Physics 221B
Quantum Field Theory
Winter 2015

Selected Homework 3 solutions

1. a)

$$
(\bar{\Psi} X \Psi)^{*}=\left(\Psi^{\dagger} \beta X \Psi\right)^{*}=\Psi^{\dagger} X^{\dagger} \beta^{\dagger} \Psi=\Psi^{\dagger} \beta^{2} X^{\dagger} \beta \Psi=\bar{\Psi} \bar{X} \Psi
$$

and use 38.15. Also $U(\Lambda)^{-1} \Psi(x) U(\Lambda)=D(\Lambda) \Psi\left(\Lambda^{-1} x\right)$, so

$$
\begin{aligned}
U(\Lambda)^{-1} \bar{\Psi}(x) U(\Lambda) & =U(\Lambda)^{-1} \Psi(x)^{\dagger} U(\Lambda) \beta, \quad \text { mult. by spinor matrix commutes with mult. by operator } \\
& =\left(U(\Lambda)^{\dagger} \Psi(x) U(\Lambda)^{-1 \dagger}\right)^{\dagger} \beta, \quad A B C=\left(C^{\dagger} B^{\dagger} A^{\dagger}\right)^{\dagger} \\
& =\left(U(\Lambda)^{-1} \Psi(x) U(\Lambda)\right)^{\dagger} \beta, \quad U(\Lambda) \text { is unitary } \\
& =\Psi\left(\Lambda^{-1} x\right)^{\dagger} D(\Lambda)^{\dagger} \beta=\bar{\Psi}\left(\Lambda^{-1} x\right) \overline{D(\Lambda)} \\
& =\bar{\Psi}\left(\Lambda^{-1} x\right) D(\Lambda)^{-1}, \quad \overline{i S^{\mu \nu}}=-i \overline{S^{\mu \nu}}=-i S^{\mu \nu}
\end{aligned}
$$

(This should be in Srednicki but I could not find it.) Then

$$
U(\Lambda)^{-1} \bar{\Psi}(x) X \Psi(x) U(\Lambda)=\bar{\Psi}\left(\Lambda^{-1} x\right) D(\Lambda)^{-1} X D(\Lambda) \Psi\left(\Lambda^{-1} x\right)
$$

Finally, γ_{5} commutes with $S^{\mu \nu}$ and so with $D(\Lambda)$.
b)

$$
P^{-1} \bar{\Psi} \gamma_{5} \Psi P=\bar{\Psi} \gamma^{0} \gamma_{5} \gamma^{0} \Psi=-\bar{\Psi} \gamma_{5} \gamma^{0} \gamma^{0} \Psi=-\bar{\Psi} \gamma_{5} \Psi
$$

c) Write

$$
m_{1}+i m_{2} \gamma_{5}=\left(m_{1}+i m_{2}\right) P_{L}+\left(m_{1}-i m_{2}\right) P_{R}
$$

since $P_{L, R}$ project onto eigenspaces of γ_{5}. Defining $m_{1}+i m_{2}=e^{i \phi} m$ for m real, we have

$$
\mathcal{L}=i \bar{\Psi}_{L} \gamma^{\mu} \partial_{\mu} \Psi_{L}+i \bar{\Psi}_{R} \gamma^{\mu} \partial_{\mu} \Psi_{R}-m e^{-i \phi} \bar{\Psi}_{R} \Psi_{L}-m e^{i \phi} \bar{\Psi}_{L} \Psi_{R}
$$

where $\Psi_{L, R}=P_{L, R} \Psi$. You should check that the last equation is correct.
Then a field redefinition $\Psi_{L}^{\prime}=e^{-i \phi} \Psi_{L}$ leaves the kinetic term invariant and changes the mass term to $m\left(\bar{\Psi}_{R}^{\prime} \Psi_{L}^{\prime}+e^{i \phi} \bar{\Psi}_{L}^{\prime} \Psi_{R}^{\prime}\right)=m \bar{\Psi}^{\prime} \Psi^{\prime}$, which is invariant under the ordinary parity transformation on Ψ^{\prime}. The redefinition $\Psi_{L}^{\prime}=e^{-i \phi / 2} \Psi_{L}, \Psi_{R}^{\prime}=e^{+i \phi / 2} \Psi_{R}$ does the same thing. It can be conveniently written as

$$
\Psi^{\prime}=e^{-i \phi \gamma_{5} / 2} \Psi=\left(\cos \phi / 2-i \gamma_{5} \sin \phi / 2\right) \Psi
$$

Or, instead of redefining the field, we could redefine the transformation. P takes $m_{2} \rightarrow$ $-m_{2}$ and so $\phi \rightarrow-\phi$. So combine P with a symmetry rotation $Z^{-1} \Psi_{L} Z=e^{-2 i \phi} \Psi_{L}$, $Z^{-1} \Psi_{R} Z=\Psi_{R}$, and $P Z$ leaves \mathcal{L} invariant.

Note that the field redefinition is part of the $U(1) \times U(1)$ symmetry described in the solution to 36.5 , HW $\# 1$, which was in turn part of the full $U(2)$ symmetry of the massless theory. Since your field redefinition must leave the kinetic term invariant, it must be part of this $U(2)$. Some people wrote down transformations that did the desired thing to the mass term, but did not leave the kinetic term invariant.
d) We need that $\left(m_{1}+i m_{2}\right)\left(g_{1}-i g_{2}\right)$ is real in order to make both terms invariant at once. That is $m_{1} g_{2}=m_{2} g_{1}$.
e) Let's redefine the field so that $m_{2}=0$ but $g_{2} \neq 0$. According to Srednicki 40.40 and 40.47, the g_{2} term will be invariant under C but not $T . P$ and T each flip its sign, so $P T$ and $C P T$ are symmetries.
2. a)

$$
\left\{b_{i}^{+}, b_{j}^{-}\right\}=-\delta^{i j}, \quad\left\{b_{i}^{+}, b_{j}^{+}\right\}=\left\{b_{i}^{-}, b_{j}^{-}\right\}=0
$$

I should have included an extra i in the definition to get rid of the - sign.
b) If for any $|\psi\rangle, b_{i}^{-}\left(b_{1}^{-} b_{2}^{-}|\psi\rangle\right)=0$, by (a). So $b_{1}^{-} b_{2}^{-}|\psi\rangle$ has the desired property, unless it vanishes. If it does vanish, then one of $b_{1}^{-}|\psi\rangle, b_{2}^{-}|\psi\rangle$, or $|\psi\rangle$ itself is nonvanishing with that property.
c) By the anticommutation relations,

$$
b_{1}^{+}\left(u_{0}, b_{1}^{+} u_{0}, b_{2}^{+} u_{0}, b_{1}^{+} b_{2}^{+} u_{0}\right)=\left(b_{1}^{+} u_{0}, 0, b_{1}^{+} b_{2}^{+} u_{0}, 0\right),
$$

so

$$
b_{1}^{+}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] .
$$

Similarly,

$$
b_{1}^{-}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad b_{2}^{+}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \quad b_{2}^{-}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Then solve for γ^{μ} and γ_{5} from the definitions. By the way, this can be used to construct the γ matrices in any number of dimensions, it is essentially what is done in vol. 2, appendix B. 1 of my book.

