Selected Homework 5 solutions

2. Note that these 16 matrices represent all products of $0,1,2,3$, or 4γ matrices, e.g we could write them alternately as

$$
\Gamma^{a b c d}=\left(\gamma^{0}\right)^{a}\left(\gamma^{1}\right)^{b}\left(\gamma^{2}\right)^{c}\left(\gamma^{3}\right)^{d}
$$

for $a, b, c, d=0,1$. Now, $\operatorname{Tr}\left(\Gamma^{a b c d}\right)$ vanishes unless $a=b=c=d=0$, using known results. (Explicit argument: $\operatorname{Tr}(X)$ vanishes if there is any Y such that $Y^{2}=\alpha I$, with α a nonzero constant, and $X Y=-Y X$, because $\operatorname{Tr}(X)=\alpha^{-1} \operatorname{Tr}\left(Y^{2} X\right) \stackrel{\text { anticom }}{=}-\alpha^{-1} \operatorname{Tr}(Y X Y)$ $\stackrel{\text { cyclic }}{=}-\alpha^{-1} \operatorname{Tr}\left(Y^{2} X\right)=-\operatorname{Tr}(X)$. For any case except $a=b=c=d=0$ you can find such a Y : if $a+b+c+d$ is even, take any of the γ^{μ} that has exponent 1 , and if $a+b+c+d$ is odd, take any of the γ^{μ} that has exponent 0 .)

But also

$$
\Gamma^{a b c d} \Gamma^{a^{\prime} b^{\prime} c^{\prime} d^{\prime}}= \pm \Gamma^{a+a^{\prime}, b+b^{\prime}, c+c^{\prime}, d+d^{\prime}}
$$

(exponents mod 2) using the anticommutation relations. So $\operatorname{Tr}\left(\Gamma^{a b c d} \Gamma^{a^{\prime} b^{\prime} c^{\prime} d^{\prime}}\right.$) vanishes unless $(a, b, c, d)=\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right)$. If any of these matrices could be written as a linear combination of the others, there would be a discrepancy. So we have $2^{4}=4^{2}$ linearly indendent matrices. This works in any even number of dimensions: $2^{d}=\left(2^{d / 2}\right)^{2}$.
3. a) Labeling the momenta $k \rightarrow p_{1}^{\prime}, p_{2}^{\prime}$ for $\varphi \rightarrow e^{-} e^{+}$, we have $\mathcal{T}=g \bar{u}_{s_{1}^{\prime}}\left(p_{1}^{\prime}\right) v_{s_{2}^{\prime}}\left(p_{2}^{\prime}\right)$. Then

$$
\sum_{\text {spins }}|\mathcal{T}|^{2}=g^{2} \operatorname{Tr}\left[\left(m-\not p_{1}^{\prime}\right)\left(-m-\not p_{2}^{\prime}\right)\right]=-4 g^{2}\left(p_{1}^{\prime} \cdot p_{2}^{\prime}+m^{2}\right) .
$$

Srednicki 11.48 and 11.30 give

$$
d \Gamma=\frac{1}{2 M} \sum_{\text {spins }}|\mathcal{T}|^{2} \frac{\left|\vec{p}_{1}^{\prime}\right|}{16 \pi^{2} M} d \Omega
$$

Inserting some kinematics, we have $E_{1}^{\prime}=E_{2}^{\prime}=M / 2$ and $\left|p_{1}^{\prime}\right|=\left|p_{2}^{\prime}\right|=\frac{1}{2}\left(M^{2}-4 m^{2}\right)^{1 / 2}$, so

$$
\sum_{\text {spins }}|\mathcal{T}|^{2}=4 g^{2}\left(E_{1}^{\prime} E_{2}^{\prime}+\left|p_{1}^{\prime}\right|\left|p_{2}^{\prime}\right|-m^{2}\right)=2 g^{2}\left(M^{2}-4 m^{2}\right)
$$

and integrating over angles gives

$$
\begin{equation*}
\Gamma=g^{2} \frac{\left(M^{2}-4 m^{2}\right)^{3 / 2}}{8 \pi M^{2}} \tag{1}
\end{equation*}
$$

