
Selected Homework 5 solutions

2. Note that these 16 matrices represent all products of 0,1,2,3, or 4 γ matrices, e.g we

could write them alternately as

Γabcd = (γ0)a(γ1)b(γ2)c(γ3)d

for a, b, c, d = 0, 1. Now, Tr(Γabcd) vanishes unless a = b = c = d = 0, using known

results. (Explicit argument: Tr(X) vanishes if there is any Y such that Y 2 = αI, with α a

nonzero constant, and XY = −Y X, because Tr(X) = α−1Tr(Y 2X)
anticom

= −α−1 Tr(Y XY )
cyclic
= −α−1Tr(Y 2X) = − Tr(X). For any case except a = b = c = d = 0 you can find such

a Y : if a+ b+ c+ d is even, take any of the γµ that has exponent 1, and if a+ b+ c+ d is

odd, take any of the γµ that has exponent 0.)

But also

ΓabcdΓa
′b′c′d′ = ±Γa+a

′,b+b′,c+c′,d+d′ ,

(exponents mod 2)using the anticommutation relations. So Tr(ΓabcdΓa
′b′c′d′) vanishes unless

(a, b, c, d) = (a′, b′, c′, d′). If any of these matrices could be written as a linear combination

of the others, there would be a discrepancy. So we have 24 = 42 linearly indendent matrices.

This works in any even number of dimensions: 2d = (2d/2)2.

3. a) Labeling the momenta k → p′1, p
′
2 for ϕ → e−e+, we have T = gūs′1(p

′
1)vs′2(p

′
2).

Then ∑
spins

|T |2 = g2Tr[(m− p/′1)(−m− p/′2)] = −4g2(p′1 · p′2 +m2) .

Srednicki 11.48 and 11.30 give

dΓ =
1

2M

∑
spins

|T |2 |~p1
′|

16π2M
dΩ .

Inserting some kinematics, we have E ′1 = E ′2 = M/2 and |p′1| = |p′2| = 1
2
(M2 − 4m2)1/2, so∑

spins

|T |2 = 4g2(E ′1E
′
2 + |p′1||p′2| −m2) = 2g2(M2 − 4m2) ,

and integrating over angles gives

Γ = g2
(M2 − 4m2)3/2

8πM2
. (1)
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b) According to Srednicki 38.28,

|T |2 =
g2

4
Tr[(1− s1γ5x/)(m− p/′1)(1− s2γ5x/)(−m− p/′2)]

=
g2

4
Tr[−m2 −m2s1s2γ5x/γ5x/ + p/′1p/

′
2 + s1s2γ5x/p/

′
1γ5x/p/

′
2]

= −g2(m2 + p′1 · p′2)(1 + s1s2)

= g2(M2 − 4m2)(1 + s1s2)/2 . (2)

In the second line we have expanded and dropped traces that vanish. Here, I am interpreting

Mark’s “let the x-axis be the spin-quantization axis” as using γ1 in place of γ3 above 38.26.

Now, the property x · p = 0 means that x/ and p/ anticommute. Also, x/x/ = −1.

In the third line we have evaluated the traces; note that x/ anticommutes with p/ because

the momentum is perpendicular to x.

We see that this vanishes if s1 = −s2. This is from a combination of P and angular

momentum. The interaction is parity invariant for φ a scalar, so the parity and angular

momentum are both zero. Now, in the final state, we have

Pb†s1(~p)d
†
s2

(−~p)|0〉 = −b†s1(−~p)d
†
s2

(+~p)|0〉 , (3)

with the minus sign from 40.17. We can bring this back to to original state with a rota-

tion eiπJx , but this introduces also a phase from rotating the spins,

eiπJx(−b†s1(−~p)d
†
s2

(+~p))|0〉 = −eiπ(s1+s2)/2b†s1(~p)d
†
s2

(−~p)|0〉 , (4)

Since eiπJx and P are both symmetries, the amplitude to produce b†s1(~p)d
†
s2

(−~p)|0〉 must be

equal to −eiπ(s1+s2)/2 times itself, so s1 − s2 = ±2. Thus, the combination of parity and

angular momentum forbid the decay with s1 = −s2. I think that this is

Also, if M = 2m then p′1 = p′2 = (m, 0, 0, 0) and it vanishes, as explained in part (a).

This follows from P alone. By 40.17, the state b†s1(0)d†s2(0)|0〉 has odd parity, so T must

vanish. Note that in the total rate (1) there are two vanishing factors, from |~p1′| and from

|T |2. The first is because there is vanishing phase space for this decay, and the second is

due to parity.

c) Choose coordinates so the e− momentum is along the +z direction and the e+

momentum along the −z direction. This problem is stated somewhat carelessly. So z1 is

the +η boost of (0, 1) and z2 is the −η boost of (0,−1):

p′1 = m(cosh η, sinh η) , z1 = (sinh η, cosh η) , p′2 = m(cosh η,− sinh η) , z2 = m(sinh η,− cosh η) ,
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where I’ve written only the 0, z components.

