
Physics 221A: HW7 solutions

November 21, 2012

1. a) [ψ̄γµ∂µψ] = 2[ψ]− 1 = [L] = d⇒ [ψ] = (d− 1)/2 (compare a kinetic term with two
derivatives, as for a boson, then you get 2[φ]− 2 instead.)

b) [gn(ψ̄ψ)n] = d = [gn] + n · 2 · (d− 1)/2⇒ gn = d− n(d− 1)

c) [gmnφ
m(ψ̄ψ)n] = d = [gmn] + n · 2 · (d− 1)/2 + m · (d− 2)/2→ [gmn] = d−m(d−

2)/2− n(d− 1)

d) Using part b with d = 4 we see that [gn] = 4 − 3n ≤ 0 when n ≥ 2. Using part c
with d = 4, [gmn] = 4− 3n−m which is marginal for n = m = 1.

e) In d=2, [gn] = 2 − 3n and so no nonzero values are renormalizable. [gmn] = 2 − n
and so n = 1, 2 are renormalizable, as are any number of powers of X.

2. Consider a lagrangian of the form

L = −1

2
(∂µφ

i)2 − 1

2
mijφiφj − λijklφiφjφkφl (1)

where the φs are real scalar fields and the index i runs from 1 to N . We’ll work
out the real-space two and four-point functions. Ignoring the interactions for now,
the matrix mij is symmetric and so we can find some orthogonal V such that m is
diagonal in V φ. Assuming we have already done so, the first two terms are just the
sum of the free particle lagrangians for N real scalars, with masses mi. If any of the
masses mi are equal, the corresponding φi can be rotated into each other, an internal
SO(n) symmetry, where n ≤ N is the number of mi that are equal. There is also a
Z2 symmetry sending all the φi 7→ −φi, enlarging the symmetry group to O(n), but
this is a discrete transformation, unlike the infinitesimal kind that give us conserved
currents, so we usually call this an SO(n) symmetry. The Z2 reflection will have the
usual unitary action on the operators required by quantum mechanics, but no current
as it is not a continuous symmetry.

The internal symmetry is generically broken by the λijkl term, but it may so happen
that the couplings also respect the symmetry among some of the scalars. Luckily, this
is the case in our problem, as you can see by inspecting (22.10). Life is much easier
when you have symmetry.

First, let’s think a bit more generally about the current jµ = ∂L
∂(∂µφi)

δφi. Write δφi =

Tijφj where Tij is an element of the lie algebra of so(N), which consists of antisymmetric
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NxN matrices. Tij can be expanded in a basis for so(N) as Tij = −iωaT aij, where ij run
from 1 . . . N and a = 1 . . . dim so(N) where dim so(N) is the number of generators of
so(N). The sign is chosen for convenience, and the i ensures that the Tij are hermitian.
(You can always choose a basis for any compact Lie algebra in which all the generators
are hermitian. If the group is noncompact, you can always choose a basis in which
all the generators are either hermitian or antihermitian, but this leads to a negative-
definite term in the hamiltonian.)

So the current for a general SO(N) transformation looks like

ωaj
µa = −iωa

∂L
∂(∂µφi)

T aijφj (2)

Based on the general considerations above, if L does not involve derivative interactions
this gives for the current

jµa = iT aij∂
µφiφj (3)

where again ij tell us which scalar field and a tells us which generator of so(N).

Specializing to our case of N=2, we know that SO(2) has only one generator, which

if we want it to be hermitian we can write as T =

(
0 −i
i 0

)
. Plugging this into the

general expression (3) gives the current (22.16) for the SO(2) symmetry. The label a
is redundant because we have only one generator.

We want to verify the Ward identity (22.26) for this theory, for the special case n =
2; a1 = 1, a2 = 2. Since this is a path integral identity, it had better hold; the
only assumption we made was that our SO(N) rotation left the path integral measure
invariant, which turns out to be true in this case (though there was no a priori reason
to assume so.)

