Selected Homework 4 solutions

Comments added 2/22 marked update.

1. a) Let parity flip the 1 -direction. Then $D(P)$ must commute with γ^{0}, γ^{2} and anticommute with γ^{1}. Noting that $\gamma^{0} \gamma^{1} \gamma^{2}=-i I$, this requires it to anticommute with the identity I. This is impossible. Similarly $D(T)$ must also commute with γ^{0}, γ^{2} and anticommute with γ^{1} (* flips γ^{2}, \mathcal{T} flips γ^{0}, and - flips all three), again impossible. But \mathcal{C} anticommutes with γ^{0}, γ^{2} and commutes with γ^{1}. So $\mathcal{C}=\gamma^{1}$ works.
b) If we consider the combination of P and T, part (a) implies that $D(P T)$ commutes with all the γ^{μ}, so $P \mathrm{~T}$ is a symmetry with $D(P T)=1$. The adjoint of this (using unitarity, $\left.\Theta^{\dagger}=\Theta^{-1}\right)$ is $D(\Theta)=\mathcal{C}=\gamma^{1}$, this should work. Let's see this more systematically:

$$
\Theta^{-1} \Psi(x) \Theta=D(\Theta) \bar{\Psi}^{\mathrm{T}}\left(x^{\prime}\right)
$$

where $x^{\prime}=\mathcal{P} \mathcal{T} x$. Then

$$
\Theta^{-1} \Psi^{\dagger}(x) \Theta=\Psi^{\mathrm{T}}\left(x^{\prime}\right) \beta D(\Theta)^{\dagger}, \quad \Theta^{-1} \bar{\Psi}(x) \Theta=\Psi^{\mathrm{T}}\left(x^{\prime}\right) \beta D(\Theta)^{\dagger} \beta
$$

Then

$$
\begin{aligned}
& \Theta^{-1}\left(i \bar{\Psi}(x) \gamma^{\mu} \partial_{\mu} \Psi(x)+m \bar{\Psi}(x) \Psi(x)\right) \Theta \\
= & -i \Theta^{-1} \bar{\Psi}(x) \Theta \gamma^{\mu *} \partial_{\mu} \Theta^{-1} \Psi(x) \Theta+m \Theta^{-1} \bar{\Psi}(x) \Theta \Theta^{-1} \Psi(x) \Theta \\
= & -i \Psi^{\mathrm{T}}\left(x^{\prime}\right) \beta D(\Theta)^{\dagger} \beta \gamma^{\mu *} D(\Theta) \partial_{\mu} \bar{\Psi}^{\mathrm{T}}\left(x^{\prime}\right)+m \Psi^{\mathrm{T}}\left(x^{\prime}\right) \beta D(\Theta)^{\dagger} \beta D(\Theta) \bar{\Psi}^{\mathrm{T}}\left(x^{\prime}\right)
\end{aligned}
$$

The second line used antilinearity of Θ and the third uses the previous results. Now transposing,

$$
\begin{aligned}
& =i \partial_{\mu} \bar{\Psi}\left(x^{\prime}\right) D(\Theta)^{\mathrm{T}} \gamma^{\mu \dagger} \beta D(\Theta)^{*} \beta \Psi\left(x^{\prime}\right)-m \bar{\Psi}\left(x^{\prime}\right) D(\Theta)^{\mathrm{T}} \beta D(\Theta)^{*} \beta \Psi\left(x^{\prime}\right) \\
& =-i \bar{\Psi}\left(x^{\prime}\right) D(\Theta)^{\mathrm{T}} \gamma^{\mu \dagger} \beta D(\Theta)^{*} \beta(\mathcal{P} \mathcal{T})_{\mu}^{\nu} \partial_{\nu}^{\prime} \Psi\left(x^{\prime}\right)-m \bar{\Psi}\left(x^{\prime}\right) D(\Theta)^{\mathrm{T}} \beta D(\Theta)^{*} \beta \Psi\left(x^{\prime}\right) .
\end{aligned}
$$

In the final line we integrate by parts, and then change from ∂_{μ} to ∂_{μ}^{\prime}. From the mass term we need

$$
D(\Theta)^{\mathrm{T}} \beta D(\Theta)^{*} \beta=-1
$$

so $\beta D(\Theta)^{*} \beta=-\left(D(\Theta)^{\mathrm{T}}\right)^{-1}$. From the kinetic term we then need

$$
D(\Theta)^{\mathrm{T}} \gamma^{\mu \dagger}\left(D(\Theta)^{\mathrm{T}}\right)^{-1}(\mathcal{P} \mathcal{T})_{\mu}{ }^{\nu}=\gamma^{\nu}
$$