|T |2 =
g2

4
Tr[(1− s1γ5z/1)(m− p/′1)(1− s2γ5z/2)(−m− p/′2)]

Note also that z1 6= z2 because we boost in opposite directions, so there is + sign in the

second spin projector. This did not come up in part (b) because x doesn’t change under a

z boost. So

p′1 = m(cosh η, sinh η) , z1 = (sinh η, cosh η) , p′2 = m(cosh η,− sinh η) , z2 = m(− sinh η, cosh η) ,

where I’ve written only the 0, z components. Then

|T |2 =
g2

4
Tr[(1− s1γ5z/1)(m− p/′1)(1− s2γ5z/2)(−m− p/′2)]

=
g2

4
Tr[−m2 −m2s1s2γ5z/1γ5z/2 + p/′1p/

′
2 + s1s2γ5z/1p/

′
1γ5z/2p/

′
2]

= g2(−m2 −m2s1s2p
′
1 · p′2 − p′1 · p′2 −m2s1s2)

= −g2(m2 + p′1 · p′2)(1 + s1s2)

= g2(M2 − 4m2)(1 + s1s2)/2 . (5)

This vanishes if s1 = −s2. Now, if s1 = −s2, then the z-components of the spins are in the

same direction, so the total sz is ±1. But an orbital rotation leaves the momenta invariant,

so the total z angular momentum is ±1. This is impossible, because the initial boson was

spinless. (Note that parity was not used).

d) Now∑
spins

|T |2 = g2Tr[(m− p/′1)iγ5(−m− p/′2)iγ5] = 4g2(−p′1 · p′2 +m2) = 2g2M2 .

For this interaction parity invariance requires φ to be a pseudoscalar, P = −, so the

amplitude can be nonvanishing as M → 2m. There are just two terms, m2 and p′1 · p′2, and

we see that the relative sign must be negative for the first interaction (in order that they

cancel at M = 2m) and positive for the γ5 interaction.

e) Repeating (b) ,

|T |2 =
g2

4
Tr[(1− s1γ5x/)(m− p/′1)iγ5(1− s2γ5x/)(−m− p/′2)iγ5]

=
g2

4
Tr[m2 −m2s1s2γ5x/γ5x/ + p/′1p/

′
2 − s1s2γ5x/p/′1γ5x/p/′2]

= g2(−p′1 · p′2 +m2)(1− s1s2)
= g2M2(1− s1s2)/2 .

3



Now is vanishes for s1 = +s2. In this case the interaction requires that φ be pseudoscalar,

so the signs are flipped in (3,4) and we need eiπ(s1+s2) = +1, opposite to the previous case,

by the combination of P and angular momentum.

Repeating (c),

|T |2 =
g2

4
Tr[(1− s1γ5z/1)(m− p/′1)iγ5(1− s2γ5z/2)(−m− p/′2)iγ5]

=
g2

4
Tr[m2 −m2s1s2γ5z/1γ5z/2 + p/′1p/

′
2 − s1s2γ5z/1p/′1γ5z/2p/′2]

= g2(m2 −m2s1s2p
′
1 · p′2 − p′1 · p′2 + 4m2h1h2)

= −g2(−m2 + p′1 · p′2)(1 + s1s2)

= g2M2(1 + s1s2)/2 .

This still vanishes for s1 = −s2, as that depended only on angular momentum conservation

and not parity.

Whew! That was longer than I expected.

4. We get

T = −igū(p′1)k/(1− γ5)v(p′2) .

Here I’ve abbreviated g = c1GFfπ. Also, ∂µ gives −ikmu when the momentum arrow points

toward the derivative as here, and ikµ when it points away. (The sign won’t matter here

because we square it.) Using

(ū(p′1)k/(1− γ5)v(p′2))∗ = v̄(p′2)(1− γ5)k/u(p′1) = v̄(p′2)(1 + γ5)k/u(p′1) .

this becomes ∑
spins

|T |2 = g2Tr[(mµ − p/′1)k/(1− γ5)(−mν − p/′2)(1 + γ5)k/] .

You can check that (1− γ5)(−mν − p/′2)(1 + γ5) = −2p/′2(1 + γ5). There is now only a single

γ5, and any traces with it will vanish. Using also k = p′1 + p′2 we get∑
spins

|T |2 = −2g2Tr[(mµ − p/′1)(p/′1 + p/′2)p/
′
2(p/
′
1 + p/′2)]

= 2g2Tr[p/′1(p/
′
1 + p/′2)p/

′
2(p/
′
1 + p/′2)] (dropped term with odd # γ’s)

= −8(mµ +mν)
2g2p′1 · p′2 . (6)
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The neutrino mass is negligible and we drop it from here. Now some kinematics.

E ′1 + E ′2 = mπ and |~p1′| = |~p2′| = E ′2 (massless ν). So (m2
µ + |~p1′|2)1/2 + |~p1′| = mπ, giving

|~p1′| = (m2
π −m2

µ)/2mπ , E ′1 = (m2
π +m2

µ)/2mπ , p′1 · p′2 = −(m2
π −m2

µ)/2 .

Using Srednicki 11.48 and 11.30 as above,

Γ =
1

8πm2
π

|~p1′|
∑
spins

|T |2 =
g2m2

µ(m2
π −m2

µ)2

4πm3
π

.

So

fπ =
2
√
πm

3/2
π Γ1/2

c1GFmµ(m2
π −m2

µ)
= 93.15 MeV .

from Γ = ~/(2.603×10−8 s) = 2.529×10−14 MeV. The measured value (taking into account

a
√

2 convention) is 92.21± 0.15 MeV,

http://pdg.lbl.gov/2012/reviews/rpp2012-rev-pseudoscalar-meson-decay-cons.pdf. As Mark

notes, most of the discrepancy can be understood from a QED correction.
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