Write the Lagrangian L = −1
2
(∂µφ

i)2 − 1
2
mφiφi + O(λ). Let’s figure out

〈0|Tφaφb|0〉 ≡< φaφb > in this theory, where I am representing the “contraction” of
φa and φb with these funky angled brackets. The contraction of an operator product is
the product minus its normal-ordered part, i.e. the part with all the annihilation opera-
tors on the right. By construction, the normal-ordered part annihilates the interacting
ground state |0〉.

Use the usual trick of writing L 7→ L + Jiφi; then Z0[J ] = e
i
2

∫
dxdx′Ji(x)∆ij(x

′−x′′)Jj(x′).
Since the φi diagonalize the matrix mij, the ∆ij which solve (−∂2 + mij)∆ij(x −
y) = δ(x − y), will be diagonal ∆ij = δij∆i, where ∆i is the Feynman propagator
for a scalar of mass mi. This means that our Z0[J ] breaks up into a product of

e
i
2

∫
dxdx′Ji(x)∆i(x

′−x′′)Ji(x′)s, where i runs from 1 to N.

So the matrix element we want, 〈0|Tφaφb|0〉 = (1
i
δ
δJa

)(1
i
δ
δJb

)Z0|J=0

= (
1

i

δ

δJa
)(

1

i

δ

δJb
)
N∏
i=1

e
i
2

∫
dxdx′Ji(x)∆i(x

′−x′′)Ji(x′) =
1

i
∆b(xa − xb)δab =< φaφb > (4)
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where the δab comes from taking say the Jb derivative first and realizing that your Ja
derivative must hit the leftover Jb you pulled down along with ∆b.

This is actually all we need, because this notion of contractions will do the rest of
the work for us. Wick’s theorem tells us that the vacuum expectation value of a time-
ordered product of fields is equal to the sum of all possible contractions of the fields
in the product. This follows straightforwardly from the definition of contraction given
above, a time-ordered product separates out into its contraction and its normal-ordered
part, and the normal-ordered part annihilates |0〉.
So the VEV we want to compute is

〈0|T (φ1(x)∂φ2(x)− φ2(x)∂φ1(x))φ1(x1)φ2(x2)|0〉 (5)

(6)

=< φ1(x)φ1(x1) > ∂ < φ2(x)φ2(x2) > −(1↔ 2) (7)

=

(
1

i

)2

∆(x− x1)∂∆(x− x2)− (1↔ 2) (8)

This tells us that

∂ · 〈0|Tj(x)φ1φ2|0〉 =

(
1

i

)2

∆(x− x1)∂2∆(x− x2)− (1↔ 2) (9)

Now use (−∂2 −m2)∆(x) = δ(x) to write this as

∂ · 〈0|Tj(x)φ1φ2|0〉 =

(
1

i

)2

∆(x− x2)δ(x− x2)− (1↔ 2) (10)

You can immediately read off that this is equal to the right hand side of our ward
identity.

3. The first matrix element was discussed above, it is not modified to order λ0 by the
presence of interactions.

First, remember that when we calculate expectation values, we have to normalize
by dividing by the full partition function without any operator insertions. That is,
we want to divide by 〈0|0〉 = Z0[J ]Z1[J ]|J=0, which is the exponential of the sum
of disconnected diagrams. (Connected means that any point in the diagram can be
obtained by tracing along the diagram from one of the external points; or, any point
in the diagram is connected to one of the external legs.)

The argument is not hard if you draw a picture, and can be found for example in
section 4.4 of Peskin and Schroeder. A general diagram can be broken up into a
connected piece and a bunch of disconnected pieces. Let’s say ni of these discon-
nected pieces are the same, where i labels the different types of disconnected subgraphs
present in the diagram we care about; then the value of the full diagram is given by
(connected)·

∏
i

1
ni!

(Vi)
ni , where Vi is the value of the disconnected piece and the prefac-

tor is the symmetry factor. Then the time-ordered vev is given by the sum of all these
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diagrams =
∑

connected × exp(
∑

i Vi). There are no connected diagrams when we
don’t have any operator insertions, so 〈0|0〉 = exp(

∑
i Vi), dividing out the annoying

factor up top.

You already know the order-λ0 contribution to the two point function from the last
question.

