
Physics 221A: HW7 solutions

December 7, 2012

1. Scale symmetry.

Suppose you have a quantum field theory, for which you have written down the path
integral Z =

∫
DφeiS[φ]. The action can be written in terms of a lagrangian density

(a functional of the fields φ labelled by spacetime points x) as S[φ] =
∫
dxL[φ(x)].

When a transformation leaves DφeiS[φ] unchanged, call it a symmetry. For now we’ll
assume that Dφ is unchanged and restrict our attention to the action, although there
are meaningful physical effects when Dφ changes.

When the symmetry is infinitesimal, Nother’s theorem guarantees a conserved current.
In (22.7) Srednicki rewrites the chain rule (22.1) for the variation δL in a useful way:

∂µj
µ = δL − δS

δφ
δφ (1)

where the quantity

jµ :=
δL
δ∂µφ

δφ (2)

is the first thing he calls the current. He obtains this in the intervening lines by using
the definition of the action to write the chain rule (22.1) as a total derivative plus stuff
that vanishes when you use the equations of motion. The equations of motion are

δS

δφ
= 0 (3)

so when δL = 0 the current j is conserved on shell, ∂µj
µ = 0. Now suppose δL 6= 0,

but instead it takes the general form

δL = ∂µK
µ + ∆ (4)

Rewriting the chain rule (22.1) with our new symbols,

δL = ∂µj
µ +

δS

δφ
δφ = ∂µK

µ + ∆ (5)

Now, if ∆ 6= 0, the action is not invariant, and we don’t have a symmetry:

δS =

∫
dxδL =

∫
dx(∂µK

µ + ∆) =

∫
dx∆ (6)
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by our boundary condition on the fields. However, ∆ = 0 transformations with Kµ 6= 0
are still symmetries, so we should be able to define a conserved current (this is indeed
the case for poincare symmetries as discussed in the chapter.) Define

jµnew = jµ −Kµ (7)

Then by construction
∂µj

µ
new = ∆ (8)

i.e. the current is conserved up to the term ∆ that cannot be written as a total
divergence; when ∆ vanishes jµnew is conserved, ∂µj

µ
ν = 0. This is the current of

(22.27).

There are “internal” symmetry transformations that leave x unchanged and map φ 7→
φ′ leaving the action unchanged, and also “spacetime” symmetries acting on the points
x of spacetime as well as the fields φ which also have δS = 0. The φ1, φ2 rotational
symmetry from the last homework was an example of internal symmetry; the poincare
group and scale symmetry (and more generally conformal symmetry) are examples of
spacetime symmetries. Let’s see how this works for the lorentz group. We’d like our
action to be lorentz-invariant, so we require∫

dx′L(x′) =

∫
dxL(x) (9)

when x′ = Λx for some Λ ∈ SO(3,1). The measure ddx is unchanged under x 7→ Λx
because |det Λ|= 1. This means that we need L(x) = L(Λx): in other words, the
lagrangian density must be lorentz invariant.

When there’s a scale symmetry, it is no longer true that the measure dx appearing in
S =

∫
dxL remains unchanged. The measure transfrorms as ddx 7→ ddx′ = `dddx. In

order for the action to remain invariant, we need the lagrangian density to transform
as

L(x′) = L(`x) = `−dL(x) (10)

i.e. the lagrangian “must have scaling dimension −d.” This means the lagrangian
density is not scale invariant, except for d=0.

Start off with the free massless real scalar lagrangian

L(x) = −1

2
{dµφ∂µφ = −1

2
|∂φ|2 (11)

The derivatives transform ∂
∂x′

= ∂
∂(`x)

= `−1∂, so φ has to transform as

φ′(x′) = φ(`x) = `−(d−2)/2φ(x) (12)

(i.e. φ has scaling dimension −(d− 2)/2) in order for the action to remain unchanged
under the scale transformation. This gives us the transformation rule for φ under
x 7→ x′, which is enough to do everything else.
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Taking ` = 1 + ε for ε very small, the scale transformation becomes infinitesimal, so
nother’s theorem guarantees you a conserved current. Using the transformation rule
for φ that we got by requiring the action to be invariant under scaling,

