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1. Srednicki 14.5. The graph representing the divergent 1-loop contribution in real
scalar φ4 theory is the leftmost in figure 31.4 on page 195, plus the counterterm.
This calculation is similar to the one in chapter 14, where Srednicki calculates the
the second diagram of fig 31.4, relevant to theories with a three-point interaction.

Our calculation is actually easier than in chapter 14 because we only have one
loop propagator, thus only one denominator with a loop momentum in it, and
so you don’t need to use the Feynman trick to combine any denominators. The
computation is straightforward:

iΠ(k2) = −iλ
2

∫
ddl

(2π)d
1

i
∆(l2)− i(Ak2 +Bm2) + . . . (1)

where the presence of higher terms will always be implied. Analytically continuing
to imaginary l0 gives

iΠ(k2) = −iλ
2

∫
ddl̄

(2π)d
∆(l̄2)− iBm2 + . . . (2)

The integral is of the useful form (14.27) with a = 0 and b = 1, so

iΠ(k2) = −iλ
2

Γ(1− d/2)md−2

(4π)d/2
− i(Ak2 +Bm2) + . . . (3)

Of course the integral is not convergent in d = 4 and we need to take d = 4 − ε,
writing λ 7→ λµ̃ε so that the mass dimension of λ remains the same as before
we analytically continued in d. Expand using (14.26) and (14.33) and redefine
µ ≡
√

4πe−γ/2µ̃ to get

iΠ(k2) =
iλ

(4π)2

[
1

ε
+ log

µ

m
+

1

2

]
m2 − i(Ak2 +Bm2) + . . . (4)

from which our renormalization conditions giveA = O(λ2) andB = λ
(4π)2

[
1
ε

+ log µ
m

+ 1
2

]
.

The net result is simply Π(k2) = 0 to order λ: this is because the momentum k
doesn’t flow through the propagator at all. At two loops, order λ2, it is nonzero.

One remark on our renormalization scheme is in order. Our renormalization condi-
tions are Π(−m2) = Π′(−m2) = 0, which enforce that the propagator have a pole

1



at the physical particle mass, with unit residue. We really need the first for LSZ.
However if the residue is not 1, LSZ can be modified by dividing out the residue or
redefining the normalization of the field.

2. Srednicki 16.1. This is worked out (in the MSbar scheme) in chapter 31 of the
book. In our scheme, on-shell renormalization, we want V4 = −λ when s = 4m2,
t = u = 0. The relevant contributions to the amplitude are given by (31.8)

iV4 = −iZλλ+
1

2
(−iλ)2(

1

i
)2 [iF (−s) + iF (−t) + iF (−u)] +O(λ3) (5)

where iF is given by (31.9)

iF (k2) = µ̃ε
∫

ddl

(2π)d
1

((l + k)2 +m2)(l2 +m2)
(6)

=
i

16π2

[
2

ε
+

∫ 1

0

dx log(µ2/D)

]
(7)

with D = x(1− x)k2 +m2 (8)

The x-integral is easy to perform for the kinematic arrangement we use to impose
our renormalization condition. We’re interested in t = u = 0, it’s immediate to
compute

∫ 1

0
dx log(µ2/Dtu) = 2 log(µ/m). When we plug in k2 = −s = −4m2 we

get
∫ 1

0
dx log(µ2/Ds) = 2 log(µ/m) + 2. Putting it all together gives

iV4 = −(1 + C)iλ+
3iλ

(4π)2

[
1

ε
+ log

µ

m
+

1

3

]
+O(λ) (9)

and using the renormalization condition iV4|s=4m2 = −iλ we get

C =
3λ

(4π)2

[
1

ε
+ log

µ

m
+

1

3

]
(10)

3. Srednicki 16.2. The contributing diagrams are the same as in the previous problem,
but the symmetry factors are different. The s-channel has symmetry factor 2 as
before (for exchanging the loop lines) but the t and u have loop lines running in
different directions so now have symmetry factor 1. This means our iΠ(k2) will be
given by that of the previous problem except with double the contribution from the
t and u channels.

This gives

iV4 = −(1 + C)iλ+
5iλ

(4π)2

[
1

ε
+ log

µ

m
+

1

5

]
+O(λ) (11)

and using the renormalization condition iV4|s=4m2 = −iλ we get

C =
5λ

(4π)2

[
1

ε
+ log

µ

m
+

1

5

]
(12)
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