b) According to Srednicki 38.28,

$$
\begin{align*}
|\mathcal{T}|^{2} & =\frac{g^{2}}{4} \operatorname{Tr}\left[\left(1-s_{1} \gamma_{5} \not x\right)\left(m-\not p_{1}^{\prime}\right)\left(1-s_{2} \gamma_{5} \not \nmid\right)\left(-m-\not p_{2}^{\prime}\right)\right] \\
& =\frac{g^{2}}{4} \operatorname{Tr}\left[-m^{2}-m^{2} s_{1} s_{2} \gamma_{5} \not x \gamma_{5} \not x+\not p_{1}^{\prime} \not p_{2}^{\prime}+s_{1} s_{2} \gamma_{5} \not \not \not p_{1}^{\prime} \gamma_{5} \not \not \not \not p_{2}^{\prime}\right] \\
& =-g^{2}\left(m^{2}+p_{1}^{\prime} \cdot p_{2}^{\prime}\right)\left(1+s_{1} s_{2}\right) \\
& =g^{2}\left(M^{2}-4 m^{2}\right)\left(1+s_{1} s_{2}\right) / 2 . \tag{2}
\end{align*}
$$

In the second line we have expanded and dropped traces that vanish. Here, I am interpreting Mark's "let the x-axis be the spin-quantization axis" as using γ^{1} in place of γ^{3} above 38.26. Now, the property $x \cdot p=0$ means that $\not p$ and $\not p$ anticommute. Also, $\not x \not p=-1$.

In the third line we have evaluated the traces; note that $\not p$ anticommutes with $\not p$ because the momentum is perpendicular to x.

We see that this vanishes if $s_{1}=-s_{2}$. This is from a combination of P and angular momentum. The interaction is parity invariant for ϕ a scalar, so the parity and angular momentum are both zero. Now, in the final state, we have

$$
\begin{equation*}
P b_{s_{1}}^{\dagger}(\vec{p}) d_{s_{2}}^{\dagger}(-\vec{p})|0\rangle=-b_{s_{1}}^{\dagger}(-\vec{p}) d_{s_{2}}^{\dagger}(+\vec{p})|0\rangle \tag{3}
\end{equation*}
$$

with the minus sign from 40.17 . We can bring this back to to original state with a rotation $e^{i \pi J_{x}}$, but this introduces also a phase from rotating the spins,

$$
\begin{equation*}
e^{i \pi J_{x}}\left(-b_{s_{1}}^{\dagger}(-\vec{p}) d_{s_{2}}^{\dagger}(+\vec{p})\right)|0\rangle=-e^{i \pi\left(s_{1}+s_{2}\right) / 2} b_{s_{1}}^{\dagger}(\vec{p}) d_{s_{2}}^{\dagger}(-\vec{p})|0\rangle, \tag{4}
\end{equation*}
$$

Since $e^{i \pi J_{x}}$ and P are both symmetries, the amplitude to produce $b_{s_{1}}^{\dagger}(\vec{p}) d_{s_{2}}^{\dagger}(-\vec{p})|0\rangle$ must be equal to $-e^{i \pi\left(s_{1}+s_{2}\right) / 2}$ times itself, so $s_{1}-s_{2}= \pm 2$. Thus, the combination of parity and angular momentum forbid the decay with $s_{1}=-s_{2}$. I think that this is

Also, if $M=2 m$ then $p_{1}^{\prime}=p_{2}^{\prime}=(m, 0,0,0)$ and it vanishes, as explained in part (a). This follows from P alone. By 40.17, the state $b_{s_{1}}^{\dagger}(0) d_{s_{2}}^{\dagger}(0)|0\rangle$ has odd parity, so \mathcal{T} must vanish. Note that in the total rate (1) there are two vanishing factors, from $\left|\vec{p}_{1}\right|$ and from $|\mathcal{T}|^{2}$. The first is because there is vanishing phase space for this decay, and the second is due to parity.
c) Choose coordinates so the e^{-}momentum is along the $+z$ direction and the e^{+} momentum along the $-z$ direction. This problem is stated somewhat carelessly. So z_{1} is the $+\eta$ boost of $(0,1)$ and z_{2} is the $-\eta$ boost of $(0,-1)$:
$p_{1}^{\prime}=m(\cosh \eta, \sinh \eta), z_{1}=(\sinh \eta, \cosh \eta), p_{2}^{\prime}=m(\cosh \eta,-\sinh \eta), z_{2}=m(\sinh \eta,-\cosh \eta)$,
where I've written only the $0, z$ components.