φ(x′) = φ((1 + ε)x) =
1

(1 + ε)(d−2)/2
φ(x) (13)

so that

δφ = φ(x′)−φ(x) = (1+ε)(d−2)/2φ((1+ε)x)−φ(x) = ε

(
d− 2

2
+ x · ∂

)
φ+O(ε2) (14)

As in (22.1) you can compute the change in the lagrangian density under an infinites-
imal transformation using the chain rule: δL = δL

δφ
δφ+ δL

δ∂φ
δ∂φ. Now,

∂µδφ = ε(d/2 + x · ∂)∂µφ (15)

so that
δL = −ε∂µφ(d/2 + x · ∂)∂µφ = ε∂µ(xµL) (16)

So

δS =

∫
dxδL =

∫
dx∂µ(xµL) = 0 (17)

using the boundary condition on the fields. This shows that we indeed have a infinites-
imal symmetry (∆ = 0) of the action, with Kµ = xµL.

Now let’s do an example with nonzero ∆. If you add a mass term, L = −1
2
|∂φ|2−1

2
m2φ2,

then it’s a line of algebra to show that

δL = ∂µ(xµL) +

(
d− 2

2

)
m2φ2 (18)

from which you can read off

∆ =

(
d− 2

2

)
m2φ2 (19)

This vanishes when m = 0 or d = 2: mass terms (for scalars) are actually not forbidden
by conformal invariance in d = 2. (Incidentally, you can have a conformal massive
scalar theory in curved space, by coupling the field to the ricci scalar with a term
∼ Rφ2, and choosing the coefficient of this term to cancel the conformal transformation
of the mass term. Also, if you’re confused, this scale vs. conformal stuff is a little
sloppy– basically, conformal combines poincare with scaling and inversions, but just
read “scale” when you see “conformal” for now.)

Following the procedure above you might wonder what other types of terms are allowed
by scale invariance, besides the kinetic term in any dimension and the mass term in
d = 2. Let’s restrict to self-interaction terms in a real scalar field theory that do not
contain derivatives. A general interaction term looks like − 1

n!
gnφ

n and under rescaling
maps to − 1

n!
gnφ

n`−n(d−2)/2, since each φ 7→ φ`−(d−2)/2. For scale invariance we need
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this term to go like `−d, which happens when n(d− 2)/2 = d, or 1
n

+ 1
d

= 1
2
. This gives

us some simple possibilities: φ6 in 3 dimensions, φ4 in 4 dimensions, φ3 in 6 dimensions.

It’s not hard to verify that the additional variation of the action when we include
the interaction term is a total divergence. Write Lint = − 1

n!
gnφ

n, then ∂µ(xµLint) =

− d
n!
gnφ

n − 1
(n−1)!gnφ

n−1(x · ∂)φ, which you can check is equal to δLint = δLint
δφ

δφ =

− n
n!
gnφ

n
(
d−2
2

+ (x · ∂)
)
φ iff n(d − 2)/2 = d, which we derived by power counting in

the previous paragraph. This includes the φ4 theory in 4 dimensions in the problem.

From the considerations above you can read off the current:

jµnew = −∂µφ
(
d− 2

2
+ x · ∂

)
φ− xµL (20)

We already computed ∆ = d−2
2
m2φ2, but the physical interpretation is that the failure

of the scale current to be conserved is proportionate to the mass of the field, which
violates scale invariance.

You can also compute the current by letting ε be spacetime-dependent in the infinitesi-
mal scale transformation; after you use the equations of motion you get δS =

∫
dxfµ∂µε

so fµ = −jµ is conserved for variations under which the action vanishes.

2. a) In d = 3, [φ] = 1/2 and we can have terms up to 6th order in the field without
losing renormalizability. The Z2 reflection symmetry requires that all powers be
even. L = −1

2
|∂φ|2−1

2
m2φ2 − a

4!
φ4 − b

6!
φ6

b) We need terms of up to 6th order, but now φ and φ† must be paired. The most gen-
eral renormalizable lagrangian is L = −∂µφ†∂µφ−m2φ†φ− g4

(2!)2
(φ†φ)2− g6

(3!)2
(φ†φ)3.

c) In addition to the stuff in part b) (which is Z6 invariant because the Z6 lives inside
the original U(1)) we can also have terms aφ6 + b(φ†)6; the Z6 does not mix φ and
φ† so the couplings are independent.

d) In d = 4, [φ] = 1 and we can have terms up to quartic. The Z2⊗Z2 action switches
the fields and switches their signs, but it doesn’t rotate them into each other. Each
φ1 term needs to have a corresponding φ2 term with the same coupling, but the cross
terms don’t have to be related to these couplings. L = −1

2
|∂φ1|2−1

2
|∂φ2|2−1

2
m2(φ2

1+
φ2
2)−

g2,2
(2!)2

φ2
1φ

2
2 −

g4
4!