This works out to $\mathrm{a}+$ for $\mu=1$ and $\mathrm{a}-$ for $\mu=0,2$. These conditions are indeed satisfied by $D(\Theta)^{\mathrm{T}}=-\gamma^{1}, D(\Theta)=\gamma^{1}$ (the sign is arbitrary). If you defined parity to flip x^{2} you'd get γ^{2} instead.
c) The Dirac matrices have two components, half as many as in 4 dimensions, so we get one particle state and one antiparticle state. Let us suppose that the particle state has $S_{12}=+\frac{1}{2}$. From the figure, we see that P (flipping the 1-direction) and T both reverse

the spin, taking the $S_{12}=+\frac{1}{2}$ particle to an $S_{12}=-\frac{1}{2}$ particle. But there is no such state in the spectrum, so these can't be symmetries. $P T$ takes an $S_{12}=+\frac{1}{2}$ particle to an $S_{12}=+\frac{1}{2}$ particle, and is a symmetry. $C P T$ takes an $S_{12}=+\frac{1}{2}$ particle to an $S_{12}=+\frac{1}{2}$ antiparticle. This must be a symmetry, so the antiparticle must have $S_{12}=+\frac{1}{2}$ as in the corrected homework. For a Majorana field, the particle and antiparticle are the same state.
d) Massless: the matrix $D(P)=\gamma^{1}$ works (γ^{2} if your parity flips x^{2}).
2. a) Copying the 4 d case

$$
\begin{gathered}
\Psi(x)=u(p) e^{i p x}+v(p) e^{-i p x}, \\
0=(\not p+m) u=\left[\begin{array}{cc}
m & p^{1}-p^{0} \\
-p^{1}-p^{0} & m
\end{array}\right] u, \quad u=\left[\begin{array}{c}
\left(p^{0}-p^{1}\right)^{1 / 2} \\
\left(p^{0}+p^{1}\right)^{1 / 2}
\end{array}\right], \\
0=(\not p-m) v=\left[\begin{array}{cc}
-m & p^{1}-p^{0} \\
-p^{1}-p^{0} & -m
\end{array}\right] v, \quad v=\left[\begin{array}{c}
\left(p^{0}-p^{1}\right)^{1 / 2} \\
-\left(p^{0}+p^{1}\right)^{1 / 2}
\end{array}\right] .
\end{gathered}
$$

I have normalized these so that $\bar{u} u=2 m, \bar{v} v=-2 m$ by analogy to $4 d$. You can also see that

$$
u \bar{u}=m-\not p, \quad v \bar{v}=-m-\not p .
$$

b, c) The full expansion would be

$$
\Psi(x)=\int \frac{d p^{1}}{4 \pi \omega}\left(b(p) u(p) e^{i p x}+d^{\dagger}(p) v(p) e^{-i p x}\right) .
$$

Following exactly as in 4 d ,

$$
\left\{\Psi_{\alpha}(\vec{x}, t), \bar{\Psi}_{\beta}(\vec{y}, t)\right\}=\gamma_{\alpha \beta}^{0} \delta(\vec{x}-\vec{y}), \quad\left\{b(\vec{p}), b^{\dagger}\left(\vec{p}^{\prime}\right)\right\}=4 \pi \omega \delta\left(\vec{p}-\vec{p}^{\prime}\right)=\left\{d(\vec{p}), d^{\dagger}\left(\vec{p}^{\prime}\right)\right\},
$$

with other anticommutators vanishing.
d) Just as in 4 d , the matrix element is

$$
\begin{aligned}
-i \int \frac{d^{2} p}{(2 \pi)^{2}} e^{i p x} \frac{m-\not p}{p^{2}+m^{2}-i \epsilon} & =\left.\theta\left(x^{0}\right) \int_{-\infty}^{\infty} \frac{d p^{1}}{4 \pi \omega} e^{i p^{1} x^{1}-i \omega x^{0}}\left(m+\gamma^{0} \omega-\gamma^{1} p^{1}\right)\right|_{\omega=\sqrt{\left.\left(p^{1}\right)^{2}+m^{2}\right)}} \\
& -\left.\theta\left(-x^{0}\right) \int_{-\infty}^{\infty} \frac{d p^{1}}{4 \pi \omega} e^{-i p^{1} x^{1}+i \omega x^{0}}\left(-m+\gamma^{0} \omega-\gamma^{1} p^{1}\right)\right|_{\omega=\sqrt{\left.\left(p^{1}\right)^{2}+m^{2}\right)}}
\end{aligned}
$$

