Physics 221B
Quantum Field Theory
Winter 2015

Selected Homework 1 solutions

34.2 The all-spatial term was the messiest, lots of ways to organize it. Probably simplest is just to write the M commutator in terms of J's and K's, 33.11,.12,.13. Otherwise the space-space parts involve a mess of ϵ-tensor manipulations, for example $\epsilon^{i j m} \epsilon^{k l n}=$ $\delta^{i k} \delta^{j l} \delta^{m n}+\delta^{j k} \delta^{m l} \delta^{i n}+\delta^{m k} \delta^{j l} \delta^{i n}-\delta^{i k} \delta^{m l} \delta^{j n}-\delta^{j k} \delta^{i l} \delta^{m n}-\delta^{m k} \delta^{i l} \delta^{j n}$ (all permutations of $i j m$, with minus sign for anti-cyclic). Or take shortcuts by showing that e.g. [S^{12}, S^{13}] is the only nontrivial one, up to permutations.
35.4 Various ways to organize this. I'd write the LHS as

$$
\operatorname{Tr}\left(\epsilon \sigma^{\nu} \epsilon^{T} \sigma^{\mu T}\right)
$$

Now, easy to check that $\epsilon \sigma^{\nu}= \pm \sigma^{\nu T} \epsilon$, with $\mathrm{a}+\operatorname{sign}$ for $\nu=0$ and $\mathrm{a}-\operatorname{sign}$ for ν spacelike. Also, $\epsilon \epsilon^{T}=I$. So the trace becomes

$$
\pm \operatorname{Tr}\left(\sigma^{\nu T} \sigma^{\mu T}\right)=-2 g^{\mu \nu}
$$

a is easily checked. Some people derived the trace of 35.5 from 35.4. You would also need to argue (from Lorentz invariance) that the RHS is proportional to $g^{\mu \nu}$, and then 35.4 gives the normalization.
36.5 a) The kinetic term is invariant for $U_{j k}^{*} U_{j l}=\delta_{k l}$, or $U^{\dagger} U=I, U$ unitary. But the mass term requires $U_{j k} U_{j l}=\delta_{k l}$, or $U^{T} U=I, U$ orthogonal. Together these mean that U is orthogonal and real, $O(N)$.
d) The obvious symmetry is $U(N)$, but we know that N massless Dirac $=2 N$ massless Weyl, so it must be $U(2 N)$! Not so obvious in Dirac notation, the easiest way to show it is to write it in terms of Weyl fermions. Mark was throwing you a curve ball here! By the way, there is a 'chiral' $U(N) \times U(N) \subset U(2 N)$ that does come up a lot:

$$
\left(1+\gamma_{5}\right) \Psi_{j} \rightarrow\left(1+\gamma_{5}\right) U_{j k} \Psi_{k}, \quad\left(1-\gamma_{5}\right) \Psi_{j} \rightarrow\left(1-\gamma_{5}\right) V_{j k} \Psi_{k}
$$

This is what you will get (later in the course) for a massless Dirac fermion coupled to a gauge field.
e) By the same logic as part d, $U(N)$ is obvious but $O(2 N)$ is actually there.
6. Various ways to organize. I'd probably use $\gamma^{\mu} \gamma^{\nu}=-\gamma^{\nu} \gamma^{\mu}$ for $\mu \neq \nu$ and $g^{\mu \nu}$ for $\mu=\nu$ (from the basic anticommutation relation), and then commute through.
7. The adjoint of the Dirac equation $i \gamma^{\mu} \partial_{\mu} \Psi=m \Psi$ is $-i \partial_{\mu} \Psi^{\dagger} \gamma^{\mu \dagger}=m \Psi^{\dagger}$. Multiplying by β on the right you get

$$
-i \partial_{\mu} \Psi^{\dagger} \gamma^{\mu \dagger} \beta=-i \partial_{\mu} \Psi^{\dagger} \beta \gamma^{\mu}=-i \partial_{\mu} \bar{\Psi} \gamma^{\mu}=m \Psi^{\dagger} \beta=m \bar{\Psi}
$$

With this you can show conservation. (Some people just applied Noether's theorem, I had wanted you to practice the manipulations above).