$$
|\mathcal{T}|^{2}=\frac{g^{2}}{4} \operatorname{Tr}\left[\left(1-s_{1} \gamma_{5} \not \not_{1}\right)\left(m-\not p_{1}^{\prime}\right)\left(1-s_{2} \gamma_{5} \not \chi_{2}\right)\left(-m-\not p_{2}^{\prime}\right)\right]
$$

Note also that $z_{1} \neq z_{2}$ because we boost in opposite directions, so there is + sign in the second spin projector. This did not come up in part (b) because x doesn't change under a z boost. So
$p_{1}^{\prime}=m(\cosh \eta, \sinh \eta), z_{1}=(\sinh \eta, \cosh \eta), p_{2}^{\prime}=m(\cosh \eta,-\sinh \eta), z_{2}=m(-\sinh \eta, \cosh \eta)$, where I've written only the $0, z$ components. Then

$$
\begin{align*}
|\mathcal{T}|^{2} & =\frac{g^{2}}{4} \operatorname{Tr}\left[\left(1-s_{1} \gamma_{5} \not \not_{1}\right)\left(m-\not p_{1}^{\prime}\right)\left(1-s_{2} \gamma_{5} \not \chi_{2}\right)\left(-m-\not p_{2}^{\prime}\right)\right] \\
& =\frac{g^{2}}{4} \operatorname{Tr}\left[-m^{2}-m^{2} s_{1} s_{2} \gamma_{5} \not{ }_{1} \gamma_{5} \not \not_{2}+\not p_{1}^{\prime} p_{2}^{\prime}+s_{1} s_{2} \gamma_{5} \not{ }_{1} \not p_{1}^{\prime} \gamma_{5} \not \chi_{2} \not p_{2}^{\prime}\right] \\
& =g^{2}\left(-m^{2}-m^{2} s_{1} s_{2} p_{1}^{\prime} \cdot p_{2}^{\prime}-p_{1}^{\prime} \cdot p_{2}^{\prime}-m^{2} s_{1} s_{2}\right) \\
& =-g^{2}\left(m^{2}+p_{1}^{\prime} \cdot p_{2}^{\prime}\right)\left(1+s_{1} s_{2}\right) \\
& =g^{2}\left(M^{2}-4 m^{2}\right)\left(1+s_{1} s_{2}\right) / 2 . \tag{5}
\end{align*}
$$

This vanishes if $s_{1}=-s_{2}$. Now, if $s_{1}=-s_{2}$, then the z-components of the spins are in the same direction, so the total s_{z} is ± 1. But an orbital rotation leaves the momenta invariant, so the total z angular momentum is ± 1. This is impossible, because the initial boson was spinless. (Note that parity was not used).
d) Now

$$
\sum_{\text {spins }}|\mathcal{T}|^{2}=g^{2} \operatorname{Tr}\left[\left(m-\not p_{1}^{\prime}\right) i \gamma_{5}\left(-m-\not p_{2}^{\prime}\right) i \gamma_{5}\right]=4 g^{2}\left(-p_{1}^{\prime} \cdot p_{2}^{\prime}+m^{2}\right)=2 g^{2} M^{2}
$$

