1.

3


