
Selected Homework 4 solutions

Comments added 2/22 marked update.

1. a) Let parity flip the 1-direction. Then D(P ) must commute with γ0, γ2 and

anticommute with γ1. Noting that γ0γ1γ2 = −iI, this requires it to anticommute with

the identity I. This is impossible. Similarly D(T ) must also commute with γ0, γ2 and

anticommute with γ1 (* flips γ2, T flips γ0, and − flips all three), again impossible. But C
anticommutes with γ0, γ2 and commutes with γ1. So C = γ1 works.

b) If we consider the combination of P and T , part (a) implies that D(PT ) commutes

with all the γµ, so PT is a symmetry with D(PT ) = 1. The adjoint of this (using unitarity,

Θ† = Θ−1) is D(Θ) = C = γ1, this should work. Let’s see this more systematically:

Θ−1Ψ(x)Θ = D(Θ)ΨT(x′) ,

where x′ = PT x. Then

Θ−1Ψ†(x)Θ = ΨT(x′)βD(Θ)† , Θ−1Ψ(x)Θ = ΨT(x′)βD(Θ)†β .

Then

Θ−1
(
iΨ(x)γµ∂µΨ(x) +mΨ(x)Ψ(x)

)
Θ

= −iΘ−1Ψ(x)Θ γµ∗∂µ Θ−1Ψ(x)Θ +mΘ−1Ψ(x)ΘΘ−1Ψ(x)Θ

= −iΨT(x′)βD(Θ)†βγµ∗D(Θ)∂µΨT(x′) +mΨT(x′)βD(Θ)†βD(Θ)ΨT(x′)

The second line used antilinearity of Θ and the third uses the previous results. Now

transposing,

= i∂µΨ(x′)D(Θ)Tγµ†βD(Θ)∗βΨ(x′)−mΨ(x′)D(Θ)TβD(Θ)∗βΨ(x′)

= −iΨ(x′)D(Θ)Tγµ†βD(Θ)∗β(PT )µ
ν∂′νΨ(x′)−mΨ(x′)D(Θ)TβD(Θ)∗βΨ(x′) .

In the final line we integrate by parts, and then change from ∂µ to ∂′µ. From the mass term

we need

D(Θ)TβD(Θ)∗β = −1

so βD(Θ)∗β = −(D(Θ)T)−1. From the kinetic term we then need

D(Θ)Tγµ†(D(Θ)T)−1(PT )µ
ν = γν .

This works out to a + for µ = 1 and a − for µ = 0, 2. These conditions are indeed satisfied

by D(Θ)T = −γ1, D(Θ) = γ1 (the sign is arbitrary). If you defined parity to flip x2 you’d

get γ2 instead.
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c) The Dirac matrices have two components, half as many as in 4 dimensions, so we

get one particle state and one antiparticle state. Let us suppose that the particle state has

S12 = +1
2
. From the figure, we see that P (flipping the 1-direction) and T both reverse

the spin, taking the S12 = +1
2

particle to an S12 = −1
2

particle. But there is no such

state in the spectrum, so these can’t be symmetries. PT takes an S12 = +1
2

particle to an

S12 = +1
2

particle, and is a symmetry. CPT takes an S12 = +1
2

particle to an S12 = +1
2

antiparticle. This must be a symmetry, so the antiparticle must have S12 = +1
2

as in the

corrected homework. For a Majorana field, the particle and antiparticle are the same state.

d) Massless: the matrix D(P ) = γ1 works (γ2 if your parity flips x2).

2. a) Copying the 4d case

Ψ(x) = u(p)eipx + v(p)e−ipx ,

0 = (p/+m)u =

[
m p1 − p0

−p1 − p0 m

]
u , u =

[
(p0 − p1)1/2
(p0 + p1)1/2

]
,

0 = (p/−m)v =

[
−m p1 − p0

−p1 − p0 −m

]
v , v =

[
(p0 − p1)1/2
−(p0 + p1)1/2

]
.

I have normalized these so that uu = 2m, vv = −2m by analogy to 4d. You can also see

that

uū = m− p/ , vv̄ = −m− p/ .

b,c) The full expansion would be

Ψ(x) =

∫
dp1

4πω

(
b(p)u(p)eipx + d†(p)v(p)e−ipx

)
.

Following exactly as in 4d,

{Ψα(~x, t),Ψβ(~y, t)} = γ0αβδ(~x− ~y) , {b(~p), b†(~p′)} = 4πωδ(~p− ~p′) = {d(~p), d†(~p′)} ,

with other anticommutators vanishing.

d) Just as in 4d, the matrix element is

−i
∫

d2p

(2π)2
eipx

m− p/
p2 +m2 − iε

= θ(x0)

∫ ∞
−∞

dp1

4πω
eip

1x1−iωx0(m+ γ0ω − γ1p1)
∣∣∣∣
ω=
√

(p1)2+m2)

− θ(−x0)
∫ ∞
−∞

dp1

4πω
e−ip

1x1+iωx0(−m+ γ0ω − γ1p1)
∣∣∣∣
ω=
√

(p1)2+m2)

.
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I’ve set y = 0 to simplify, you can restore it by x→ x− y. In the massless case, ω = |p1|,
so we get

θ(x0)

∫ ∞
−∞

dp1

4π
eip

1x1−i|p1|x0(γ0 − γ1s1)− θ(−x0)
∫ ∞
−∞

dp1

4π
e−ip

1x1+i|p1|x0(γ0 − γ1s1) .

Here s1 ≡ sign(p1). Separate each into two integrals, p1 < 0 and p1 > 0, and use∫ ∞
0

dk eikx = lim
ε→0

i

x+ iε
,

∫ 0

−∞
dk eikx = lim

ε→0

−i
x− iε

.

to get the final result

i(γ0 − γ1)
4π(x1 − x0 + iεs0)

+
−i(γ0 + γ1)

4π(x1 + x0 − iεs0)
=

i

2π

x/

x2 − iε
, (1)

where s0 ≡ sign(x0). You can check that the final ε prescription follows as stated after

combining denominators. (The ε→ 0 limit is implicit.)

The integral was a bit tricky to get straight. For example, if you used ω = p1 instead of

|p1| you’d get delta functions. Note that the final form is nicely covariant. As it typical in

massless field theories, the time-ordered correlator is essentially a power of the separation.

Update: Only a few people got close to (1), but no one got the ε’s. Note that they

are important. e.g.
1

x± iε
=
P

x
∓ iπδ(x) .

So there is a delta-function piece on the light-cone, which you only get correctly by keeping

the ε’s.

3. e+e+ → e+e+ is e−e− → e−e− (eq. 45.24) with ui → v′i and ū→ v̄′i.

ϕϕ → e+e− is e+e− → ϕϕ (eq. 45.23) with u → v′ and v̄ → ū′, and pi → −p′i,
k′i → −ki.

4. Labeling the interaction vertices r1,2,3,4 clockwise from the upper right, we have

(−i)8(ig)4
∫
d4×4r∆(r1−r2)∆(r3−r4)[S(x−r1)S(r1−r4)S(r4−y)]αβ[S(z−r2)S(r2−r3)S(r4−w)]γδ

−(x, α↔ z, γ) . (2)

Update: Note that there is no symmetry factor: in a Green function the external lines

are distinguishable, since the positions x, y, z, w are generically distinct.

There is also a crossed-ladder graph, which is distinct and I hadn’t meant to include

it, but it would be part of the full amplitude and some people did. You can draw it by
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crossing the two scalar lines to make an X, or keep the scalars uncrossed but reverse the

direction of the lower line.

Some people wrote it in momentum space (sorry, I didn’t specify).
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