For this interaction parity invariance requires ϕ to be a pseudoscalar, $P=-$, so the amplitude can be nonvanishing as $M \rightarrow 2 m$. There are just two terms, m^{2} and $p_{1}^{\prime} \cdot p_{2}^{\prime}$, and we see that the relative sign must be negative for the first interaction (in order that they cancel at $M=2 m$) and positive for the γ_{5} interaction.
e) Repeating (b),

$$
\begin{aligned}
|\mathcal{T}|^{2} & =\frac{g^{2}}{4} \operatorname{Tr}\left[\left(1-s_{1} \gamma_{5} \not x\right)\left(m-\not p_{1}^{\prime}\right) i \gamma_{5}\left(1-s_{2} \gamma_{5} \not x\right)\left(-m-\not p_{2}^{\prime}\right) i \gamma_{5}\right] \\
& =\frac{g^{2}}{4} \operatorname{Tr}\left[m^{2}-m^{2} s_{1} s_{2} \gamma_{5} \not x \gamma_{5} \not \nsim+\not p_{1}^{\prime} \not p_{2}^{\prime}-s_{1} s_{2} \gamma_{5} \not p_{p}^{\prime} \gamma_{5} \not p_{p}^{\prime}\right] \\
& =g^{2}\left(-p_{1}^{\prime} \cdot p_{2}^{\prime}+m^{2}\right)\left(1-s_{1} s_{2}\right) \\
& =g^{2} M^{2}\left(1-s_{1} s_{2}\right) / 2 .
\end{aligned}
$$

Now is vanishes for $s_{1}=+s_{2}$. In this case the interaction requires that ϕ be pseudoscalar, so the signs are flipped in $(3,4)$ and we need $e^{i \pi\left(s_{1}+s_{2}\right)}=+1$, opposite to the previous case, by the combination of P and angular momentum.

Repeating (c),

$$
\begin{aligned}
|\mathcal{T}|^{2} & =\frac{g^{2}}{4} \operatorname{Tr}\left[\left(1-s_{1} \gamma_{5} \not \not_{1}\right)\left(m-\not p_{1}^{\prime}\right) i \gamma_{5}\left(1-s_{2} \gamma_{5} \not \not_{2}\right)\left(-m-\not p_{2}^{\prime}\right) i \gamma_{5}\right] \\
& =\frac{g^{2}}{4} \operatorname{Tr}\left[m^{2}-m^{2} s_{1} s_{2} \gamma_{5} \not \not_{1} \gamma_{5} \not \not_{2}+\not p_{1}^{\prime} \not p_{2}^{\prime}-s_{1} s_{2} \gamma_{5} \not 1_{1} \not p_{1}^{\prime} \gamma_{5} \not \downarrow_{2} \not p_{2}^{\prime}\right] \\
& =g^{2}\left(m^{2}-m^{2} s_{1} s_{2} p_{1}^{\prime} \cdot p_{2}^{\prime}-p_{1}^{\prime} \cdot p_{2}^{\prime}+4 m^{2} h_{1} h_{2}\right) \\
& =-g^{2}\left(-m^{2}+p_{1}^{\prime} \cdot p_{2}^{\prime}\right)\left(1+s_{1} s_{2}\right) \\
& =g^{2} M^{2}\left(1+s_{1} s_{2}\right) / 2 .
\end{aligned}
$$

This still vanishes for $s_{1}=-s_{2}$, as that depended only on angular momentum conservation and not parity.

Whew! That was longer than I expected.
4. We get

$$
\mathcal{T}=-i g \bar{u}\left(p_{1}^{\prime}\right) \not k\left(1-\gamma_{5}\right) v\left(p_{2}^{\prime}\right) .
$$

Here I've abbreviated $g=c_{1} G_{F} f_{\pi}$. Also, ∂_{μ} gives $-i k_{m} u$ when the momentum arrow points toward the derivative as here, and $i k_{\mu}$ when it points away. (The sign won't matter here because we square it.) Using

$$
\left(\bar{u}\left(p_{1}^{\prime}\right) \nLeftarrow\left(1-\gamma_{5}\right) v\left(p_{2}^{\prime}\right)\right) *=\bar{v}\left(p_{2}^{\prime}\right)\left(1-\bar{\gamma}_{5}\right) \bar{\not} u\left(p_{1}^{\prime}\right)=\bar{v}\left(p_{2}^{\prime}\right)\left(1+\gamma_{5}\right) \nLeftarrow k u\left(p_{1}^{\prime}\right) .
$$

this becomes

$$
\sum_{\text {spins }}|\mathcal{T}|^{2}=g^{2} \operatorname{Tr}\left[\left(m_{\mu}-\not p_{1}^{\prime}\right) \not k\left(1-\gamma_{5}\right)\left(-m_{\nu}-\not p_{2}^{\prime}\right)\left(1+\gamma_{5}\right) \nless j\right] .
$$