I've set $y=0$ to simplify, you can restore it by $x \rightarrow x-y$. In the massless case, $\omega=\left|p^{1}\right|$, so we get

$$
\theta\left(x^{0}\right) \int_{-\infty}^{\infty} \frac{d p^{1}}{4 \pi} e^{i p^{1} x^{1}-i\left|p^{1}\right| x^{0}}\left(\gamma^{0}-\gamma^{1} s^{1}\right)-\theta\left(-x^{0}\right) \int_{-\infty}^{\infty} \frac{d p^{1}}{4 \pi} e^{-i p^{1} x^{1}+i\left|p^{1}\right| x^{0}}\left(\gamma^{0}-\gamma^{1} s^{1}\right) .
$$

Here $s^{1} \equiv \operatorname{sign}\left(p^{1}\right)$. Separate each into two integrals, $p_{1}<0$ and $p_{1}>0$, and use

$$
\int_{0}^{\infty} d k e^{i k x}=\lim _{\epsilon \rightarrow 0} \frac{i}{x+i \epsilon}, \quad \int_{-\infty}^{0} d k e^{i k x}=\lim _{\epsilon \rightarrow 0} \frac{-i}{x-i \epsilon}
$$

to get the final result

$$
\begin{equation*}
\frac{i\left(\gamma^{0}-\gamma^{1}\right)}{4 \pi\left(x^{1}-x^{0}+i \epsilon s^{0}\right)}+\frac{-i\left(\gamma^{0}+\gamma^{1}\right)}{4 \pi\left(x^{1}+x^{0}-i \epsilon s^{0}\right)}=\frac{i}{2 \pi} \frac{\not x}{x^{2}-i \epsilon}, \tag{1}
\end{equation*}
$$

where $s^{0} \equiv \operatorname{sign}\left(x^{0}\right)$. You can check that the final ϵ prescription follows as stated after combining denominators. (The $\epsilon \rightarrow 0$ limit is implicit.)

The integral was a bit tricky to get straight. For example, if you used $\omega=p^{1}$ instead of $\left|p^{1}\right|$ you'd get delta functions. Note that the final form is nicely covariant. As it typical in massless field theories, the time-ordered correlator is essentially a power of the separation.

Update: Only a few people got close to (1), but no one got the ϵ 's. Note that they are important. e.g.

$$
\frac{1}{x \pm i \epsilon}=\frac{P}{x} \mp i \pi \delta(x) .
$$

So there is a delta-function piece on the light-cone, which you only get correctly by keeping the ϵ 's.
3. $e^{+} e^{+} \rightarrow e^{+} e^{+}$is $e^{-} e^{-} \rightarrow e^{-} e^{-}$(eq. 45.24) with $u_{i} \rightarrow v_{i}^{\prime}$ and $\bar{u} \rightarrow \bar{v}_{i}^{\prime}$.
$\varphi \varphi \rightarrow e^{+} e^{-}$is $e^{+} e^{-} \rightarrow \varphi \varphi$ (eq. 45.23) with $u \rightarrow v^{\prime}$ and $\bar{v} \rightarrow \bar{u}^{\prime}$, and $p_{i} \rightarrow-p_{i}^{\prime}$, $k_{i}^{\prime} \rightarrow-k_{i}$.
4. Labeling the interaction vertices $r_{1,2,3,4}$ clockwise from the upper right, we have

$$
\begin{align*}
& (-i)^{8}(i g)^{4} \int d^{4 \times 4} r \Delta\left(r_{1}-r_{2}\right) \Delta\left(r_{3}-r_{4}\right)\left[S\left(x-r_{1}\right) S\left(r_{1}-r_{4}\right) S\left(r_{4}-y\right)\right]_{\alpha \beta}\left[S\left(z-r_{2}\right) S\left(r_{2}-r_{3}\right) S\left(r_{4}-w\right)\right]_{\gamma \delta} \\
& -(x, \alpha \leftrightarrow z, \gamma) . \tag{2}
\end{align*}
$$

Update: Note that there is no symmetry factor: in a Green function the external lines are distinguishable, since the positions x, y, z, w are generically distinct.

There is also a crossed-ladder graph, which is distinct and I hadn't meant to include it, but it would be part of the full amplitude and some people did. You can draw it by
crossing the two scalar lines to make an X , or keep the scalars uncrossed but reverse the direction of the lower line.

Some people wrote it in momentum space (sorry, I didn't specify).