(φ4
1 + φ4

2).

3. Write U ∈ Sp(2N,R) = eiθaT
a

where θa is infinitesimal and T a generates the algebra
sp(2N). Since U ∈ Sp(2N) it satisfies UJUT = J where J is the symplectic form

J =

(
0 IN
−IN 0

)
, IN being the NxN identity matrix. In other words U is a member

of Sp(2N) is if it preserves the symplectic form on 2N-dimensional euclidean space, just
like the lorentz group SO(3,1) consists of those matrices whose action by conjugation
preserves the minkowski metric ηµν . Using the taylor expansion of U and keeping only
terms linear in θ gives TJ + JT T = 0.
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Next write T =

(
A B
C D

)
where A,B,C,D are (for the moment) arbitrary NxN

matrices. The symplectic condition reads(
A B
C D

)(
0 IN
−IN 0

)
+

(
0 −IN
IN 0

)(
AT CT

BT DT

)
= 0 (21)

from which some matrix multiplication gives DT = A,B = BT , C = CT . These are our
conditions: T consists of those matrices with an arbitrary Gl(N) matrix in the upper
left block, its transpose in the lower right block, and two independent symmetric Gl(N)
matrices, one in the upper right block and the other in the lower left. We started with
4N2 degrees of freedom; DT = A removes N2 while e.g. B = BT is equivalent to
requiring that the antisymmetric part of B vanishes, N(N − 1)/2 conditions on the
matrix. Thus we are left with 4N2 −N2 − 2N(N − 1)/2 = 2N2 +N as the number of
independent generators of Sp(2N).

Last, show that the algebra of sp(2N) closes: we want to show that if TJ = −JT T and
T ′J = −J(T ′)T , then [T, T ′]J = −J [T, T ′]T . This isn’t hard:

[T, T ′]J = TT ′J − T ′TJ (22)

= −TJ(T ′)T + T ′JT T (23)

= JT T (T ′)T − J(T ′)TT T (24)

= −J [T, T ′]T (25)

4. This is mostly a matter of fitting Zφ, Zm, Zλ (field strength renomralization, mass
renormalization, 4-point vertex renormalization) for φ4 in 4 dimensions into the scheme
of chapter 28. I pulled the Zs out of chapter 31, where Srednicki uses the MSbar
scheme: Zφ = 1 +

∑ an(λ)
εn

= 1 + O(λ2), Zm = 1 +
∑ bn(λ)

εn
= 1 + λ

16π2
1
ε

+ O(λ2),

Zλ = 1 +
∑ cn(λ)

εn
= 1 + 3λ

16π2
1
ε

+O(λ2).

In the language of section 28, we have λ0 = ZλZ
−4
φ µελ and G = logZλZ

−4
φ which

gives G1 = 3λ
16π2 . The rest of the steps from (28.18) to (28.21) go through unchanged.

Calculate d log λ0
d log µ

using the definition above and write dλ
d logµ

= −ελ+β(λ). Now require
d log λ0
d log µ

to vanish as it must, because λ0 was defined without reference to µ whatsoever.

This gives us β(λ) = λ2G′1(λ) + · · · = 3λ2

16π2 +O(λ3).

Next, mass. logm0 = M + logm where M = logZ
1/2
m Z

−1/2
φ which gives M1 = λ

32π2 .

Then use (28.26): the vanishing log µ derivative of logm0 gives γm = d logm
d log µ

= λM ′
1 +

· · · = λ
32π2 +O(λ2).

Last, field strength. The bare propagator is ∆0 = Zφ∆. So γφ =
d log
√
Zφ

d logµ
=

∂ log
√
Zφ

∂λ
dλ

d log µ
= −1

2
λa′1 + · · · = O(λ2). The square root is convenient as

√
Zφφ = φ0.
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