You can check that $\left(1-\gamma_{5}\right)\left(-m_{\nu}-\not p_{2}^{\prime}\right)\left(1+\gamma_{5}\right)=-2 \not p_{2}^{\prime}\left(1+\gamma_{5}\right)$. There is now only a single γ_{5}, and any traces with it will vanish. Using also $k=p_{1}^{\prime}+p_{2}^{\prime}$ we get

$$
\begin{align*}
\sum_{\text {spins }}|\mathcal{T}|^{2} & =-2 g^{2} \operatorname{Tr}\left[\left(m_{\mu}-\not p_{1}^{\prime}\right)\left(\not p_{1}^{\prime}+\not p_{2}^{\prime}\right) \not p_{2}^{\prime}\left(\not p_{1}^{\prime}+\not p_{2}^{\prime}\right)\right] \\
& \left.=2 g^{2} \operatorname{Tr}\left[\not p_{1}^{\prime}\left(\not p_{1}^{\prime}+\not p_{2}^{\prime}\right) \not p_{2}^{\prime}\left(\not p_{1}^{\prime}+\not p_{2}^{\prime}\right)\right] \quad \text { (dropped term with odd } \# \gamma^{\prime} \mathrm{s}\right) \\
& =-8\left(m_{\mu}+m_{\nu}\right)^{2} g^{2} p_{1}^{\prime} \cdot p_{2}^{\prime} . \tag{6}
\end{align*}
$$

The neutrino mass is negligible and we drop it from here. Now some kinematics. $E_{1}^{\prime}+E_{2}^{\prime}=m_{\pi}$ and $\left|\vec{p}_{1}^{\prime}\right|=\left|\vec{p}_{2}^{\prime}\right|=E_{2}^{\prime}($ massless $\nu)$. So $\left(m_{\mu}^{2}+\left|\vec{p}_{1}^{\prime}\right|^{2}\right)^{1 / 2}+\left|\vec{p}_{1}^{\prime}\right|=m_{\pi}$, giving

$$
\left|\vec{p}_{1}^{\prime}\right|=\left(m_{\pi}^{2}-m_{\mu}^{2}\right) / 2 m_{\pi}, \quad E_{1}^{\prime}=\left(m_{\pi}^{2}+m_{\mu}^{2}\right) / 2 m_{\pi}, \quad p_{1}^{\prime} \cdot p_{2}^{\prime}=-\left(m_{\pi}^{2}-m_{\mu}^{2}\right) / 2 .
$$

Using Srednicki 11.48 and 11.30 as above,

$$
\Gamma=\frac{1}{8 \pi m_{\pi}^{2}}\left|\vec{p}_{1}^{\prime}\right| \sum_{\text {spins }}|\mathcal{T}|^{2}=\frac{g^{2} m_{\mu}^{2}\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}}{4 \pi m_{\pi}^{3}}
$$

So

$$
f_{\pi}=\frac{2 \sqrt{\pi} m_{\pi}^{3 / 2} \Gamma^{1 / 2}}{c_{1} G_{F} m_{\mu}\left(m_{\pi}^{2}-m_{\mu}^{2}\right)}=93.15 \mathrm{MeV}
$$

from $\Gamma=\hbar /\left(2.603 \times 10^{-8} \mathrm{~s}\right)=2.529 \times 10^{-14} \mathrm{MeV}$. The measured value (taking into account a $\sqrt{2}$ convention) is $92.21 \pm 0.15 \mathrm{MeV}$, http://pdg.lbl.gov/2012/reviews/rpp2012-rev-pseudoscalar-meson-decay-cons.pdf. As Mark notes, most of the discrepancy can be understood from a QED correction.