The order-λ0 contribution to the four-point function has no internal φs, so

〈0|Tφaφbφcφd|0〉 =< ab >< cd > +2 other pairings +O(λ) (11)

To order λ0 this is

〈0|Tφaφbφcφd|0〉 =

(
1

i

)2

(δabδcd∆(xa − xb)∆(xc − xd) + 2 other pairings) (12)

Note that this is a disconnected contribution, so it will disappear when we divide
by the norm 〈0|0〉 to calculate the correlation function 〈φaφbφcφd〉. Diagrammatically,
this is just four points xa . . . xd given corresponding colors a . . . d, with two propagators
connecting different pairs of points, which get a δab∆(xa− xb) (say) if ab are linked by
a propagator.

Now we want to know the order λ contribution. Let’s focus on the connected part,
which is the only stuff that survives division by the norm of the vacuum state.

I will break up our interaction term into two pieces, corresponding to a four-point,
single-color interaction, or a four-point, two-color interaction. To make the counting
more transparent I’ll write the interaction lagrangian as Lint = −λ1c|φ|4−λ2c

∑
pairs φ

2
iφ

2
j .

To enforce our SO(N) symmetry we must have λ2c = 2λ1c, just consider rotating φ1

into φ2. Then we can write it as Lint = −λ(
∑

i φ
2
i )

2 = −λ(
∑

i φ
2
i )(
∑

j φ
2
j).

Let’s figure out the two-point correction. There are four internal φs, all from the first-
order expansion of eiSint , along with a λ

∫
dz. One of internal φs must contract with φa,

another with φb, which leaves two internal φs to contract amongst themselves forming
a loop. The diagram is just a loop inserted tangent to the propagator (so that the
interaction is four-point.)

So our time-ordered product is −iλ
∫
dz < az >< bz >< zz > times some counting

factor, where z has an index i or j we’ll have to be careful about. There are two
different contributions: we can either contract a and b to the same type of index (i or
j), or we can contract one with i and the other with j. Supposing we contract a with
a φi, there is one remaining way we could connect b to an i (giving a δaiδibδjj = Nδab),
where we got N=number of scalars terms from the sum of contractions of the φj. There
are four ways to contract a with any of the four internal φs, after which we are forced
to contract b with the adjacent φ. This is a diagram where a and b are the same color,
but the loop can be of any color, so we must sum over colors in the internal loop.

Now let’s say we contract a with i and b with j, then we get a δaiδbiδij = δab with no
sum over the colors. There are 8 ways to do this: if a contracts with i, there are two
choices for which a contracts with and two for which j b contracts with, and another
factor of two from i↔ j.
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Putting it all together,

〈φaφb〉 = −4(N + 2)iλδab

∫
dz∆(xa − z)∆(xb − z)∆(z − z) (13)

Now for the four-point function we have four external φs. Now the order λ term in
〈φaφbφcφd〉 is

〈0|Tφaφbφcφd

[∫
dz(−iλ)(

∑
i

φi(z)2)(
∑
j

φj(z)2)

]
|0〉C (14)

where the C means that every vertex is connected eventually to an external leg.

So let’s sit down and figure this guy out. It’s instructive to work out one term and use
counting to do the rest.

Let’s say a is contracted with the first φi. Then b, c, d can be contracted with either i
or j. There is also a factor of 2 from the symmetry in j. So this term schematically is∫
dz < ai > (< bi >< cj >< dj > + < bj >< ci >< dj > + < bi >< cj >< dj >) · 2,

where the contractions <> were defined above.

Now, we could have initially contracted a with any of the φs in the interaction term,
so we have four of these guys, and they’re all equal. Another way to do the counting
would be to note that we have two choices for the a contraction (i or j), a factor of 2
from the remaining symmetry in whichever of i or j we didn’t contract, and another
factor of 2 from contracting a with the other index (j or i), an overall factor of 8.

Noting that δaiδbi = δab, etc, we can just read off the correlator:

〈φaφbφcφd〉 = −8iλ(δabδcd + δacδbd + δadδbc)

∫
dz∆(xa− z)∆(xb− z)∆(xc− z)∆(xd− z)

(15)
This is our usual four-point vertex, with some extra indices taking care of the con-
servation of color charge. The amplitude for all colors being equal is three times the
amplitude when there are two different colors in the diagram.
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